
Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 1 of 100

SEVENTH FRAMEWORK PROGRAMME
THEME

FET proactive 1: Concurrent Tera-Device
Computing (ICT-2009.8.1)

PROJECT NUMBER: 249013

Exploiting dataflow parallelism in Teradevice Computing

D7.5 – Final Report and Documentation

D8.3 – Final Results from the combination of UD and TERAFLUX
dataflow techniques

Due date of deliverable: 31st March 2014
Actual Submission: 19th May 2014

Start date of the project: January 1st, 2010 Duration: 51 months

Lead contractor for the deliverable: UNISI

Revision : See file name in document footer.
Project co-founded by the European Commission

within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)
Dissemination Level: PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 2 of 100

Change Control
Version# Date Author Organization Change History
1 05.03.2014 Alberto Scionti UNISI Initial document
2 13.03.2014 Alberto Scionti UNISI First draft
3-13 14.05.2014 Detailed author list is

presented in a next
page

ALL
PARTNERS

Final Draft

14-16 17.05.2014 Roberto Giorgi UNISI Review

Release Approval
Name Role Date
Alberto Scionti Originator 15.05.2014
Roberto Giorgi WP Leader 17.05.2014
Roberto Giorgi Project Coordinator for formal deliv erable 18.05.2014

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 3 of 100

TABLE OF CONTENTS

GLOSSARY .. 10

EXECUTIVE SUMMARY ... 11

RELATION TO OTHER DELIVERABLES ... 12

ACTIVITIES REFERRED BY THIS DELIVERABLE ... 12

CONCLUSIONS .. 13

1 GETTING STARTED ... 14

1.1 STEP1: INSTALLATION ... 14

1.2.1 Configuring COTSon Simulator .. 14

1.2 STEP 2: RUNNING A FIRST EXAMPLE ... 15

1.3 COTSON SIMULATOR: LOOK AT A GLANCE ... 16

1.4 SUPPORTED PLATFORMS .. 17

1.4.1 Running COTSon in a virtualized environment .. 17

1.5 DOCUMENT STRUCTURE .. 18

2 UNDERSTANDING COTSON: DESIGN AND ARCHITECTURE ... 19

2.1 MAJOR DESIGN CHARACTERISTICS AND COMPARISON WITH OTHER SIMULATORS .. 19

2.2 TIMING FEEDBACK .. 20

2.3 ARCHITECTURE .. 21

2.4 COTSON INSTALLATION STRUCTURE .. 22

3 COTSON COMPONENTS: SIMNOW, SAMPLERS, INTERLEAVER, TIMERS ... 23

3.1 VIRTUALIZER: SHORT INTRODUCTION TO SIMNOW .. 23

3.2 SAMPLERS .. 25

3.3 INTERLEAVERS ... 26

3.4 TIMERS .. 27

4 COTSON CONFIGURATION ... 28

4.1 LUA SCRIPTING .. 28

4.2 CHANGING THE CONFIGURATION ... 29

4.2.1 Lua-Section-1 –options table .. 29

4.2.2 Lua-Section-2 – SimNow options/commands .. 30

4.2.3 Lua-Section-3 – configuration options ... 31

5 COLLECTING METRICS .. 33

5.1 LOG STRUCTURE ... 33

5.2 DATABASE STRUCTURE .. 33

5.2.1 Using a PostgreSQL server: ... 35

5.2.2 Creating the COTSon PostgreSQL database: .. 35

5.2.3 Configuring PostgreSQL for COTSon connection: .. 36

5.2.4 Creating the PostgreSQL COTSon db schema: .. 36

5.2.5 Modifying the “.in” file to save our heartbeats in PostgreSQL: .. 37

5.2.6 Running COTSon with PostgreSQL .. 37

6 SIMPLE EXAMPLES ... 38

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 4 of 100

6.1 FUNCTIONAL SIMULATION EXAMPLE (FUNCTIONAL.IN)... 38

6.1.1 Goal of the experiment or example ... 38

6.1.2 Location of the involved files .. 38

6.1.3 Detailed instructions to start .. 39

6.1.4 Expected output .. 39

6.2 MEMORY TRACING EXAMPLE (MEM_TRACER.IN) .. 39

6.2.1 Goal of the experiment or example ... 40

6.2.2 Location of the involved files .. 40

6.2.3 Detailed instructions to start .. 40

6.2.4 Expected output .. 40

6.2.5 Defining the Region Of Interest (ROI) .. 43

6.3 SAMPLERS: TIMING SIMULATION ... 45

6.3.1 Goal of the experiment or example ... 46

6.3.2 Location of the involved files .. 46

6.3.3 Detailed instructions to start for NO Sampling (“simple”) .. 46

6.3.4 Expected output for NO Sampling (“simple”) .. 46

6.3.5 Detailed instructions to start for Dynamic Sampling ... 46

6.3.6 Expected output for Dynamic Sampling.. 47

6.3.7 Detailed instructions to start for Interval Sampling ... 47

6.3.8 Expected output for Interval Sampling ... 47

6.3.9 Detailed instructions to start for SMARTS Sampling ... 48

6.3.10 Expected output for SMARTS Sampling ... 48

6.4 SIMULATION OF ETHERNET CONNECTED CLUSTERS .. 48

6.4.1 Goal of the experiment or example ... 48

6.4.2 Location of the involved files .. 49

6.4.3 Detailed instructions to start .. 49

6.4.4 Expected output .. 49

7 RESEARCH USE CASE FROM BSC .. 51

7.1 GOAL OF THE EXPERIMENT OR EXAMPLE .. 51

7.2 LOCATION OF THE INVOLVED FILES ... 51

7.3 DETAILED INSTRUCTIONS TO START .. 51

7.4 EXPECTED OUTPUT ... 52

7.5 FURTHER REFERENCES TO MORE IN-DEPTHS ... 52

8 RESEARCH USE CASE FROM CAPS .. 53

8.1 GOAL OF THE EXPERIMENT OR EXAMPLE .. 53

8.2 LOCATION OF THE INVOLVED FILES ... 53

8.3 DETAILED INSTRUCTIONS TO START .. 53

8.4 EXPECTED OUTPUT ... 55

8.5 FURTHER REFERENCES TO MORE IN-DEPTHS ... 56

9 RESEARCH USE CASE FROM HP .. 57

9.1 GOAL OF THE EXPERIMENT OR EXAMPLE .. 57

9.2 LOCATION OF THE INVOLVED FILES ... 59

9.3 DETAILED INSTRUCTIONS TO START .. 60

9.4 EXPECTED OUTPUT ... 61

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 5 of 100

9.5 FURTHER REFERENCES TO MORE IN-DEPTHS ... 63

10 RESEARCH USE CASE FROM INRIA ... 64

10.1 GOAL OF THE EXPERIMENT OR EXAMPLE .. 64

10.2 LOCATION OF THE INVOLVED FILES ... 66

10.3 DETAILED INSTRUCTIONS TO START .. 67

10.4 EXPECTED OUTPUT ... 67

10.5 FURTHER REFERENCES TO MORE IN-DEPTHS ... 68

11 RESEARCH USE CASE FROM MSFT ... 69

11.1 GOAL OF THE EXPERIMENT OR EXAMPLE .. 69

11.2 LOCATION OF THE INVOLVED FILES ... 69

11.3 DETAILED INSTRUCTIONS TO START .. 69

11.4 EXPECTED OUTPUT ... 71

11.5 FURTHER REFERENCES TO MORE IN-DEPTHS ... 72

12 RESEARCH USE CASE FROM THALES .. 73

12.1 GOAL OF THE EXPERIMENT OR EXAMPLE .. 73

12.2 LOCATION OF THE INVOLVED FILES ... 73

12.3 DETAILED INSTRUCTIONS TO START .. 73

12.4 EXPECTED OUTPUT ... 74

12.5 FURTHER REFERENCES TO MORE IN-DEPTHS ... 74

13 RESEARCH USE CASE FROM UAU ... 75

13.1 GOAL OF THE EXPERIMENT ... 75

13.2 LOCATION OF THE INVOLVED FILES ... 75

13.3 DETAILED INSTRUCTIONS TO START .. 75

13.4 EXPECTED OUTPUT ... 75

13.5 FURTHER REFERENCES TO MORE IN-DEPTHS ... 76

14 RESEARCH USE CASE FROM UCY .. 77

14.1 GOAL OF THE EXPERIMENT OR EXAMPLE .. 77

14.2 LOCATION OF THE INVOLVED FILES ... 77

14.3 DETAILED INSTRUCTIONS TO START .. 78

14.4 EXPECTED OUTPUT ... 78

14.5 FURTHER REFERENCES TO MORE IN-DEPTHS ... 79

15 RESEARCH USE CASE FROM UD ... 78

15.1 GOAL OF THE EXPERIMENT OR EXAMPLE .. 80

15.2 LOCATION OF THE INVOLVED FILES ... 80

15.3 DETAILED INSTRUCTIONS TO START .. 80

15.4 EXPECTED OUTPUT ... 81

15.5 FURTHER REFERENCES TO MORE IN-DEPTHS ... 81

16 RESEARCH USE CASE FROM UNIMAN .. 82

16.1 GOAL OF THE EXPERIMENT OR EXAMPLE .. 82

16.2 LOCATION OF THE INVOLVED FILES ... 82

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 6 of 100

16.3 DETAILED INSTRUCTIONS TO START .. 83

16.4 EXPECTED OUTPUT ... 86

16.5 FURTHER REFERENCES TO MORE IN-DEPTHS ... 88

17 RESEARCH USE CASE FROM UNISI ... 89

17.1 GOAL OF THE EXPERIMENT OR EXAMPLE .. 89

17.2 LOCATION OF THE INVOLVED FILES ... 89

17.3 DETAILED INSTRUCTIONS TO START .. 89

17.4 EXPECTED OUTPUT ... 91

17.5 FURTHER REFERENCES TO MORE IN-DEPTHS ... 92

18 DRT - A TOOL FOR NATIVE TESTING OF T* BASED PROGRAMS ... 93

18.1 GOAL OF THE EXPERIMENT ... 93

18.2 LOCATION OF THE INVOLVED FILES ... 93

18.3 DETAILED INSTRUCTIONS TO START .. 94

18.4 EXPECTED OUTPUT ... 95

REFERENCES .. 96

APPENDIX A – LUA LEXICAL CONVENTIONS ... 97

APPENDIX B – LUA LANGUAGE FEATURES ... 99

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 7 of 100

LIST OF FIGURES

FIG. 1 – GRAPHICAL CONTROL WINDOW OF THE COTSON SIMULATOR ... 16

FIG. 2 - INTERACTION BETWEEN FUNCTIONAL SIMULATION COMPONENTS AND TIMING COMPONENTS IN COTSON SIMULATOR. 20

FIG. 3 – EXAMPLE OF TIMING FEEDBACK WITH ASYNCHRONOUS COMMUNICATION FOR ESTIMATING THE IPC IN COTSON. 21

FIG. 4 – COTSON COMPONENTS OVERVIEW ... 23

FIG. 5 – GRAPHICAL INTERFACE OF THE COTSON SIMULATOR. THE WINDOW CONTAINS A TOOLBAR FROM WHICH INTERACT WITH THE

SIMULATOR, A PANEL DISPLAYING STATISTICAL INFORMATION, AND A CONTROL PANEL FROM WHICH INTERACT WITH THE GUEST

SYSTEM. .. 24

FIG. 6 – CORRELATION OF THE PERFORMANCE INFORMATION ACQUIRED BY THE SIMULATOR WITH THE RUNNING APPLICATION PHASES.

 ... 25

FIG. 7 - A SCHEMATIC REPRESENTATION OF HOW DYNAMIC SAMPLING WORKS. .. 26

FIG. 8 – A SIMPLE COTSON CONFIGURATION FILE (WRITTEN IN LUA FILE ‘FUNCTIONAL.IN’ ... 28

FIG. 9 - AN EXAMPLE OF LUA-SECTION-1 OF THE COTSON CONFIGURATION FILE (SEE ALSO THE EXAMPLE

SRC/EXAMPLE/ONE_SIMPLE_CPU.IN). .. 30

FIG. 10 - AN EXAMPLE OF LUA-SECTION-2 OF THE COTSON CONFIGURATION FILE (SEE ALSO ONE_SIMPLE_CPU.IN) 31

FIG. 11 - AN EXAMPLE OF LUA-SECTION-3 OF THE COTSON CONFIGURATION FILE (SEE ALSO THE EXAMPLE

SRC/EXAMPLE/ONE_SIMPLE_CPU.IN) ... 32

FIG. 12 – LUA CONFIGURATION FILE FOR RUNNING A PURE FUNCTIONAL SIMULATION WITH COTSON. 38

FIG. 13 – EXPECTED OUTPUT FOR THE “FUNCTIONAL.IN” EXAMPLE ... 39

FIG. 14 – RELEVANT LINES OF THE LUA CONFIGURATION FILE FOR THE MEMORY TRACER EXAMPLE. IN THIS CASE THE LUA SCRIPT

CONTAINS ANOTHER VARIABLE (NOT SHOWN HERE) THAT SETS TRACE_FILE=”/TMP/MEM_TRACER.TXT.GZ” 39

FIG. 15 – EXPECTED OUTPUT FOR THE MEMORY TRACE SIMULATION WITH COTSON SIMULATOR. ... 41

FIG. 16 – LUA CONFIGURATION FILE FOR SETTING THE TIMER TO TRACE_STATS.IN EXAMPLE ... 41

FIG. 17 - LUA CONFIGURATION FILE FOR SETTING THE TIMER TO MEM_TRACER2.IN EXAMPLE. .. 42

FIG. 18 – THE DEFINITION OF THE ROI IN THE EXAMPLE COTSON_TRACER.IN .. 44

FIG. 19 – EXPECTED OUTPUT FOR “SIMPLE” SAMPLER EXAMPLE. THE EXAMPLE IS BASED ON THE ONE_CPU_SIMPLE.IN LUA

CONFIGURATION FILE. .. 46

FIG. 20 – EXPECTED OUTPUT FOR DYNAMIC SAMPLER EXAMPLE. THE EXAMPLE IS BASED ON THE DYNAMIC.IN LUA CONFIGURATION

FILE. ... 47

FIG. 21 – EXPECTED OUTPUT FOR INTERVAL BASED SAMPLER EXAMPLE. THE EXAMPLE IS BASED ON THE MULTIPLE_CPU_INTERVAL.IN

LUA CONFIGURATION FILE. .. 47

FIG. 22 – EXPECTED OUTPUT FOR SMARTS SAMPLER EXAMPLE. THE EXAMPLE IS BASED ON THE SMARTS.IN LUA CONFIGURATION

FILE. ... 48

FIG. 23 EXPECTED OUTPUT FOR THE EXAMPLE WHERE MEDIATOR COMPONENT IS USED. THE EXAMPLE IS BASED ON THE TWONODES.IN

LUA CONFIGURATION FILE. .. 49

FIG. 24– TWO SIMULATOR WINDOWS ARE USED TO MANAGE THE TWO COMMUNICATING NODES OF THE SIMULATED SYSTEM. 50

FIG. 25 – RESULTS OF A COTSON SIMULATION ON THE OPENHMPP CONVOLUTION EXAMPLE. ... 56

FIG. 26 – MULTI-NODE SIMULATION WITH COTSON .. 57

FIG. 27 – SPEEDUP OF FIVE DIFFERENT DATAFLOW BENCHMARKS RUNNING ON DIFFERENT NUMBER OF CORES/NODES. 59

FIG. 28 – MATRIX PRODUCT – INPUT. ... 67

FIG. 29 – MATRIX PRODUCT – INPUT. ... 68

FIG. 30 – MATRIX PRODUCT – INPUT. ... 68

FIG. 31 – TWO NODES (TWO SIMNOW INSTANCES) RUNNING ON THE COTSON SIMULATOR. .. 71

FIG. 32 – OUTPUT OF THE SIMULATION WHEN A NODE IN THE SYSTEM FAILS. .. 72

FIG. 33 – DOUBLE EXECUTION OF DATAFLOW THREADS, AND THE CORRESPONDING VERIFICATION OUTPUT. 72

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 8 of 100

FIG. 34 - EXECUTING TSU++ ON COTSON. ... 79

FIG. 35 – CONFIGURING CCNUMA ARCHITECTURE IN COTSON. .. 83

FIG. 36 – CONFIGURING TM ARCHITECTURE IN COTSON. ... 84

FIG. 37 – CONFIGURING TM ARCHITECTURE IN COTSON. ... 85

FIG. 38 – MAKEFILE TO SETUP TM AND TSU HARDWARE FOR SINGLE AND MULTIMODE SIMULATION. 86

FIG. 39 – DEVICE WINDOW WHILE RUNNING COTSON SIMULATION .. 86

FIG. 40 – COTSON_TRACER.IN CONFIGURATION FILE SETTING UP THE NUMBER OF CORES IN THE SIMULATED MACHINE 86

FIG. 41 – LOG FILE SHOWING ICACHE STATISTICS FOR THE CPU 0. .. 87

FIG. 42 – COTSON GRAPHICAL MAIN WINDOW AND THE CONSOLE OUTPUT. ... 87

FIG. 43 – CONFIGURING THE SCALABLE TM ARCHITECTURE IN COTSON. ... 88

FIG. 44 – COTSON SIMULATION SETTING UP AND RUNNING TM AND TSU HARDWARE. ... 88

FIG. 45 – A DRT SNAPSHOT SHOWING THE DOWNLOAD PROCESS. .. 94

FIG. 46 – A DRT SNAPSHOT SHOWING THE RESULT OF THE TREGRESSION.SH SCRIPT. DURING THE COMPILATION PROCESS, IT IS

PRODUCED IN OUTPUT AN OK MESSAGE (IF NO ERROR IS ENCOUNTERED) ... 94

FIG. 47 – DRT EXAMPLE EXECUTION: RECURSIVE FIBONACCI SEQUENCE WITH INPUT SET TO 15 AND DEBUG LEVEL SET TO 0. 95

FIG. 48 – DRT EXAMPLE EXECUTION: RECURSIVE FIBONACCI SEQUENCE WITH INPUT SET TO 15 AND DEBUG LEVEL SET TO 1. 95

LIST OF TABLES

TABLE 1 – COTSON INSTALLATION: SUPPORTED LINUX DISTRIBUTIONS. ... 17

TABLE 2 – RADAR APPLICATION SPEEDUP AGAINST SEQUENTIAL EXECUTION .. 74

TABLE 3 – NODE UTILIZATION AND EXECUTION TIME OF THE BASELINE DATAFLOW EXECUTION .. 76

TABLE 4 – NODE UTILIZATION AND EXECUTION TIME OF PESSIMISTIC DOUBLE EXECUTION .. 76

TABLE 5 – NODE UTILIZATION AND EXECUTION TIME OF OPTIMISTIC DOUBLE EXECUTION 76

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 9 of 100

List of contributors to the writing of the document.

Alberto Scionti, Haileyesus Kifle, Somnath Mazumdar, Roberto Giorgi
University of Siena

Nacho Navarro, Rosa Badia, Mateo Valero

Barcelona Supercomputing Center

Sebastian Weis, Theo Ungerer
Universitaet Augsburg

Pedro Trancoso, Skevos Evripidou, Giorgos Matheou

University of Cyprus

Amit Fuchs, Yaron Weinsberg
Microsoft Research and Development

Paolo Faraboschi

Hewlett Packard Española

Feng Li, Albert Cohen
INRIA

Mikel Lujan, Behram Khan
The University of Manchester

Stéphane Zuckerman, Jaime Arteaga, Guang Gao

University of Delaware

Laurent Morin
CAPS

Sylvain Girbal

THALES

© 2009-14 TERAFLUX Consortium, All Rights Reserved.
Document marked as PU (Public) is published in Italy, for the TERAFLUX Consortium, on the www.teraflux.eu web site and can be distributed to the Public.
The list of author does not imply any claim of ownership on the Intellectual Properties described in this document.
The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information contained in this document.
This document is furnished under the terms of the TERAFLUX License Agreement (the "License") and may only be used or copied in accordance with the terms of the License. The
information in this document is a work in progress, jointly developed by the members of TERAFLUX Consortium ("TERAFLUX") and is provided for informational use only.
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets owned by or licensed to TERAFLUX Partners. The partners reserve
all rights with respect to such technology and related materials. Any use of the protected technology and related material beyond the terms of the License without the prior written consent
of TERAFLUX is prohibited. This document contains material that is confidential to TERAFLUX and its members and licensors. Until publication, the user should assume that all
materials contained and/or referenced in this document are confidential and proprietary unless otherwise indicated or apparent from the nature of such materials (for example, references to
publicly available forms or documents).
Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited without the prior written consent of TERAFLUX or such other party
that may grant permission to use its proprietary material. The trademarks, logos, and service marks displayed in this document are the registered and unregistered trademarks of
TERAFLUX, its members and its licensors. The copyright and trademarks owned by TERAFLUX, whether registered or unregistered, may not be used in connection with any product or
service that is not owned, approved or distributed by TERAFLUX, and may not be used in any manner that is likely to cause customer confusion or that disparages TERAFLUX. Nothing
contained in this document should be construed as granting by implication, estoppel, or otherwise, any license or right to use any copyright without the express written consent of
TERAFLUX, its licensors or a third party owner of any such trademark.
Printed in Siena, Italy, Europe.
Part number: please refer to the File name in the document footer.

DISCLAIMER
EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUX SPECIFICATION IS PROVIDED BY TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED
OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING,
WITHOUT LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS, DATA OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT
CLAIMS BY THIRD PARTIES OR THE SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THEORY, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 10 of 100

Glossary
Auxiliary Core A core typically used to help the computation (any other core than service cores) also referred

as “TERAFLUX core”

BSD BroadSword Document – In this context, a file that contains the SimNow machine description
for a given Virtual Machine

CDG Codelet Graph

CLUSTER Group of cores (synonymous of NODE)

Codelet Set of instructions

COTSon Software framework provided under the MIT license by HP-Labs

DDM Data-Driven Multithreading

DF-Thread A TERAFLUX Data-Flow Thread

DF-Frame the Frame memory associated to a Data-Flow thread

DVFS Dynamic Voltage and Frequency Scaling

DTA Decoupled Threaded Architecture

DTS Distributed Thread Scheduler (the whole set of D-TSUs and L-TSUs)

D-FDU Distributed Fault Detection Unit (per-node FDU, also L2-FDU)

D-TSU Distributed Thread Scheduling Unit (per-node TSU, also L2-TSU)

Emulator Tool capable of reproducing the functional behavior; synonymous in this context of Instruction
Set Simulator (ISS)

ISA Instruction Set (Architecture)

ISE Instruction Set Extension

L-Thread Legacy Thread: a thread consisting of legacy code

L-FDU Local Fault Detection Unit (per-core FDU, also L1-FDU)

L-TSU Local Thread Scheduling Unit (per-core TSU, also L1-TSU, or LSU)

MMS Memory Model Support

NoC Network on Chip

Non-DF-Thread An L-Thread or S-Thread

NODE Group of cores (synonymous of CLUSTER)

OWM Owner Writeable Memory

OS Operating System

Per-Node-Manager A hardware unit including the DTS and the FDU

PK Pico Kernel

Sharable-Memory Memory that respects the FM, OWM, TM semantics of the TERAFLUX Memory Model

S-Thread System Thread: a thread dealing with OS services or I/O

StarSs A programming model introduced by Barcelona Supercomputing Center

Service Core A core typically used for running the OS, or services, or dedicated I/O or legacy code

Simulator Emulator that includes timing information; synonymous in this context of “Timing Simulator”

TAAL TERAFLUX Architecture Abstraction Layer (later renamed T*)

TBM TERAFLUX Baseline Machine (the initial instance of the TERAFLUX machine)

TLPS Thread-Level-Parallelism Support

TLS Thread Local Storage

TM Transactional Memory

TMS Transactional Memory Support

TP Threaded Procedure

Virtualizer Synonymous with “Emulator”

VCPU Virtual CPU or Virtual Core

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 11 of 100

Executive Summary
This deliverable reports on the research carried out in the context of DoW - Tasks T7.1, T8.2, and
T8.3. The goal is to provide documentation on the TERAFLUX simulation infrastructure (based on
HP COTSon) in order to provide a unique reference for the first time and advanced users of the
COTSon simulator.

To this purpose, the document provides a short “getting started” section and continues with an
overview of the main features, such as the architecture, the virtualization layer (i.e., the SimNow
component), timers, samplers, and interleavers. All the steps are detailed with the precise command
and the expected outputs. In particular, all the metrics that can be gathered from the simulator and the
storage structures (e.g., the database integrated in the simulator, log files) are presented.

With the aim of helping the user to run simulations quickly, in the document a set of simple examples
are presented. These examples cover all the different characteristics of the simulator, such as the
capability of running only functional simulation, the use of samplers, and the simulation of multi-node
architectures. Starting from this base of knowledge, an advanced user can easily start to extend the
simulation platform, in order to simulate and analyze the behavior of user-defined hardware and
software components. Following this direction, this manual also presents a full set of “TERAFLUX
examples”, one from each partner, where different advanced aspects related to TERAFLUX research
(e.g., definition of new images, integration of hardware component, etc.) are reported. These
examples represent also a description of the integration activity, through the COTSon simulation
platform, of the research of the TERAFLUX partners, as progressed during the project. The research
example provided by UD also serves as the content of deliverable D8.3. The example illustrates the
main progresses obtained from the integration of the UD run-time and the TERAFLUX platform.

From this premise, we can conclude that this document completes the series of deliverables for WP7
and WP8, and it’s written at this time as the experience on using the tool has matured enough. As
previously mentioned, we included also several advanced examples (see sections 7 – 17) to show
possible usage in research projects aiming at evaluating future platforms with 1000+ cores. Hence, all
goals of WP7 and WP8 for the fourth year were achieved. In the future, this document could
constitute a basis for tutorials and will be released freely for further extensions and improvements.

Document Organization
The purpose of this document is to provide all the information needed by a new user to start using the
common simulation platform (COTSon). The document is organized into two main parts: from page 5
to page 48 there is a general introduction and description of the simulation platform and its main
components, while the rest of the document presents a set of examples demonstrating the use of the
simulator for research activities within the TERAFLUX project (essentially, one example for each
partner). Given this document organization, we decide to use sections from 15.1 to 15.4, devoted to
the research example from UD, to integrate the content of Deliverable D8.3 - Final Results from
the combination of UD and TERAFLUX dataflow techniques. Thus, example from UD describes
the use of its DARTS run-time ported on the TERAFLUX platform. For the purpose of
completeness, we added sections from 18.1 to 18.4, in which we describe the DRT (Dataflow
Run-Time), essentially a simple run-time library that allows to test T* compliant applications
directly on the host system. Also this section can be considered part of the Deliverable D8.3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 12 of 100

Relation to other deliverables
Since the work described in this deliverable refers to the activity of all the partners in using the
common simulation platform for their specific research activities, this document shows relations to
several other deliverables. In particular, as the reader will see by reading the rest of the document, the
main relations are with:

• D2.1, D2.2, D2.3, D2.4: analysis and identification of dataflow potential target applications.
Within the WP2, Thales has ported two main applications to the TERAFLUX execution
model, as demonstrated in this document;

• D3.5: transactional memory and OWM memory support;
• D4.7: compiler technologies targeting dataflow applications;
• D5.4: resiliency techniques (e.g., fault detection mechanisms, etc.) and the OS support for

reliable execution have been developed within the WP5;
• D6.3, D6.4: since the work carried out in WP6 refers to the development of the TERAFLUX

architecture, several examples presented in this document clearly use the results coming from
the WP6 (i.e., the TSUF, TSU4, and TSU++ models for the hardware TERAFLUX thread
scheduler);

• D7.1, D7.2, D7.3, D7.4: this document is the result of the activity carried out within WP7
during the all project time-frame;

• D8.1, D8.2: this document presents the main results of the activity carried out in the context
of WP8. In particular, UNISI and UD continued to exchange information regarding their
respective execution models. The result of this cooperation (WP8) is the porting of UD run-
time on the TERAFLUX system, as also demonstrated by the work in WP9;

• D9.1, D9.2, D9.3: this document presents an example showing the results obtained in the
context of WP9.

Activities referred by this deliverable
This deliverable refers to the research carried out in Task 7.1 (m1-m51), Task 8.2 (m28-m51), and
Task 8.3 (m28-m51). In particular, Task 7.1 covers an ongoing activity for the entire duration of the
project that ensures the tools are appropriately disseminated and supported within the consortium.

As a summary of the previous work carried out in the context of WP7 (deliverables D7.1, D7.2, D7.3,
and D7.4), during the first two years, the TERAFLUX partners started using COTSon, and modified it
in order to implement (test and validate) new features, to meet their research needs. As a result of this
activity, we are able to boot a 1000+ cores machine, based on the baseline architectural template
described in D7.1. The target architecture can exploit all the features added by the various partners to
the common platform: this is very important for the integration of the research efforts carried out in
the various TERAFLUX WPs. In particular, an initial FDU interface with the TSU (both DTS style
and DDM style), has been described in D7.2, and further detailed in D7.3. Similarly, in D7.3 a first
model for the development to monitor power consumption and temperature was reported. Finally, the
D7.4, reports the result of an initial knowledge transfer activity. In particular, the document provides a
description of the integration research activity through the COTSon simulation platform, as
progressed during the third year of the project, such as the development of the T* and TSU. Thanks to

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 13 of 100

an internal dissemination, partners have been also able to transfer their respective research knowledge
to the other partners.

Task 8.2 and task 8.3 cover the joint activity of UNISI and UD. The activity is mainly devoted to
interacting each other towards the completion of porting the UD run-time in the TERAFLUX
platform. As reported in the Annex-I these tasks refer to ongoing activities covering the period of
entering the Consortium by UD till the end of the project. As a summary of the initial work carried
out in the context of WP8 (deliverables D8.1 and D8.2), UD and UNISI exchanged information on
their respective execution models (UNISI shared information regarding activities of all the partners,
acting as the representative of the previous TERAFLUX consortium). After this initial period, UD and
UNISI started to identify the best way to integrate UD run-time and the TERAFLUX platform
(essentially by analyzing the features of both the execution models).

The effectiveness of the Dataflow approach has been verified on both platforms (Cyclops-64 and
TERFLUX) with a close match on scalability for same benchmarks. Transitioning tools from
TERAFLUX to Cyclops-64 was also considered, but we finally chose the TERAFLUX platform as it
was a better fit as an open-source based research platform

We started with existing tools on each platform and an extensive evaluation was carried out,
achieving an overall improvement of those tools. As a result, we decided to use the UD Runtime
(DARTS) which faithfully implements the dataflow-codelet model to show the potentiality of
Cyclops-64 program execution model on the TERAFLUX platforms (experiments for integrations are
included in this document, while the actual results were detailed in D9.3).

Conclusions
The first purpose of this document is to provide all the necessary information to start using the
common simulation platform (i.e., COTSon), with a specific focus on the first installation and
configuration phase. The document has also other two important purposes: presenting in a detailed
form, all the components that characterize the simulation platform, so that the final user is enabled to
start designing and developing new hardware and software components; second (but not less
important) presenting a full list of research examples, that serve as a reference for the user in its
research and developing activity for a teradevice system as described in TERAFLUX (cf. D6.2, D7.1).

This document represents also the culmination of all the work carried out by all the partners during
the project time frame. By inserting examples specific of each work package, all the partners
demonstrated to have achieved their research objectives through the usage of the common simulation
platform. All examples have been tested by several partners and by the WP leader (UNISI).

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 14 of 100

1 Getting Started
The goal of this initial part is to enable the user to run a first initial example, starting from scratch in
two simple steps.

1.1 Step1: installation
To use COTSon, you need to install also additional software components, such as AMD SimNow™,
on your Linux system (we refer to Ubuntu 10.04, but similar steps can be done, e.g. on Fedora or
other distributions).

The simplest way to get SimNow is through your internet browser (such as Mozilla Firefox, Google
Chrome); you can just click on the following URL and download the Linux version of SimNow (at
the time of writing this document, the latest version of SimNow is 4.6.2):

http://developer.amd.com/tools-and-sdks/cpu-develop ment/simnow-simulator/

The installation process starts by creating the installation folder:

$ mkdir installation_dir

The following command will copy the downloaded package in that folder:

$ mv simnow-linux64-4.6.2pub.tar.gz installation_di r/
$ cd installation_dir

Another prerequisite is the availability of the ‘subversion’ package. At the same time you can install
‘md5sum’. To install them, for Ubuntu or Debian issue:

Alternatively, for Fedora issue:

It’s warmly recommended that you verify the correct download of the package with the following
command:

Check that the produced string is the same as on AMD website. Then unpack the module as follows:

$ tar xvzf simnow-linux64-4.6.2pub.tar.gz

At this point, in order to download COTSon, the following command can be issued.

$ svn co https://svn.code.sf.net/p/cotson/code/trun k cotson

1.2.1 Configuring COTSon Simulator

Once the two components have been correctly downloaded, it is possible to run the configuration and
installation process. The installation process consists of source file compilation, and installation in the
host system. To run the compilation, the following command must be issued (administrative
permission may be required to complete the process):

$ sudo apt-get –y install subversion coreutils

$ sudo yum –y install subversion coreutils

$ md5sum simnow-linux64-4.6.2pub.tar.gz

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 15 of 100

$ cd cotson
$./configure --simnow_dir ../simnow-linux64-4.6.2p ub/

It is important to note that during the installation process an error message could be showed to notify
the user about host system configuration. For the simulator installation it is required to set the virtual
mapping to a minimum value of 4194304. The error message is:

…
SIMNOW_DIR: '../simnow-linux64-4.6.2pub/'
ERROR: vm.max_map_count = 2048757 is too small
 Increase it to at least 4194304 by running
 sudo sysctl -w vm.max_map_count=4194304

 To make it permanent, add the following line to /etc/sysctl.conf
 vm.max_map_count = 4194304
…

To continue without generating errors, you can issue:

$ sudo sysctl -w vm.max_map_count=4194304

Later you can make it permanent as suggested above. The installation process ends by issuing the
following command (this may require 10 to 15 minutes depending on the speed of your machine):

$ make release

During the compilation phase some windows could be popped up. These windows are part of the
installation process and are closed at the end of the installation.

1.2 Step 2: running a first example
In order to verify the correctness of the installation process (it is worthy to observe that during the
simulation framework installation, several tests are automatically run to check the process), it is
possible to run a simple example as follows. Move under the example folder:

$ cd src/examples

Start the functional simulation of a simple target architecture through the following command:

$../../bin/cotson functional.in

If everything is correct, the user should be prompted to press enter (or ctrl-c to abort). Pressing enter
causes the following window to be displayed (Fig. 1):

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 16 of 100

Fig. 1 – Graphical control window of the COTSon simulator

At this point, you can click inside the “black” window (enlarge it to see the last lines, the icon before
the last one in the command bar), press the “play” button (seventh icon of the command bar in this
picture) and issue, e.g., an ‘ls’ command. Once done, you can close this window a return to the shell
of the host system.

1.3 COTSon simulator: look at a glance

COTSon is a simulation framework, whose aim is to provide an evaluation platform for real systems
like current multi-core Personal Computers consisting of x86_64 processors and all classical
peripherals, and running available operating systems such as Linux (or, not shown here, Windows™).

It was originally developed by HP Labs and AMD, and it targets cluster-level systems composed of
hundreds or thousands of commodity multi-core nodes and their associated devices connected through
a standard communication network like, e.g., a datacenter.

An accurate evaluation may require to model not only the functional behavior (like in common
“virtualizers” like VMWare™, Virtualbox™ and similar) but also the timing behavior of the
architectural components. With COTSon the evaluation can range from high-simulation speed (and an
“idealistic timing model” of 1 instruction per cycle) through an accurate timing model (up to desired
level of accuracy). Moreover, COTSon can trade simulation speed with accuracy by offering about
seven built-in sampling policies that can enhance greatly the simulation speed (and the user can
provide his/her own sampling policies).

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 17 of 100

1.4 Supported platforms
In order to run COTSon the user needs a computer equipped with a 64 bit processor. This is required
in order to correctly run the AMD SimNow (TM) virtualization layer (this component is available only
for Linux AMD64 and Windows XP 64-bit version, however the entire simulation framework is
available only under the Linux environment. Hereafter we refer to the virtualization layer simply as
SimNow). Currently, COTSon (v680) requires the 4.6.2pub version of SimNow, while it supports the
following Linux distributions:

Supported Linux Distributions

Debian Fedora Ubuntu

Lenny Werewolf Intrepid

Squeeze Leonidas Jaunty

 Goddard Karmic

 Laughlin Lucid

 Lovelock Maverick

 Verne Natty

 Beefy Miracle Oneiric

 Spherical Cow Precise

 Schrödinger's Cat Quantal

 Raring

Table 1 – COTSon installation: supported Linux distributions.

The minimum hardware configuration required for the installation is as follows:

• Processor: AMD Athlon(TM) 64 X2 Dual Core Processor 4600+ or equivalent;

• Memory: 2 GB of main memory (8GB or more recommended);

Please also note that for licensing issues the simulator should be run on AMD machines, even though
Intel processors are also reported to function).

1.4.1 Running COTSon in a virtualized environment

Installation under Windows environment is supported, through the use of virtualization software (e.g.,
VirtualBox, VMware, etc.), by allocating enough resources to the guest machine. This kind of
installation is also suited for shared environments, where a single server can host several virtualized
machines. In this case virtualized machine can be remotely accessed. For further information on
virtualization software, please refer to the specific manual of AMD SimNow.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 18 of 100

1.5 Document structure

The rest of the document is organized as follows. Section 2 and section 3, are devoted to the
description of the main characteristics of the simulator. In particular, the guide focuses on the general
architecture, the mechanism implemented to collect timing information, and the description of the
main internal components (such as the virtualization layer, the interleavers, the samplers, etc.). An
entire section is devoted to the user interface used to configure and interact with the simulator.
COTSon adopts the LUA language (see Appendix-1) to provide a flexible way to describe the
configuration of the target system (i.e., the architecture of the system to be simulated), and the
parameters for the experiment setup (e.g., functional simulation vs. timing simulation, structure for
storing collected measures, commands for the virtualization layer, etc.). Structures for collecting data
during simulation are deeply described in section 5, while section 6 presents to the user a set of simple
examples that illustrate all the features previously described. Following these examples the user
should be able to set-up the simulation environment, and to run architectural simulations of interest.
Finally, sections from 7 to 17 illustrate advanced examples that reflect research activity carried out in
the TERAFLUX project at the scale of 1000+ cores [6][18]. They can be used as a reference for
setting-up advanced simulation experiments. In particular, they can be used to understand how to
extend the simulation infrastructure.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 19 of 100

2 Understanding COTSon: Design and Architecture

Simulation, combining some architectural structures, permits to create virtual systems in which
hardware components are shaped, in order to make new functional units, or entire microprocessor
systems. The aim of a simulator is to show, record and analyze the performances and the behavior of
applications, and select the best architecture for each of them. Simulators can be also used to develop
new software and hardware components that can be thus verified in their behavior. The increasing
complexity of computing systems has made simulators the first choice for their design and analysis. In
fact, a good simulator infrastructure can help researchers, designers and developers in verifying if
their decisions are correct or not, possibly finding some optimal solutions. Speed, accuracy, full-
system capability and ability to extract specific metrics are the main characteristics of a simulator and
also what makes one simulator different from another.

COTSon is a simulation framework targeting many-core architectures, initially developed by HP
Labs. The key feature of COTSon is the adoption of a functional-directed simulation approach, where
fast functional emulators and timing models cooperate to improve the simulation accuracy at a speed
sufficient to simulate the full stack of applications, middleware and OS. Functional simulation
emulates the behavior of the hardware components (e.g., common devices such as disks, video, and
network interfaces) of the target system, without considering latency information. On the contrary,
timing simulation is used to assess the performance of the system. It models the operation latency of
devices simulated by the functional simulator and assures that events generated by these devices are
simulated in a correct time ordering.

2.1 Major Design Characteristics and comparison with other
simulators

Depending on how the functional and the timing parts of the simulator are controlled and on their
relationship, it is possible to define different types of simulations:

• Timing-directed or execution-driven: here the timing model of the simulator is in charge of
driving the functional simulation. In this case the functional and timing parts are programmed
tightly coupled to let the two parts cooperate easily;

• Functional-first or trace-driven: in this case the functional simulation produces an open-loop
trace of the instructions that have been executed. Then, these instructions will be passed to the
timing simulator. This type of simulator is usually built using particular libraries such as
Atom or Pin;

• Timing-first: timing and functional models are decoupled and timing drives the simulation. In
this approach the timing simulator precedes the functional simulator, and uses the latter to
periodically check and correct the simulation state (eventually functional execution may have
to be undone);

• Functional-directed: timing and functional models are decoupled and functional drives the
simulation. In this approach was proposed to treat better complex benchmarks and to afford
greater speed scalability; the timing feedback corrects the timing so that it becomes visible to
the application running on the simulated machine.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 20 of 100

COTSon uses the later approach (functional directed simulation: the functional and timing simulation
are clearly separated using two interfaces. This approach allows reusing existing functional simulators
(very difficult to implement and maintain). COTSon's functional simulator is SimNow that
functionally models most of the existing hardware that can be found on a modern AMD system (in
this sense it supports generic X86_64 architectures). SimNow contains also the internal capability of
timing simulation but such information is completely discarded when used in conjunction with
COTSon: only the CPU capability is used in this case. COTSon is highly modular, and this
characteristic enables users to select different timing models, depending on the particular experiment
they want to perform. It is also possible to program new timing models (e.g., a new coherence
protocol) or to adapt the existing ones (e.g., cache timing with MESI protocol), and incorporate them
into COTSon. Another very important aspect of COTSon is the speed. In fact even if it is not
significant in terms of simulation results, a full system model simulator can be five or six orders of
magnitude slower than the real system, and this may become unsustainable, as it limits the coverage
of experiments. To speed up the simulations COTSon uses virtual machine techniques for its
functional simulation (that comprehends just in time compiling and code caching) and also
sophisticated techniques such as “dynamic sampling”.

2.2 Timing Feedback

As discussed in the previous section, the aim of COTSon is to achieve the best possible trade-off
between simulation speed and accuracy for many-cores systems (e.g., systems equipped with
hundreds or even thousands cores). To this end the design choice made was to use a functional-
directed approach, where the functional simulation of the target architecture (fast) is periodically
updated and its timing is integrated with information coming from timing models of the architecture
components.
In a pure trace-driven systems in fact, there is no influence on the functional part coming from the
timing part. This does not represent a big limitation in case of single core systems, but can be a
problem in multicore systems. In fact the latter usually change their functional behavior depending on
their performance. For example, threads in a multi-threaded application exhibit different interleaving
patterns, depending on the performance of each thread (possibly running on different cores). On
another level, many networking libraries such as Message Passing Interface (MPI) change their
policies and algorithms depending on the particular performance of the network

Fig. 2 - Interaction between functional simulation components and timing components in COTSon simulator.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 21 of 100

Having timing feedback, i.e., a communication path from the timing to the functional simulator
becomes fundamental for analyzing this kind of situations. From this viewpoint, COTSon makes its
functional simulator run for a time interval ∆t that is dynamically set. The produced stream of
references (i.e., instructions and data memory accesses, but in general “events”) is sent to the
respective CPU timing models. At the end of such interval using the metrics coming from the CPU
models, the actual time interval to process such stream of reference is known (say ∆t’) and it is given
back to the functional simulator. The user can select different interval sizes to choose the accuracy-
speed trade-off. Therefore, COTSon (realizing this trade-off between accuracy and speed) enables
users to avoid uninteresting parts of the code (such as initial loading of the system) simulating them at
lower accuracy.

2.3 Architecture
The COTSon architecture has been developed having in mind the simulation of clusters. From this
viewpoint COTSon uses a SimNow instance to represent each node of the cluster. SimNow has been
augmented, by HP-Labs and AMD, with a double communication layer to allow any device to export
functional events and obtain timing information. All the events are directed by COTSon to the timing
models.
There are two types of communication mechanisms exhibited by devices: synchronous and
asynchronous. Synchronous communication is used for devices that immediately respond with timing
information for each event received (and the event does not occur very frequently). An example of
synchronous communication is the simulation of a disk read by the functional simulator: a read event
(instead of an interrupt) is issued to COTSon, which delivers this event to a disk model that
determines the operation's latency, which is used by SimNow to schedule the functional interrupt,
which signals the end of the read.
Synchronous communication is not usable when there is a high frequency of events of this type (e.g.,
main memory accesses, CPU simulation, etc.). In these cases asynchronous communication is needed.
Differently from the synchronous case, the SimNow simulator does not do a call per event, but
produces “tokens” describing dynamic events, that will be parsed by COTSon and delivered to the
appropriate timing modules. These modules will be asked by COTSon at specific moments to
aggregate timing information (in term of number of instructions and cycles) and give them back to
each functional core.

Fig. 3 – Example of timing feedback with asynchronous communication for estimating the IPC in COTSon.

For example, in Fig. 3 we show the situation when a timing module is used for a processor pipeline
with the purpose of estimating the number of Cycles Per Instruction (CPI). The resulting CPI, given

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 22 of 100

back to the functional module, is used by SimNow to schedule the progress of instructions in each
core and in this way the timing feedback is used for the functional simulations. However in many
situations the timing feedback has to be filtered and modified, in order to obtain an increase in
simulation accuracy. For example if a particular core is mostly idle it doesn't give an accurate estimate
of the CPI. To solve this problem, COTSon offers a timing feedback interface that handles these
modifications transparently. This interface is able to correct and predict future CPI by using
mathematical models, such as Auto-Regressive-Moving-Average (ARMA) model, that is used, e.g., in
forecasting time series. A simple example of the timing feedback mechanism is shown in Fig. 3.

2.4 COTSon installation structure
Once COTSon is installed the user will get a directory structure as follows:

• bin: contains binaries of the simulator;
• data: contains the bsd images and the disk images used to run simulations;
• share contains some common scripting files;
• src: contains all the files related to the development of the simulator;
• sandbox: it’s the template of a ‘sandbox’ on the host used to control a node during the

simulation
• etc: COTSon general configuration files
• sbin: COTSon general system binaries
• daemon: contains files for running the simulator in a distributed environment (not described in

this document);
• web: COTSon web control (not described in this document)

The src directory has the following structure:

• src/abaeterno/ it is the core COTSon infrastructure. This directory contains timers, samplers
and the simnow interface;

• src/common/ common utilities (metrics, options, etc.) for abaeterno and network;
• src/disksim/ disksim distribution for COTSon;
• src/distorm/ distorm (x86 disassembler) for COTSon;
• src/examples/ simple simulation examples (we will analyze them after);
• src/libluabind/ C++ binding for LUA (used for COTSon scripting);
• src/network/ COTSon (HP) network mediator (for distributed synchronization);
• src/mcpat used for power and area estimation through the HP McPAT tool
• src/slirp/ slirp library (NAT access from guest) for COTSon;
• src/test.regression/ simple regression tests;

• src/tools/ tools to support simulation experiments;

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 23 of 100

3 COTSon components: SimNOW, Samplers, Interleaver,
Timers

The main parts of a COTSon node, are the functional simulator SimNow, the timing models (timers),
the sampler, the interleaver, and the time predictor. Moreover, the network Mediator and the Control
are two components of COTSon that allow the simulation of cluster configurations (Fig. 4). The
dynamically loaded library (DLL) abaeterno, is also a fundamental part of COTSon, because, when
loaded by SimNow, it determines the time the simulation is taking, and it contains the implementation
of all types of timers, samplers, etc., that can be used by COTSon.

Fig. 4 – COTSon components overview

3.1 Virtualizer: short introduction to SimNow
It implements the x86 and x86_64 instruction sets, including system devices. It allows the user to
configure a full-system architecture by changing the various components (i.e., CPU type, number of
CPUs, organization, main memory size, etc.).

SimNow provides several CPU models, dynamic translation of instructions (the instruction input
stream is translated into C-like language and then is compiled for the native machine) and
deterministic execution; it can simulate the majority of existing hardware uniprocessor and
multiprocessor that are available on a modern AMD system. It also uses caching techniques and
supports the booting of an unmodified Operating System (such as Windows and Linux) over which
some complex applications can be executed. In full-speed mode SimNow performance is around 100-

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 24 of 100

200 MIPS (i.e., it has a 10x slowdown with respect to the native execution). It comes with several
Broad-Sword Document (BSD) configurations, i.e., files containing setup parameters of a simulated
target machine. The host machine, in which the simulator runs, and the guest machine, i.e. the
simulated machine, can communicate through a toolbox called Xtools, mainly constituted of two
commands: i) xput, which is run on the guest to copy a file from the guest to the host and ii) xget,
which is run in th guest to copy a file from the host to the guest SimNow can be controlled from the
shell (command line mode) or through a User Interface Window (graphical mode – see Fig. 5). When
using the graphical mode, users see and modify the target system configuration (i.e., the configuration
of simulated devices such as disk images, BIOS, DRAM and CPU) from the main windows, and they
can access to the results of the simulation as well. The main window is divided in two main parts: one
shows time results of the simulation, while in the other a console provides a textual interface for status
information and a command-line control for the guest OS running in the host.

The part showing time results is called SimStats and it is composed of 4 components:

• Host Seconds (1): showing the number of seconds spent (both in user and system mode) by
the host CPU, since the simulation has started;

• Sim Seconds (2): showing the time spent in the simulation since it has started;
• Avg MIPS (3): showing the instantaneous values of the simulator performances, that is

measured in millions of executed (simulated) instructions per host.
• MIPS (4): showing the number of simulated instructions from the start of the simulation,

divided by host seconds;

Below there is the Console Window (5): providing the guest output and control for the guest OS;

Fig. 5 – Graphical interface of the COTSon simulator. The window contains a toolbar from which interact

with the simulator, a panel displaying statistical information, and a control panel from which interact with

the guest system.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 25 of 100

3.2 Samplers
COTSon can be configured to use a full-speed functional modality or a sampled modality. The
samplers are one of the most important parts of COTSon infrastructure, as they represent the way
functional and timing simulations are integrated together. This can be seen also in Fig. 4, where the
sampler is placed between the front-end (functional simulator) and the back-end (timing models of the
architectural components) of the COTSon node. Sampling is crucial for asynchronous devices and it is
the process through which the timing simulation (or simply simulation) is turned off or on. A good
sampler is required to select a simulation interval such that the simulation metrics taken in that
interval well approximates the statistics of the whole execution. So the timing simulation will be
performed only in appropriate moments and for an appropriate duration, thus avoiding the slow-down
of timing simulation.
The type of sampler required for a certain experiment and the lengths and the type of the samples can
be configured by writing proper values in the COTSon configuration file (see Section 4). With this
information, the sampler gives a command to enter one of the following phases:

• Functional: during this phase only functional simulation is performed and so no events are
produced by the simulated devices, that so are simulated at full speed;

• Warming (simple/detailed): this phase is necessary to pass from functional to timing
simulation; during it the timing models are warmed up to prepare them to the timing
simulation. If only the high-hysteresis elements (such as caches and branch target buffers) are
warmed up, the warming is said to be simple, otherwise, if also the low-hysteresis elements
(such as reorder buffers and renaming tables) are warmed up, the warming is called detailed;

• Simulation: this phase is the opposite of the functional phase. Here the devices must produce
events that are sent to the timing models, so that timing simulation can be performed;

In order to determine sampling intervals, it is necessary to find out what are the most representative
and relevant parts of the application's execution. This selection is based on the phase analysis, which
determines the phases of a program, i.e., the parts of the execution that have a similar behavior,
independently of temporal adjacency. Depending on how the phases of a program are detected
different samplers can be implemented. The most important samplers are SMARTS, SimPoint,
dynamic samplers, and interval-based samplers. The first two require an a priori profiling or a
preprocessing of the code and don't allow timing feedback.

Fig. 6 – Correlation of the performance information acquired by the simulator with the running application

phases.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 26 of 100

Because of these two characteristics, they result to be less flexible than dynamic samplers and may be
subject to errors due to the absence of timing feedback. In the interval-based sampler the duration of
each phase (state) of the sampling (functional, warming, simulation) is fixed. Dynamic Sampling is
based on the consideration that all functional simulators (such as fast emulators, like SimNow, or
virtual machines, like VMware) keep track of internal statistics of two types:

• Those related to their internal structures (translation cache, software TLB), such as code cache
invalidations, code exceptions, and I/O operations;

• Those related to the emulated code, such as number of executed instructions, memory
accesses, exceptions, and bytes read or written to or from a device;

Both types of metrics are strictly related to the behavior and the performance of the emulated software
and can be used to detect phase changes in an application's execution. Fig. 6 shows an example of
how an internal statistic (number of code Exceptions) is correlated to the application's performance
(IPC) and thus to the application's phases. The dynamic sampler lets a timing simulation start
whenever the first-derivative of the chosen internal statistic overcomes a threshold. After a certain
number of instructions, the simulation returns to be functional, until the next phase change is detected,
and so on. Fig. 7 shows a schematic view of how Dynamic Sampling works.

Fig. 7 - A schematic representation of how dynamic sampling works.

Different types of samplers can be selected by the user, writing appropriate values in the COTSon
(LUA) configuration file.

3.3 Interleavers

The interleaver is a component that is used during the simulation of SMP (Symmetric Multi-
Processor), i.e., multi-core systems. In fact, it supervises the buffering and the reordering of the events
coming from the functional simulation. These operations are fundamental when multiple cores are
simulated. To this end, SimNow simulates multi-cores with an interleaved sequence. After a certain
interval of time, called synchronization quantum, during which the cores operate independently, all
the cores arrive to the same point in time. After the synchronization quantum, all the events are stored
in a queue and then they are interleaved. Only at this moment they are ready to be carried to the
timing models of the CPUs.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 27 of 100

3.4 Timers
There is a timer for each architectural component that can be simulated, and its role is to collect
events coming from the functional simulation, and use them to update the timing model of the
component. In other words a timer is software that simulates the timing behavior of each component.
There are timers for the CPU, for the Memory, for the disks, and for the NIC (Network Interface). The
type of timer (e.g., timer0 – for an in-order superscalar processor, timer1 – for an out-of-order
superscalar processor, bandwidth – for measuring the memory bandwidth, etc.) can be set in the
COTSon configuration file. The feedback information is governed by the time predictor: based on the
metrics collected by the timing simulation, it decides how to feedback information to the functional
simulator.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 28 of 100

4 COTSon configuration

A simple COTSon configuration file (written in lua file ‘functional.in’) to run a functional simulation
is shown in Fig. 8. It uses the ‘functional template (first line), shows a graphical display for Simnow
(second line), where (‘simnow.commands’) the architectural configuration of the SimNow uses the
‘1p.bsd’ (fourth line, that also stores the snapshots and modifications of the running simulation), an
off-the-shelf hard disk image with the Operating System (this remains unmodified during the
simulation, fifth line), and we enable the journaling of the file system (sixth line)

Fig. 8 – A simple COTSon configuration file (written in lua file ‘functional.in’

4.1 Lua Scripting
The COTSon simulation infrastructure is controlled by setting all the relevant information about
simulation and the target system configuration in an input configuration file. COTSon uses Lua
scripting language to manage this configuration file. The Lua scripting language is powerful, fast,
lightweight, and embeddable. It combines simple procedural syntax with powerful data description
constructs based on associative arrays and extensible semantics. Lua is dynamically typed, runs by
interpreting bytecode for a register-based virtual machine, and has automatic memory management
with incremental garbage collection, making it ideal for configuration, scripting, and rapid
prototyping. For further information about Lua language syntax, see Appendix A – Lua lexical
conventions, and Appendix B – Lua language features.

Suppose the user wants to run the functional example (functional.in) present in the directory
cotson/src/examples :

$ cd cotson/src/examples

Then simply issue the command:

$../../bin/cotson functional.in

This will launch the SimNow window as explained in Section 1.2 (Step 2: running a first example).

One of the nice features of the Lua scripts is that they accept Lua parameters either in files or in the
command line. Anything that is not strictly an existing object, is considered part of the Lua syntax
(see Appendix A – Lua lexical conventions). The Lua script is the concatenation of the contents of all
the files and the Lua syntax, and it is passed to any part of COTSon that would need it (like the
COTSon Control script – named ‘cotson’, the ‘abaeterno’ library). Even if not every part of the
elements written in the Lua file is needed by these components, each of them can select the parts that
are needed.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 29 of 100

4.2 Changing the configuration
The Lua configuration file used in COTSon is divided into 3 main sections:

• LUA-SECTION-1: describes general simulation options. This part is called options table;
• LUA-SECTION-2: describes options/commands for SimNow. This part is called SimNow

table, and is used by the control scripts to determine how to set up the SimNow execution;
• LUA-SECTION-3: describes the target system configuration in details. This part is called

build function. Anything inside it or in the options table is used by the abaeterno library.
(Anything that follows may be by the COTSon control and web interface to determine what
kind of execution to make);

4.2.1 Lua-Section-1 –options table

This first section in the Lua file is delimited by:

options={}

Here several options can be specified, in particular, the following variables can be set:

• max_nanos: is the variable where we specify how long we want the simulation to last in terms
of nanoseconds (e.g. “10M”, see Fig. 9);

• sampler: where the type and the various options of the sampler chosen can be specified (e.g.
type=”simple” indicates a detailed timing simulation (the opposite of the pure functional
simulation) and quantum=”100k” indicates how often the functional part has to synchronize
with the timing part – see Fig. 9); also note how we can nest multiple lua commands.

• heartbeat: this is used to specify how to log statistics (e.g., type=”file_last” indicates to dump
all statistics in a file at the end of the simulation and in such case
logfile=”on_cpu_simple.log” indicates the name of the file – see Fig. 9). There can be
instantiated up to eight heartbeat options (“heartbeat=”, “heartbeat1=”, …,” heartbeat7=”).

Other general options can be:

• max_samples: here the maximum number of samples is specified;
• fastforward: here it can be specified an amount of time that will be skipped by the simulation;

There are also several other types of sampler available like dynamic, interval (see Section 6.3
“Samplers: timing simulation”). Similarly for the heartbeat, it is possible to use the sqlite database (or
files) and the statistics can be dumped at intervals during the simulation – see Section 5.2 Database
structure for more details). Whenever the results are stored in the database, the user has to specify also
two particular fields that are experiment_id and experiment_ description, needed to store the data in
the correct field inside the database tables for storing more experiments. Below (Fig. 9) an example of
COTSon configuration file – section 1, taken from the file one_cpu_simple.in is shown.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 30 of 100

Fig. 9 - An example of lua-section-1 of the COTSon configuration file (see also the example

src/example/one_simple_cpu.in).

4.2.2 Lua-Section-2 – SimNow options/commands

This section is opened by the line:

simnow.commands=function()

This part is where the SimNow commands are grouped. Then the following options must be set
(depending on the type of example the user is running, it can use a subset of the options listed below):

• use_bsd(): here the bsd location is set. Possible types of bsd are available in the folder
cotson/data.

• use_hdd(): here we set the position of where the hard disk image is located, for example
karmic64.img is available in the folder cotson/data.

• set_journal(): this function is needed to enable the journaling of the file system.
• send_keyboard(): this function allows the user to run a command inside the OS of the

simulated machine.

In Fig. 10 the reader can see an example of lua-section-2, taken from one_cpu_simple.in. Other option
(not show in Fig. 10 - An example of lua-section-2 of the COTSon configuration file (see also
one_simple_cpu.in)) can be:

• execute(): here the user can select the name of a (guest) file to be executed during the
simulation (e.g., a bash script file). This file is copied from the host to the guest at the
beginning of the simulation and has to be in the same folder where the lua script is stored.

• subscribe_result(): serves to automatically copy the listed files from the guest to the host at
the end of the simulation.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 31 of 100

Fig. 10 - An example of lua-section-2 of the COTSon configuration file (see also one_simple_cpu.in)

4.2.3 Lua-Section-3 – configuration options

This section begins with the command (see Fig. 11):
function build()

After that, there is a part where the number of disks in the system is specified and for each disk the
appropriate timer is set. Then, in the same way, it is found the number of the various Network
Interfaces attached to the system and to each one a timer is assigned. Then we can specify the number
of CPUs that are in the system. If the number is zero, the simulation is stopped. The numbering of the
disks, NICs, CPUs will begin from zero (i.e., in a multi-core system CPUs are named as cpu0, cpu1,
etc.). Similarly to disks and NICs, to each CPU a particular timer is assigned (e.g. “timer0” means a
simple superscalar in-order processor). For the memory and caches, it is possible to decide the values
of their main features, such as the latency. The memory is set following a hierarchical approach, in
other words, usually the setting starts from the main memory, then the cache with its levels. For each
cache level, we can set the values of some important variables, such as:

• name: determines the name of the considered cache level;
• size: determines the total size of the considered cache level;
• latency: determines the hit latency to access the considered cache level;
• num_sets: determines the number of sets that are present in the considered cache level;
• write_policy: determines the write policy of the considered cache level (“WB” means Write

Back, “WT” means Write Through);
• write_allocate: if it is set to true, it means that the considered cache level is of type “write

allocate”, otherwise, the cache is of type “write-no-allocate”;

Once all the memory components are set, we can connect them to the CPU using some particular
commands such as:

cpu:instruction_cache(ic)
cpu:data_cache(dc)
cpu:instruction_tlb(it)
cpu:data_tlb(dt).

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 32 of 100

All the various parts previously described, can be seen in Fig. 11, which is an example of lua-
sections3, again taken from one_cpu_simple.in.

Fig. 11 - An example of lua-section-3 of the COTSon configuration file (see also the example

src/example/one_simple_cpu.in)

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 33 of 100

5 Collecting Metrics
All the collected simulation measures can be permanently stored in a specific data structure. The user
can chose which structure to use for storing information. The simulator provides two types of storing
structures: the simplest is a log file, while the more advanced is represented by a database. Log file is
generally enough to store data collected during a simulation. However, for keeping track of measures
collected over several simulations, the database is the best choice. It allows maintaining information
structured and it allows easily finding specific data by simply querying it. COTSon uses a flexible
data storage resorting to a SQL server. By doing so, COTSon allows to search through simulation
results in a more consistent way using a familiar declarative language like SQL.

5.1 Log structure
A log file is a simple text file, where all the information gathered by the simulator during a simulation
is written. Since it is a text file, it can be automatically parsed at the end of the simulation. The main
drawback of this structure is that it grows rapidly with the increase of simulation complexity.

5.2 Database structure
The simplest way to use a SQL server to store simulation heartbeats (i.e., periodic information
collected by the simulator, such as instruction count, memory read misses, etc.) is to use SQLite
server (currently at version 3). It should be installed by default with the Linux distribution. However,
it is possible to check for its presence by using the following command:

$ sqlite3

One example that uses the database is governed by the “sqlite.in” lua script in the src/examples
directory. To run it:

You can check the content of the database by issuing:

$ sqlite3 /tmp/test.db

The tables in the database (hereafter DB for simplicity) can be analyzed by typing the following

command (the SQLite server prompt is presented to the user):

sqlite> .tables

This should be the output the list of tables where results of the experiment are stored:

These are the tables where the SQLite module stores the data if we select sqlite as output for the
simulation heartbeats and the data related to the experiment. In general, to enable the use of SQLite
storage, the user has to change the configuration file adding the “heartbeat” line in the options section,
as in the following example (see file ‘sqlite.in’ in the src/examples directory):

$ cd src/examples; make run_sqlite

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 34 of 100

options = {
 heartbeat={
 type="sqlite",
 dbfile="/tmp/test.db",
 experiment_id=1,
 experiment_description="T1"
 },
 }
}

In order to get same the data from this DB the user should first look for the needed metric id:

sqlite> select * from metric_names where name like '%dcache.write_miss%';

The user should get the following output:

And then look for the associated data in the metrics table using the “metric_id” values.

sqlite> select * from metrics where metric_id = 76;

And obtain a long list (here we show only the last three elements):

This is where things may not seem clear at first. The table is organized so that the first n-1 records
contain the value for every sample in the value field. The last one contains the actual result (in this
case the sum of all of the previous records). So the user can get the actual result with:

sqlite> select value from metrics where metric_id=7 6 and heartbeat_id is
(select max(heartbeat_id) from metrics);

The user should be the one showed below, which should also be the same obtained from the flat file:

As far as the write miss rate is concerned things, again, change a bit. This time we are not looking for
the sum but for a rate so we can only get the value directly:

sqlite> select value from metrics where metric_id=2 81 and heartbeat_id is
(select max(heartbeat_id) from metrics);

This time the expected values is:

You get more digits from this than from the flat file because the value field is a “float8”. You can see
this by looking at the table schema:

sqlite> .schema metrics

which outputs:

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 35 of 100

5.2.1 Using a PostgreSQL server:

While using SQLite can be very convenient as it gives you the ability to store your heartbeats in a
SQL server without the hassle of configuring a real SQL server it may not be the best solution if the
user wants to store a very big amount of data and if it wants to offload the burden of saving data to
another machine. In this case the best solution, albeit more demanding from the administrator
viewpoint, might be setting up a second computer with PostgreSQL and using it to store the heartbeats
produced by the simulations.

As an example in the following the PostgreSQL server is supposed to run on the same machine
running COTSon (note that the process to run it in a classical client-server configuration is the same
as explained here).

As PostgreSQL is not usually installed by default it is necessary to install it. Type:

$ sudo apt-get –y install postgresql postgresql-cli ent

Now the user should have its instance of PostgreSQL up and running on the specified machine. To
verify it, the user can issue this command:

$ netstat -atp | grep post

This should be the output the user obtains:

If so then you can start configuring PostgreSQL to make it talk to COSTon.

5.2.2 Creating the COTSon PostgreSQL database:

In order to configure PostgreSQL the user has to create the “cotson” user in the database:

$ sudo –i
$ su - postgres
$ cd
$ createuser cotson

Answer “NO” (n) to the three questions following this command and then issue:

$ createdb cotson -O cotson

The user can verify that everything is ok by querying PostgreSQL and asking for the databases list:

$ psql -l

The output should be similar to the following

:

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 36 of 100

5.2.3 Configuring PostgreSQL for COTSon connection:

Once the database is ready, the user needs to configure it, in order to allow incoming connections
from COTSon. To do so the user (still as ‘postgres’ user is ok) has to modify the following file:

/etc/postgresql/*/main/pg_hba.conf

Becoming root, then the user can change the file adding the lines highlighted below:

TYPE DATABASE USER CIDR- ADDRESS METHOD

"local" is for Unix domain socket connections onl y

local all all ident

IPv4 local connections:

host cotson cotson 127.0.0.1/3 2 trust # add this line in this place

host all all 127.0.0.1/32 md5

IPv6 local connections:

host cotson cotson ::1/128 trust # add this line in this place

host all all ::1/128 md5

Then the last thing to do is to restart the PostgreSQL server. Still as a root issue the command:

Finally:

At this point the user can press two times the “Ctrl-D” to exit the postgres user shell and the root shell.

5.2.4 Creating the PostgreSQL COTSon db schema:

Then, there is need for creating the database structure using the file “experiment_definition ” in
the ‘src/tools/ ’directory.

We modify for example add the following line at the end of the file, instead of:

We can write:

INSERT INTO experiments(experiment_id, description) VALUES(1,'T1');

Then we can enter again the DB with:

At the prompt, provide the password ‘cotson’

To setup the database schema:

$ /etc/init.d/postgresql restart

$ psql -d cotson -U postgres -c "GRANT ALL PRIVILEG ES ON DATABASE cotson
TO cotson;"
$ psql -d cotson -U postgres -c "ALTER USER cotson WITH PASSWORD
‘cotson’;”

$ cd src/tools

$ psql -h localhost -d cotson -U cotson

Postgres=# \i experiments_definition

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 37 of 100

This should output:

Then we return to the shell with “Ctrl-D”.

5.2.5 Modifying the “.in” file to save our heartbeats in PostgreSQL:

At this point the configuration phase is completed. To check that this works, we can modify the
sqlite.in example as follows:

Then we can modify the file “pgsql.in”, by changing the heartbeat type from “sqlite” to “pgsql” and
setup the “dbconn=…” line as shown below:

5.2.6 Running COTSon with PostgreSQL

Now, the user is ready to run a complete experiment on COTSon and stores the collected statistics in
the PostgreSQL database server.

The user should be aware that using PostgreSQL server on the same machine can be painful slow. As
a rule of thumb, the user should expect that flat files are the fastest way to save your data, there is
SQLite server as a middle speed solution, while PostgreSQL server (on the same machine) is the
slowest option.

$ cd src/examples
$ cp sqlite.in pgsql.in

 heartbeat = {
 type="pgsql",
 dbconn="host=localhost dbname=cotso n user=cotson password=cotson",
 experiment_id=EXP,
 experiment_description="T1”
 },}

$../../bin/cotson pgsql.in

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 38 of 100

6 Simple Examples
All the examples that will be refer to, can be found in the following path:
cotson/src/examples

A more complete verification test can be launched by typing the following command:
$ make run

In this case, several examples contained in the example folder are sequentially executed. Following
this verification procedure, the reader can see different examples executing, each of them targeting a
specific feature of the simulator.

From this folder, the user can also run a specific example that have been setup through the Makefile,
by typing the following command:
$ make run_ name_of_the_example

Where the string name_of_the_example identifies the file name associated to the example (type
“ls *.in” to see names of possible examples. E.g., for running the “functional.in” example type:

6.1 Functional Simulation example (functional.in)
As said in the first part of the guide, a functional simulation doesn't use timing at all. For this reason it
is very fast but assuming an ideal (“CPI=1” timing model). Here, the Lua file functional.in (see Fig.
12 below) that will be used.

Fig. 12 – Lua configuration file for running a pure functional simulation with COTSon.

6.1.1 Goal of the experiment or example

As can be seen in the previous figure, in the script there is the option “one_node_script=…” that tells
COTSon to refer to a template “functional”, which contains default options for running a functional
simulation. The second line of the code is needed to display the SimNow Graphical User Interface.
Then, there are the SimNow commands that allow the user to choose the bsd and hdd by inserting
their absolute paths or otherwise by placing the desired bsd and hdd in the directory cotson/data.

6.1.2 Location of the involved files

All the files needed to run the example are contained in the following folder:
$COTSONHOME/src/examples

Where $COTSONHOME is an environment variable identifying the installation path of the COTSon
simulator.

$ make run_ functional

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 39 of 100

6.1.3 Detailed instructions to start

 To run one example, move on the following folder and launch the simulator:

$ cd src/examples
$ make run_functional

To start the simulation it is necessary to press the start button (circled in red in Fig. 13 – see
subsection 6.1.4). At this point the simulation has started and the prompt of the guest (emulated)
machine can be used.

6.1.4 Expected output

After launching the application the graphical user interface should appear as follows:

Fig. 13 – Expected output for the “functional.in” example

6.2 Memory tracing example (mem_tracer.in)
To analyze in detail the performance of a system, it is often useful to record a trace of the references
that are flowing through the system. This is supported in COTSon through the “tracers”. In the
“mem_tracer.in” example we can see how to setup a tracer.

Fig. 14 – Relevant lines of the Lua configuration file for the memory tracer example. In this case the lua

script contains another variable (not shown here) that sets TRACE_FILE=”/tmp/mem_tracer.txt.gz”

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 40 of 100

6.2.1 Goal of the experiment or example

Memory tracing is achieved by placing a transparent object that intercepts every memory request and
dumps this information to a file for further analysis. This is how it is specified in the example
mem_tracer.in. The “trace=” option inside the build function specifies to intercept every access to
the main memory. The tracer is not only limited to the main memory, it is also possible to intercept a
request to any memory unit in the memory hierarchy. Simply placing the tracer before L2 or L1
cache, it is possible to intercept every access to the respective cache. A memory tracer is added to the
memory hierarchy through the line (see also Fig. 14):

trace=Tracer{ name=”…”, trace_file=”…”, next=”…”}

The tracer is defined inside the build function of the Lua configuration script. Its parameters must be
defined in a Lua table called Tracer. This table has three fields: (i) the field name specifies the name
of the “tracer object”, (ii) the field trace_file specifies the file where the trace output is dumped, and
(iii) the field next specifies the name of the memory unit whose access is intercepted by the tracer. As
mentioned above, this type of objects can be placed in any position of the memory hierarchy to trace
different hardware blocks. In the example mem_tracer.in it is placed just before the main memory
(setting next=mem), so it will record each memory access in a file, specified by writing:

trace_file=' path_of_the_file'

The output of the tracer is a gzip compressed text file. A line in the output corresponds to a single
memory access where each line is composed of five fields. The first field is a time-stamp of the
access, the second field indicates the access type, i.e., 'r' for read and 'w' for write, the third and fourth
fields indicate the physical and virtual addresses, respectively; finally, the fifth field specifies from the
cpu where the access is originated and the type of transactions generated at each level of the memory
hierarchy (see Fig. 15).

6.2.2 Location of the involved files

All the files needed to run the example are contained in the following folder:

$COTSONHOME/src/examples

Where $COTSONHOME is an environment variable identifying the installation path of the COTSon
simulator.

6.2.3 Detailed instructions to start

 To run the example, move on the example folder and then run the example as follows:

$ cd src/examples
$ make run_mem_tracer

6.2.4 Expected output

After launching the application the following trace is produced by the program, and displayed on the
host shell:

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 41 of 100

Fig. 15 – Expected output for the memory trace simulation with COTSon simulator.

The same result can be found in the host file:

/tmp/mem_tracer.txt.gz

As can be seen in the Lua configuration file mem_tracer.in, the chosen sampler is of type interval,
meaning that a timing simulation is done after fixed intervals of time, and has a fixed duration (more
details on samplers are in Section 6.3). During the simulation, for each sample the time elapsed from
the beginning of the simulation and the calculated IPC are printed on the shell screen (see below).

Modification to the sampling policy is available in the examples trace_stats.in and mem_tracer2.in.
Here, the traces are obtained by changing the type of the CPU's timer (see Fig. 16) and setting
TRACE_OUT='/tmp/mem_tracer.txt.gz'.

Fig. 16 – Lua configuration file for setting the timer to trace_stats.in example

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 42 of 100

The trace_stats is in this case a “fake” CPU timer (see ‘./abaeterno/timer_cpu/trace_stats.cpp’ for
more details) that prints some trace statistics in the specified file. The output on the host screen in this
case is:

While the trace file shows a detailed disassembly of the instructions:

In the case of mem_tracer2.in example (see Fig. 17 below) the “fake” timer is “memtracer (see
‘./abaeterno/timer_cpu/memory_tracer.cpp for more details).

Fig. 17 - Lua configuration file for setting the timer to mem_tracer2.in example.

The output on the screen is:

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 43 of 100

And the content of trace file is:

The values in this case represent in order: i) the number of nanoseconds (timestamp), ii) he type of
operation (r for read, w for write), iii) the address involved, iv) the content of the x86 CR3 register,
and v) the cpu identifier.

6.2.5 Defining the Region Of Interest (ROI)

Although the discussion of how to setup a the Region Of Interest is presented as part of a tracer
example, the technique is general and serves to measure metrics related to the portion of the code that
is marked by the user.

COTSon comes with the capability of timing simulation of a specific part of a benchmark, hereafter
referred to as Region Of Interest (ROI). Currently this is achieved in two ways, the first one is to
enable the timing just before the benchmark starts and to disable it right after the benchmark finishes.
This approach considers the whole benchmark as the ROI. The second approach is to mark a portion

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 44 of 100

of the benchmark for which a timing simulation is required. A practical example of the first approach
is provided inside src/examples/tracer/ (see Fig. 18).

Fig. 18 – The definition of the ROI in the example cotson_tracer.in

To achieve this, the sampler to be used must be of type “selective_tracing”, which in essence is a
collection of other samplers, each of which is used when a certain condition is met during the entire
simulation. For the specific scenario, the selective sampler is composed of two samplers: no_timing
and simple. In this case, the simulation runs in a timing mode or in functional mode until a certain
trigger is given by the application (see below), then another trigger stops the timing simulation,
therefore freezing the timing statistics update.

The configuration file cotson_tracer.in (Fig. 18) is an example, which shows how these parameters
are specified. run.sh is the script that executes inside SimNow (since it is specified by the
“execute(‘run.sh’)” simnow.commands function) and it contains specific commands (or “triggers”) to
mark the start and the end of the timing simulation. This requires that the selected hard-disk image
(hdd) provides the ‘cotson_tracer’ executable (this is the case for the “karmic64,img” hdd that comes
by default with COTSon) essentially, the cotson_tracer is an helper program that takes three
arguments and is supposed to be used inside the execution script as in the following format:
cotson_tracer 10 1 0
./benchmark
cotson_tracer 10 1 1

The first argument specifies the type of the sampler used, number 10 is reserved for selective_tracing.
The second argument is an integer value used as an identification of the simulation zone for which
timing simulation is enable/disabled (in this case this indicates “Zone 1”). Finally, the third argument
is a switch to enable/disable the timing simulation. Hence, cotson_tracer 10 1 0 implies that timing is
enabled for zone 1 and cotson_tracer 10 1 1 implies that timing is disabled for zone 1.

A finer grain control is possible too. In this case, the steps are the following:

i) The user as to include the “cotson_tracer.h” header provided in the src/example/tracer
directory;

ii) The user can then mark the portion of code of interest (ROI) with a
COTSON_INTERNAL(10,1,0) to start the timing simulation for “Zone 1” and
COTSON_INTERNAL(10,1,0) to stop the timing simulation for “Zone 1”;

Note that, in this case, it is not necessary to have the “cotson_tracer” helper program in the hdd image.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 45 of 100

6.3 Samplers: timing simulation
There are several types of samplers available (check their implementations in the folder
cotson/src/abaeterno/sampler). Here we discuss more details about the following four samplers:

• simple: timing simulation is always on. For example this type of sampler is used in the
example configuration one_cpu_simple.in;

• interval : the duration of each phase (state) of the sampling (functional, warming, simulation)
is fixed. This type of sampler is used in the example configuration in
multiple_cpu_interval.in;

• dynamic: the sample intervals are determined dynamically by the sampler according to the
variation of a monitored variable This type of sampler is used in the example configuration in
dynamic.in;

• SMARTS: the duration of each phase (state) of the sampling (functional, warming,
simulation) is fixed, but the sampling instants are determined by a previous profiling phase.
This type of sampler is used in the example configuration in smarts.in;

To specify the full timing simulation the lua file contains the following (see file one_cpu_simple.in):

To specify the interval based simulation, where the execution takes systematically a given amount of
time for the functional, warming and timing simulation, the lua file contains the following (see file
multiple_cpu_interval.in):

To specify the interval based simulation, where the execution takes systematically a given amount of
time for the functional, warming and timing simulation, the lua file contains the following (see file
smarts.in); this is similar to the “interval sampling” but in this case a profiling phase is also required”:

To specify the dynamic based simulation, where the execution is switched to full timing according to
phases that are detected through an “non-timing” variable (in this case the variable is the number of
exceptions on any cpu simulated), the lua file contains the following (see file dynamic.in):

The length of the intervals, where functional, warming, full-timing simulation is performed, is
specified in a way similar to the interval simulation. If the first-derivative of this variable goes beyond
the sensitivity (set by the line sensitivity=”90”) there is a phase change in the program and so a
timing simulation can start. The variable maxfunctional=”10” is needed to set the maximum number
of time intervals passed in the functional state before a new timing simulation starts. This type of
sampler is used in dynamic.in. As you can see from Fig. 20 the intervals between the printed values of
time are not regular but they are variable.

sampler={ type="simple", quantum="100k" }, -- quant um is in cycles

sampler={ type="interval", functional="1M", warming ="100k", simulation="100k", },
 -- the sampler will execute warming , simulation and then functional for
 -- their respective interval length s. After the first simulation sample,
 -- though it will finish (due to ma x_samples being 1)

sampler={ type="smarts", functional="100k", warming ="100k", simulation="100k", },
 -- the sampler will execute warming , simulation and then functional for
 -- their respective interval length s until reaching 1M nanos

sampler={ type="dynamic", functional="100k", warmin g="100k", simulation="100k",
 maxfunctional=10, sensitivity="90 ",
 variable={"cpu.*.other_exceptions "}, },
 -- the sampler will execute warming , simulation and then functional for
 -- their respective interval length s until reaching 1M nanos

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 46 of 100

6.3.1 Goal of the experiment or example

The main purpose of the example is the illustration of the use of different sampler.

6.3.2 Location of the involved files

All the files needed to run the example are contained in the following folder:
$COTSONHOME/src/examples

where $COTSONHOME is an environment variable identifying the installation path of the COTSon
simulator.

6.3.3 Detailed instructions to start for NO Sampling (“simple”)

 To run the example, move on the example folder and then run the example as follows:
$ cd src/examples
$ make run_one_cpu_simple.in

6.3.4 Expected output for NO Sampling (“simple”)

After launching the application the following output should be obtained (see Fig. 21). In this case, the
timing simulation is always on:

Fig. 19 – Expected output for “simple” sampler example. The example is based on the one_cpu_simple.in

Lua configuration file.

6.3.5 Detailed instructions to start for Dynamic Sampling

 To run the example, move on the example folder and then run the example as follows:
$ cd src/examples
$ make run_dynamic

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 47 of 100

6.3.6 Expected output for Dynamic Sampling

After launching the application the following output should be obtained (see Fig. 20):

Fig. 20 – Expected output for dynamic sampler example. The example is based on the dynamic.in Lua

configuration file.

6.3.7 Detailed instructions to start for Interval Sampling

 To run the example, move on the example folder and then run the example as follows:
$ cd src/examples
$ make run_multiple_cpu_interval

6.3.8 Expected output for Interval Sampling

After launching the application the following output should be obtained (see Fig. 21). As a variant, in
this case 4 CPUs are simulated, the simulation is fast-forwarded for 2 second and then the next 50 ms
are simulated with full timing but up to 5 samples that are taken at successive regular instants:

Fig. 21 – Expected output for interval based sampler example. The example is based on the

multiple_cpu_interval.in Lua configuration file.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 48 of 100

6.3.9 Detailed instructions to start for SMARTS Sampling

 To run the example, move on the example folder and then run the example as follows:

$ cd src/examples
$ make run_smarts

6.3.10 Expected output for SMARTS Sampling

After launching the application the following output should be obtained (see Fig. 21). In this case,
similarly to the dynamic sampling, the sampling instant are not uniformly distributed with the time:

Fig. 22 – Expected output for SMARTS sampler example. The example is based on the smarts.in Lua

configuration file.

6.4 Simulation of Ethernet connected clusters
A cluster is a set of loosely coupled computers that work together as if they were a single computer.
COTSon has the capability of simulating clusters that are interconnected through an Ethernet based
network card and through a simulated switch (called “mediator”) by using an individual full-system
instance of SimNow for each node. It is worth of notice that the SimNow instance run in parallel if the
simulation host has enough cores.

6.4.1 Goal of the experiment or example

When simulating a cluster with COTSon there is a software component that is needed to connect all
the SimNow instances of the different COTSon nodes, called Mediator (i.e., a component in the

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 49 of 100

simulator architecture that is responsible to manage the network communication among different
nodes of the simulated system – see also Fig. 4). This application, together with other external tools
such as Slirp, allows more than one COTSon node (i.e., an instance of SimNow plus abaeterno) to
communicate with the rest of the network. COTSon is responsible for coordinating the activity of the
nodes, which are possibly running in different machines. The simplest example about clusters is
twonodes.in that implements a cluster of two nodes pinging each other.

6.4.2 Location of the involved files

All the files needed to run the example are contained in the following folder:

$COTSONHOME/src/examples

Where $COTSONHOME is an environment variable identifying the installation path of the COTSon
simulator.

6.4.3 Detailed instructions to start

 To run the example, move on the example folder and then run the example as follows:

$ cd src/examples
$ make run_twonodes

6.4.4 Expected output

After launching the application the following output should be obtained (see Fig. 23):

Fig. 23 expected output for the example where mediator component is used. The example is based on the

twonodes.in Lua configuration file.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 50 of 100

While the simulation is running, the following windows (see Fig. 24) should appear on the screen
indicating that the two nodes have been booted up and they are communicating each other:

Fig. 24– Two simulator windows are used to manage the two communicating nodes of the simulated system.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 51 of 100

7 Research Use Case from BSC
This section shows how to use the TERAFLUX system image and benchmark repository that has been
put in place to ensure partners use a common development platform and can reproduce each other's
results.

7.1 Goal of the experiment or example
The goal is two-fold: to show how the system image can be used for development, and show how
experiments from the benchmark repository can be run.

7.2 Location of the involved files
First of all, one must download the system image and verify its integrity by downloading files

wget http://www.teraflux.eu/sites/teraflux.eu/files /teraflux-v5.img.bz2

Then:

wget http://www.teraflux.eu/sites/teraflux.eu/files /teraflux-v5.img.bz2.md5

Then executing:

$ md5sum -c teraflux-v5.img.bz2.md5
teraflux-v5.img.bz2: OK
$ bzip2 -d teraflux-v5.img.bz2

Next, one must download the Teraflux Simulation Manager (tfsm), a simple script to help using the
image:

$ svn co https://teraflux.eu/svn/tfx/tfsm

This script requires installing a few packages, as well as support for hardware virtualization in order
to provide maximum performance during development and native testing:

$ sudo apt-get –y install qemu-kvm libvirt-bin vina gre qemu-system virt-manager gcc-4.4
…
$ sudo adduser `whoami` kvm
$ sudo addgroup libvirt
$ sudo adduser `whoami` libvirt
$ sudo modprobe kvm-amd

The benchmark repository is included in the image file, but it can also be independently downloaded:

$ svn co https://teraflux.eu/svn/tfx/ems

7.3 Detailed instructions to start
 To start developing with the image, one must start tfsm with the following command:

$./tfsm/tfsm edit teraflux-v5.img 512 2

This will start a virtual machine with 2 cores and 512 MB of memory, ready to use for development
and benchmark testing. Once the virtual machine is running, one can start installing programs and
developing. Both the login and password are user.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 52 of 100

After the changes are ready, one can launch multiple nodes to test the benchmarks natively. First of
all, the maximum number of nodes must be established (2 in this case), and the editable virtual
machine must be stopped. The following commands have to be issued at the virtual machine prompt:

$ sudo ./guest/nodes 2
$ sudo halt

One can then start two identical nodes to run distributed benchmarks natively with tfsm:

$./tfsm/tfsm qemu teraflux-v5.img 2 512 2
Creating inter-node network...
Creating VMs...
You can now connect to the VMs (e.g., 'virt-manager ' or 'vinagre :5900')
[Press enter to destroy all Vms]

The benchmarks are run with the Experiment Management System (ems) that is included in the image
(this command again can be issued inside the virtual machine):

$ cd ems
$./ems run kernels/cholesky small

7.4 Expected output
Running 'kernels/cholesky/smpss' small into kernels /cholesky/smpss//run/1
$ cat kernels/cholesky/smpss/run/1/ems_output
+ cholesky_simple 64 64
25003147; 907

Since the experiment is natively run in “qemu” mode (using hardware virtualization), the actual
contents of the ems_output file will change.

7.5 Further references to more in-depths
The tfsm script also includes commands to start SimNOW and COTSon nodes. Please refer to the
README file in the tfsm repository, and the environment-specific details of other partners for more
information on the necessary arguments.

The ems script also handles benchmark compilation, even though the TERAFLUX disk image comes
with pre-compiled benchmarks. Please run ems without arguments and read the README file in the
ems repository for more details. To update the benchmark repository in the TERAFLUX disk image
run:

$ cd ems
$ svn https://teraflux.eu/svn/tfx/ems update

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 53 of 100

8 Research Use Case from CAPS
This section describe the experimental platform used to evaluate, first, the new CAPS compiler back-
end developed during the project, and second the OpenACC dataflow extension, on the common
TERAFLUX architecture using the SimNOW virtualization system and the COTSon simulation
platform. The experimentation has been performed on a Convolution benchmark programmed in
OpenHMPP and offloading the parallel computation on the CPU using a C back-end.

8.1 Goal of the experiment or example
The goal of the experiment is to validate the execution of the OpenHMPP Convolution benchmark on
the COTSon system. This experiment will perform a functional validation of a code pre-compiled by
the CAPS compiler by the execution of the binary together with the CAPS compiler runtime.

8.2 Location of the involved files
To run the experiment, one has to use the tools implemented by the collaborative effort from UNISI &
BSC: the COTSon simulation platform with the associated SimNow virtualization system, and the
Teraflux Simulation Manager (tfsm). The COTSon system is taken from the trunk:

$ svn co https://svn.code.sf.net/p/cotson/code/trun k cotson

The tfsm is fetched from the original source:

$ svn co https://teraflux.eu/svn/tfx/tfsm

The other files have been developed at CAPS entreprise using a branch of the CAPS many-core
compiler and the access is subject to a formal request to CAPS entreprise:

• karmic64-capse.img: the image containing the CAPS compilation framework and the
Convolution example, it contains pre-compiled files from the CAPS compiler, and requires
only a minimal SDK;

• CAPSCompilersRuntimes-3.3.4-TF.tar.bz2: the CAPS compiler run-times for compiling the
OpenHMPP applications;

• CAPSCompilersSDK-3.3.4-TF.tar.bz2: the CAPS compiler SDK (partial, without the compiler
binaries, does not need a license token generator);

• CAPSCompilersRuntimes-install.sh: the automatic deployment script;

• capse.in: the Lua configuration script running the experiment with timing enabled;

• capse-interactive.in: the Lua configuration script running the functional simulator in
interactive mode;

8.3 Detailed instructions to start
Deployment

This experiment requires the deployment of the CAPS-compiler run-time, and the recompilation of
the Convolution application on a virtual machine image. For that purpose one has to use the “edit”
mode of the tfsm (see previous section):

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 54 of 100

$./tfsm edit karmic64-capse.img 512 2

Then, one has to perform a standard installation of the prototype CAPS-compiler run-time and simply
builds the Convolution application. Note that these operations are easier to perform when tfsm is
modified to run QEMU with a tunnel for SSH in port 2222:

$ cp tfsm tfsm-capse
<REPLACE the corresponding lines below in tfsm-caps e>
cmd_edit () {
 which $QEMU >/dev/null || error "cannot find QEMU: $QEMU"
 sys $QEMU -enable-kvm -hda $IMAGE -m $MEM -smp $NCO RES -redir tcp:2222::22
}

Doing so, the update process can be automatize using rsync and ssh commands from the host:

$./tfsm-capse edit karmic64-capse.img 2048 8 &
$ scp -P 2222 CAPSCompilersRuntimes-install.sh root @localhost:/home/user/CAPSe/
$ scp -P 2222 CAPSCompilersRuntimes-3.3.4-TF.tar.bz 2 root@localhost:/home/user/CAPSe/
$ scp -P 2222 CAPSCompilersSDK-3.3.4-TF.tar.bz2 roo t@localhost:/home/user/CAPSe/
$ ssh -p 2222 root@localhos7 /home/user/CAPSe/CAPSC ompilersRuntimes-install.sh
$ ssh -p 2222 root@localhost 'shutdown -h now'

On Ubuntu/Debian Linux distributions, the usage of the QEMU virtual machine requires the user to
belong to the “kvm” group (as in the previous example of Section 7). Note that in this example, the
host machine is called “localhost” and executes the COTSon system. Once the deployment of the
CAPS-compiler performed on the COTSon system has been done, the experimental snapshot is
prepared using the SimNOW:

$ export PATH=”$PATH:.”; ln –s ../simnow-linux64-4. 6.2pub/simnow
$./tfsm-capse simnow karmic64-capse.img 4 4p-reset .bsd

Note also that the tfsm script needs to know the installation location of the SimNow virtualization
system (it can be set through the SIMNOW environmental variable). At the end of the boot process,
the snapshot is prepared with the appropriate environment (in the console after the login root/root):

$ cd /home/user/CAPSe
$ source CAPSMC/bin/capsrt-env.sh
$ cd Convolution
$ make clean && make

After the initialization is completed, the user should stop the simulation and save the snapshot under
the name “4p-capse.bsd” in the COTSon data directory.

COTSon Simulation

The functional validation is performed using a snapshot containing the CAPS-compiler run-time and
the Convolution example ready to run. A very simple Lua configuration script (capse.in) is called
using the following command:

$../cotson/bin/cotson capse.in

The lua configuration script activates the standard timing of the simulation using the abaeterno library
and the “build” function. It also uses the “fastforward” keyword to delay the simulation up to the
OpenHMPP kernel execution. The simulation can be switched in visual mode if the appropriate line
comments are removed from the Lua configuration script. The core command of the script is the

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 55 of 100

following:

simnow.commands=function()
 use_bsd('4p-capse.bsd')
 use_hdd('karmic64-capse.img')
 set_journal()
 send_keyboard('./convol-hmpp.exe -e 1 data/Michal -*.tif -o ./Michal.tif')
end

The functional validation of the computation is done by the comparison of the picture generated by
the Convolution execution with a valid reference. The timing result of the simulation is stored in the
file “node.1.hmpp_simple.log”.

An interactive mode is available with the script “capse-interactive.in”, a variant of the previous one
activating the functional simulator with the SimNow window enabled. The user has to run the
simulator, and then it can interact with the application. An overview of the simulator window is given
in Fig. 25.

8.4 Expected output

The deployment and installation output is the following. It must contain a correct compilation of the
Convolution example and a proper execution.

[laorans@nova18 ~]$ ssh - p 2222 root@ localhost /home/use r/CAPSe/CAPSCompilersRuntimes - install.sh
root@localhost's password:
Uncompress package
------ Clean Convolution -----
rm -rf *convolution*_c.hmg *convolution*_c.hm g.o *convolution*_c.hmg.rc.o *convolution* _c.hmg.fatbin
rm -rf
rm -rf src/pictureInterface.o src/mainutils.o src/f ilters5x5.hmpp.o src/main-hmpp.hmpp.o convol-hmpp.e xe src/filters5x5_c.translated.o src/main-
hmpp_c.translated.o
rm -rf src/*.hmpp.o src/*.translated.o
rm -rf properties_tune_*.psc
rm -rf *_out.tif out*.tif
rm -rf core.*
rm -rf *.translated.i *.extracted.* *.halt.* *.hdpp .* *.inline.* *.preproc.* *.capstune.i
rm -rf *__hmpp_acc_region__*.o *__hmpp_acc_region__ *.fatbin *__hmpp_acc_region__*.hmf
------ Build Convolution -----
gcc -Wall -fopenmp -DHMPP_V3b -DHMPP_OPTIM_2 -DHMPP _C -c -O3 -Isrc/ -o src/pictureInterface.o src/pict ureInterface.c
gcc -Wall -fopenmp -DHMPP_V3b -DHMPP_OPTIM_2 -DHMPP _C -c -O3 -Isrc/ -o src/mainutils.o src/mainutils.c
gcc -Wall -fopenmp -DHMPP_V3b -DHMPP_OPTIM_2 -DHMPP _C -c -O3 -Isrc/ -o src/filters5x5.hmpp.o src/filte rs5x5_c.translated.i
src/filters5x5.c:48: warning: ▒hmppsi_lookup ▒ defined but not used
src/filters5x5.c:54: warning: ▒hmppsi_g_convolution_lookup ▒ defined but not used
gcc -Wall -fopenmp -DHMPP_V3b -DHMPP_OPTIM_2 -DHMPP _C -c -O3 -Isrc/ -o src/main-hmpp.hmpp.o src/main-h mpp_c.translated.i
src/main-hmpp.c: In function ▒main ▒:
src/main-hmpp.c:49: warning: ignoring #pragma hmpp
src/main-hmpp.c:58: warning: ignoring #pragma hmpp
src/main-hmpp.c:59: warning: ignoring #pragma hmpp
src/main-hmpp.c:60: warning: ignoring #pragma hmpp
src/main-hmpp.c: At top level:
src/main-hmpp.c:108: warning: ▒hmppsi_lookup ▒ defined but not used
g++ -c -I/home/user/CAPSe/CAPSMC//include -I/home/u ser/CAPSe/CAPSMC//include/openacc -fPIC -o convolu tion_c.hmg.o convolution_c.hmg.cc
g++ -shared -fPIC -o convolution_c.hmg convolution _c.hmg.o
gcc -Wall -fopenmp -DHMPP_V3b -DHMPP_OPTIM_2 -DHMPP _C -O3 -o convol-hmpp.exe src/pictureInterface.o sr c/mainutils.o src/filters5x5.hmpp.o
src/main-hmpp.hmpp.o convolution_c.hmg -lm -ltiff - lz -Wl,-rpath,/home/user/CAPSe/CAPSMC//slib -Wl,-rp ath,/home/user/CAPSe/CAPSMC//lib -
L/home/user/CAPSe/CAPSMC//lib -lhmpprti -lhmpprt -l hmpperr -lhmppstr -lhmppos -lhmppabi -lhmppos -lhmp plog -lphmpp -lhmpprl -lopenacci -lopenacc
------ Run Convolution -----
./convol-hmpp.exe -e 1 data/Michal-Osmenda-Mont_Sai nt_Michel-CC_BY_SA_2.0.tif -o ./Michal-Osmenda-Mon t_Saint_Michel-CC_BY_SA_2.0_out.tif
[0.056758] (0) WARN : Cannot find libOpenCL.s o: dlopen() failed: libOpenCL.so: cannot open share d object file: No such file or directory,
disabling OPENCL support.
[0.058255] (0) INFO : --> allocate <convoluti on> at src/main-hmpp.c:48
[0.058295] (0) INFO : - Acquire the device 'host#0'
[0.058362] (0) INFO : - Allocate buffer 'filter5x5_1::heigh|filter5x5_2::heigh' (4 x [] = 4 bytes of host memory on device 'host#0')
[0.058408] (0) INFO : - Allocate buffer 'filter5x5_1::width|filter5x5_2::width' (4 x [] = 4 bytes of host memory on device 'host#0')
[0.058440] (0) INFO : - Allocate buffer 'filter5x5_1::inRaster|filter5x5_2::outRaster' (4 x [2793, 1920] = 21450240 bytes of host
memory on device 'host#0')
[0.058473] (0) INFO : - Allocate buffer 'filter5x5_1::outRaster|filter5x5_2::inRaster' (4 x [2793, 1920] = 21450240 bytes of host
memory on device 'host#0')
[0.058505] (0) INFO : <-- allocate <convoluti on> at src/main-hmpp.c:48
[0.058526] (0) INFO : --> allocate, data <con volution> at src/main-hmpp.c:50
[0.058551] (0) INFO : - Allocate mirr or 0x4040a0 "stencil1" (4 x [25] = 100 bytes of hos t memory on device 'host#0')
[0.058581] (0) INFO : - Allocate mirr or 0x404120 "stencil2" (4 x [25] = 100 bytes of hos t memory on device 'host#0')
[0.058610] (0) INFO : <-- allocate, data <con volution> at src/main-hmpp.c:50
[0.058633] (0) INFO : --> advancedload, data <convolution> at src/main-hmpp.c:54
[0.058654] (0) INFO : - Upload mirror 0x4040a0 "stencil1" (4 x [25] = 100 bytes to devic e 'host#0')
[0.058697] (0) INFO : - Upload mirror 0x404120 "stencil2" (4 x [25] = 100 bytes to devic e 'host#0')
[0.058721] (0) INFO : <-- advancedload, data <convolution> at src/main-hmpp.c:54
[0.058743] (0) INFO : --> advancedload, args <convolution> at src/main-hmpp.c:57
[0.058759] (0) INFO : - Bind buffer 'fi lter5x5_1::heigh|filter5x5_2::heigh' to address 0x7 fff69c4afd8 'opt.m_expansion *
BYTES_PER_PIXEL * heigh'
[0.058775] (0) INFO : - Bind buffer 'fi lter5x5_1::width|filter5x5_2::width' to address 0x7 fff69c4afd4 'width'
[0.058790] (0) INFO : - Bind buffer 'fi lter5x5_1::inRaster|filter5x5_2::outRaster' to addr ess 0x2af3ac422010 'raster1'
[0.058811] (0) INFO : - Upload buffer ' filter5x5_1::heigh|filter5x5_2::heigh' (4 x [] = 4 bytes to device 'host#0')
[0.058835] (0) INFO : - Upload buffer ' filter5x5_1::width|filter5x5_2::width' (4 x [] = 4 bytes to device 'host#0')
[0.058858] (0) INFO : - Upload buffer ' filter5x5_1::inRaster|filter5x5_2::outRaster' (4 x [2793, 1920] = 21450240 bytes to device
'host#0')
[0.070573] (0) INFO : <-- advancedload, args <convolution> at src/main-hmpp.c:57
[0.070656] (0) INFO : --> callsite <convoluti on> at src/main-hmpp.c:62
[0.070673] (0) INFO : - Bind buffer 'fi lter5x5_1::heigh|filter5x5_2::heigh' to address 0x7 fff69c4afd8 'opt.m_expansion *
BYTES_PER_PIXEL * heigh'

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 56 of 100

[0.070690] (0) INFO : - Bind buffer 'filter5x5_1::width|filter5x5_2::width' to address 0x7fff69c4afdc 'width'
[0.070705] (0) INFO : - Bind buffer 'fi lter5x5_1::filter' to address 0x4040a0 'stencil1'
[0.070720] (0) INFO : - Bind buffer 'fi lter5x5_1::inRaster|filter5x5_2::outRaster' to addr ess 0x2af3ac422010 '(Raster2D_C) raster1'
[0.070735] (0) INFO : - Bind buffer 'fi lter5x5_1::outRaster|filter5x5_2::inRaster' to addr ess 0x2af3ad897010 '(Raster2D) raster2'
[0.070759] (0) INFO : - Call codelet 'f ilter5x5_1' (on device 'host#0')
[0.401762] (0) INFO : <-- callsite <convoluti on> at src/main-hmpp.c:62
[0.401860] (0) INFO : --> callsite <convoluti on> at src/main-hmpp.c:65
[0.401878] (0) INFO : - Bind buffer 'fi lter5x5_1::heigh|filter5x5_2::heigh' to address 0x7 fff69c4afd8 'opt.m_expansion *
BYTES_PER_PIXEL * heigh'
[0.401895] (0) INFO : - Bind buffer 'fi lter5x5_1::width|filter5x5_2::width' to address 0x7 fff69c4afd4 'width'
[0.401911] (0) INFO : - Bind buffer 'fi lter5x5_2::filter' to address 0x404120 'stencil2'
[0.401926] (0) INFO : - Bind buffer 'fi lter5x5_1::outRaster|filter5x5_2::inRaster' to addr ess 0x2af3ad897010 '(Raster2D_C) raster2'
[0.401941] (0) INFO : - Bind buffer 'fi lter5x5_1::inRaster|filter5x5_2::outRaster' to addr ess 0x2af3ac422010 '(Raster2D) raster1'
[0.401961] (0) INFO : - Call codelet 'f ilter5x5_2' (on device 'host#0')
[0.730020] (0) INFO : <-- callsite <convoluti on> at src/main-hmpp.c:65
[0.730122] (0) INFO : --> delegatedstore, arg s <convolution> at src/main-hmpp.c:68
[0.730146] (0) INFO : - Download buffer 'filter5x5_1::inRaster|filter5x5_2::outRaster' (4 x [2793, 1920] = 21450240 bytes from device
'host#0')
[0.735362] (0) INFO : <-- delegatedstore, arg s <convolution> at src/main-hmpp.c:68
[0.839454] (0) INFO : --> free, data <convolu tion> at src/main-hmpp.c:89
[0.839540] (0) INFO : - Free mirror 0 x4040a0 "stencil1" (4 x [25] = 100 bytes on device 'host#0')
[0.839600] (0) INFO : - Free mirror 0 x404120 "stencil2" (4 x [25] = 100 bytes on device 'host#0')
[0.839626] (0) INFO : <-- free, data <convolu tion> at src/main-hmpp.c:89
[0.839645] (0) INFO : --> release <convolutio n> at src/main-hmpp.c:90
[0.839663] (0) INFO : - Free buffer ' filter5x5_1::outRaster|filter5x5_2::inRaster' (4 x [2793, 1920] = 21450240 bytes on device
'host#0')
[0.841287] (0) INFO : - Free buffer ' filter5x5_1::inRaster|filter5x5_2::outRaster' (4 x [2793, 1920] = 21450240 bytes on device
'host#0')
[0.842541] (0) INFO : - Free buffer ' filter5x5_1::heigh|filter5x5_2::heigh' (4 x [] = 4 bytes on device 'host#0')
[0.842586] (0) INFO : - Free buffer ' filter5x5_1::width|filter5x5_2::width' (4 x [] = 4 bytes on device 'host#0')
[0.842627] (0) INFO : - Release the device 'host#0'
[0.842655] (0) INFO : <-- release <convolutio n> at src/main-hmpp.c:90
Kernel time: 0.676843

The correct result of the COTSon simulation in visual mode is showed in Fig. 25. Please note that the
warning message is normal, considering that the platform does not support OpenCL.

Fig. 25 – Results of a COTSon simulation on the OpenHMPP Convolution example.

8.5 Further references to more in-depths
Further details about the CAPS many-core compiler can be found in deliverables D3.5 and D4.7.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 57 of 100

9 Research Use Case from HP
This section describes the mapping of TERAFLUX applications, compiled to T* ISA, and running on
the simulation platform. This work was driven by HP in collaboration with all partners.

9.1 Goal of the experiment or example
By performing simulations and analyzing the results with a full-system simulator, one can gain a
thorough understanding of how the proposed architecture behaves, how to improve it, and how to
validate the results. The focus of this section is not the precise timing model in simulation, but the
capability to simulate interesting benchmarks on thousands of cores, and multiple nodes, through the
T* ISA. While the current evaluation does not yet provide precise inter-node timing results, the
preliminary evaluation already enables scalability measurements, addressing the dominant
performance bottlenecks of the applications.

Another aspect of this section is the mitigation of resource requirements in many-node simulation.
Multiple nodes simulation of parallel programs requires more resources than single node simulation.
Unless precautions are taken, programs with tremendous parallelism or running on a large number of
nodes will saturate memory resources, and even deadlock, on any host machine. In the following the
resource requirements in the host and guest machine will be analyzed, and a set of solutions to reduce
the memory usage both in host machine and guest machine will be also proposed. The solutions are
implemented and integrated in the COTSon simulator.

Fig. 26 shows the multiple-nodes simulation structure on COTSon. The host machine is where the
COTSon instances are running on. COTSon supports multiple-nodes simulation by allowing multiple

Fig. 26 – Multi-node simulation with COTSon

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 58 of 100

instances of COTSon, while the communication and synchronization of the instances go through the
mediator component. The guest machine is the machine (both hardware and operating system level)
that is simulated by a COTSon instance. One worker for each CPU within the guest machine is
created. Each worker will poll the centralized task queue for ready tasks. At the execution of each
task, the T* instructions will be trapped by COTSon for functional simulation. In the figure, task 1 in
worker 4 (COTSon node 1), TCREATE (i.e., TSCHEDULE in D6.3, D6.4, D7.4,) and TCACHE will
be trapped by COTSon, and call the registered functions tcreate and tload on the COTSon node where
the guest machine is simulated on, respectively. For the purpose of illustrating how dataflow
applications are managed within the simulation platform, the T* instructions’ implementation in the
COTSon simulator (for further information, the reader can refer to deliverables D7.2, D7.4 and
deliverables D6.2, and D6.3) is briefly recalled:

• TCREATE is trapped by COTSon to the functional simulation, and then the registered function
tcreate will be called (Fig. 23, step 1 and 2). It will try to allocate a new DF-frame for the new
DF-thread in the shared memory. If allocation is successful, the new identifier for the DF-frame
(TID1 in this case) will be returned as the result of the execution of the assemble TCREATE.
DF-frames in shared memory is shared by all COTSon processes, and protected with locks.

• TCACHE is used to cache the remote frame locally. It will be trapped by the functional
simulation, and then the registered function tcache will be called. The DF-frame id is passed
along with TCACHE. In step 2, it will look up for TID3 in the shared DF-Frames, if it is found,
the entire DF-frame will be copied from host to guest. More precisely, the DF-frame will be
copied from the shared memory to the local heap for this worker thread and the local copy’s
pointer will be returned to TCACHE finally (step 5). Then in this task, one could directly
modify/read this DF-frame. At the time tdestroy is called, the modifications will be synchronized
and could be seen by other tasks/nodes.

• TLOAD is a shortcut for a specialized, current-thread version of TCACHE. It will be trapped by
the functional simulation, and then the registered function tload will be called. The current thread
id is stored within thread local storage and used to get current DF-frame in the shared DF-
Frames, if it is found, the DF-Frame will be copied from host to guest, and the local copy’s
pointer will be returned to TLOAD. Another difference between TLOAD and TCACHE is that
the frame loaded by TLOAD is read-only. The data stored in the DF-frame is needed by the
computations in the current thread.

• TDECREASE makes the target thread designated by thread id to be decremented by n either at
the time it is called (eager tdecrease) or upon termination of the current thread (lazy tdecrease, at
the time TDESTORY is called). It will be trapped by the functional simulation, and the registered
function tdecrease will be called. In eager tdecrease, the target DF-frame id and is passed along
with TDECREASE. It will look up for the target DF-frame, once it is found, it decreases the
synchronization Count (SC) by n. Then it checks the value SC after decrement, if it reaches to
zero, the corresponding thread is moved to the ready queue. In lazy tdecrease, the TDECREASE
instruction will be cached.

• TDESTROY is trapped to the functional simulation, resulting in a call to the registered function
tdestroy. This function will terminate the current thread and deallocate its DF-frame in Shared
DF-Frames. If running in lazy mode, it will aggregate and execute the cached instructions (e.g.
several TDECREASE to the same thread will be aggregated to a single TDECREASE) before
deallocation.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 59 of 100

Note that the implementation of the T* ISA extension in the COTSon simulator covers the
development of the distributed Thread Scheduling Unit models (TSUF described in this section, and
TSU4 described in section 17).

With the aim of investigating the performance of the T* instruction implementation in the COTSon
simulator, a set of experiments with multiple-node simulations using 5 benchmarks (Fibonacci, Gauss
Seidel, Matrix Multiplication, Sparse LU and Viola Jones - Thales's pedestrian detection) have been
conducted. Except for Fibonacci, all benchmarks make use of the Owner Writable Memory (OWM)
support. The benchmarks have been implemented in two different flavors. One flavor is to write
programs with the low level T* instruction set using C-level “built-in”s (Fibonacci and Matrix
Multiplication); the other flavor uses OpenStream and the TERAFLUX compiler support to express
dataflow parallelism, and has been used for the more complex benchmarks (Gauss Seidel, Sparse LU
and Viola Jones). The multi-node implementation for the latter benchmarks uses the OpenStream
extension for OWM. The run-time support library for OpenStream (to match dependences over
streams) is integrated into the COTSon run-time.

•

Fig. 27 – Speedup of five different dataflow benchmarks running on different number of cores/nodes.

A few results on 128 cores and 32 nodes are shown in Fig. 27. More details can be found in the WP2
deliverable. With the aim of enabling the reader to run one of these specific benchmarking examples,
in the following the single node simulation of Matrix Multiplication benchmark is described in details.

9.2 Location of the involved files
All example files and instructions are provided on the TSUF branch of COTSon (we assume here that
the checkout of $COTSON-ROOT involves not only the trunk as in Sect. 1.1, but also the branches):

$COTSON-ROOT/branches/tflux-test/tsuf

The software stack uses the DF-proxies branch of the OpenStream compiler, where we integrated our
T* backend implementation and OWM support (cf. D4.7). The simulated architecture uses SimNow
version 4.6.2, and the most recent version of COTSon with support for T* architecture (the TSUF
branch).

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 60 of 100

9.3 Detailed instructions to start
The Matrix Multiply kernel generates a moderate number of dataflow threads (namely DF-Threads),
but stress more the TERAFLUX architecture from the computational viewpoint. In order to run the
example, move on the correct folder:
$ cd $COTSON-ROOT/branches/tflux-test/tsuf

Open the Makefile file with a text editor and check that the first line is correctly pointing the main
COTSon folder. Then, in the same file set the variable TESTS to matmul, in order to run the selected
benchmark:

$ vi Makefile
COTSON_ROOT=$(shell bash -c 'cd ../../../trunk; pwd ')
COTSON_SRC=$(COTSON_ROOT)/src
TSUSIM=tflux_tsu.so
TESTS = matmul
...

At this point one needs to run the build process for the local folder. This operation is necessary to
build the shared object library (tflux_tsu.so) that contains the code used to implement the thread
scheduling unit:
$ make

The next step is to enter in the benchmark folder and modify the local Makefile file (through a text
editor), setting up the proper configuration of the simulated system (i.e., size of the input of the
benchmark, number of cores, etc.). In particular, set the variable COTSON to point the main
simulation folder corresponding to the position COTSON-ROOT/trunk. Then, set the size of the
benchmark input modifying the value associated to the variable SZ (here the value is 35). The number
of cores used by the simulated system is expressed by the value of the NT variable (in this example we
run on a single node with 4 cores).
all: $(TESTS)
COTSON=$(shell bash -c 'cd ../../../../trunk; pwd') /bin/cotson
DFDIR= $(shell bash -c 'cd ..; pwd')
DFRT=$(DFDIR)/dflib.o
DFLIBS=-lpthread
TSUSIM=$(DFDIR)/tflux_tsu.so
PWD=$(shell pwd)
RM=rm -rf
TSCRIPT=$(PWD)/tsutest
WSDIR=./libworkstream_df
WSOPTS=-g -O0 -ffast-math -D_GNU_SOURCE -I . -fPIC -Wall -Wextra -lpthread
OWMSZ=32000000
SZ=35
NT=4
TESTS = matmul
HTMTESTS = tmtest_htm
...

With the next step the reader has to check the Lua configuration file. Since a single node simulation is
running, the reader needs to open the tsu_single.lua file with a text editor, and comment the display
variable so that the whole simulation output will be displayed on the console and copied also on text
file. The use_bsd() function is set to 4p.bsd in order to launch a 4-cores system with SimNow.
Similarly, the sampler object is set to no_timing, in order to run a pure functional simulation. To run a
timing simulation, the user must change the value of this object to simple.

runid="tsu"
abaeterno_so=TSUSIM

wd=os.getenv("PWD")
tmpdir=wd
debug=true

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 61 of 100

-- clean_sandbox=false
TSULAT=1

options = {
 --max_nanos='3G',
 exit_trigger='terminate',
 sampler={type="no_timing", quantum="10M"},
 -- sampler={type="interval",functional="20M",wa rming="100k",simulation="100k"},
 -- sampler={type="simple", quantum="3M"},
 heartbeat={ type="file_last", logfile=runid..". log" },
 -- interleaver_order="round_robin",
 custom_asm=true,
 time_feedback=true,
 tsu_ignore_errors="true",
 -- tsu_speculative_threads=true,
 tsu_statfile="/tmp/xx.dat",
 -- tsu_destroy_polls=true,
 -- tsu_keep_target_frames="false",

 tsu_def_lat=1*TSULAT,
 tsu_rd_lat=20*TSULAT,
 tsu_wr_lat=10*TSULAT,
 tsu_sub_lat=100*TSULAT,
 tsu_sch_lat=1000*TSULAT,
}

one_node_script="run_interactive"
-- display=os.getenv("DISPLAY")
copy_files_prefix=runid.."."
-- clean_sandbox=false

simnow.commands=function()
 -- use_bsd('8p.bsd')
 -- use_bsd('16p.bsd')
 -- use_bsd('32p.bsd')
 use_bsd('4p.bsd')
 use_hdd('karmic64.img')
 set_journal()
 execute(SCRIPT)
end

function build()
 i=0
 while i < disks() do
 disk=get_disk(i)
 disk:timer{ name='disk'..i, type="simple_di sk", }
 i=i+1
 end
 i=0
 while i < nics() do
 nic=get_nic(i)
...

At this point is possible to launch the simulation as follows:

$ make run_single

9.4 Expected output
The following files are involved in the output process. The file node.1.tsu.log contains the statistics
gathered by COTSon during the simulation:

Input values:

cpu0.bpred_perfect false
cpu0.branch_mispred_penalty 8
cpu0.commit_cpi 1.0
cpu0.dcache.fudge 1.0
cpu0.icache.fudge 1.0
cpu0.twolev.hlength 14
cpu0.twolev.l1_size 1
cpu0.twolev.l2_size 16kB
cpu0.twolev.use_xor 1
cpu0.type timer0
cpu1.bpred_perfect false
cpu1.branch_mispred_penalty 8
cpu1.commit_cpi 1.0
cpu1.dcache.fudge 1.0
cpu1.icache.fudge 1.0
cpu1.twolev.hlength 14

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 62 of 100

cpu1.twolev.l1_size 1
cpu1.twolev.l2_size 16kB
...
...

Output values:

cpu0.cycles 1309999869
cpu0.haltcount 819583852
cpu0.hb_ATC_flush 0
cpu0.hb_CR3_different 0
cpu0.hb_CR3_equal 0
cpu0.hb_ev_Exception 0

cpu0.hb_ev_HW_interrupt 0
cpu0.hb_ev_SW_interrupt 0
cpu0.idlecount 823247239
cpu0.instcount 486752630
cpu0.invalid_translation_bytes 318860
cpu0.iocount 1946489
cpu0.metadata_bytes 23073536

cpu0.other_exceptions 896760
cpu0.plain_invalidations 1297
cpu0.range_invalidations 77
cpu0.read_mmios 650
cpu0.read_pios 603
cpu0.segv_exceptions 62303
cpu0.timer.cycles 0
cpu0.timer.instructions 0

cpu0.timer.twolev.lookup 0
cpu0.timer.twolev.misses 0
cpu0.timer.twolev.reset 0
cpu0.timer.twolev.update 0
cpu0.trace_cache_size 0
cpu0.valid_translation_bytes 36613967
cpu0.write_mmios 886

cpu0.write_pios 2063
cpu1.cycles 1309999869
cpu1.haltcount 859197061
cpu1.hb_ATC_flush 0
cpu1.hb_CR3_different 0
cpu1.hb_CR3_equal 0
cpu1.hb_ev_Exception 0

cpu1.hb_ev_HW_interrupt 0
cpu1.hb_ev_SW_interrupt 0
cpu1.idlecount 860191233
...
...

The file node.1.stdout.log contains the output generated by the benchmark and the simulator during
the simulation:

kernel.randomize_va_space = 0
+ /etc/init.d/ssh stop
 * Stopping OpenBSD Secure Shell server sshd
 ...done.
+ pkill -9 dhclient3
+ ifconfig eth0 down
+ echo performance
+ cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_ max_freq
+ cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_ max_freq
+ echo performance
+ cat /sys/devices/system/cpu/cpu1/cpufreq/cpuinfo_ max_freq
+ cat /sys/devices/system/cpu/cpu1/cpufreq/cpuinfo_ max_freq
+ echo performance
+ cat /sys/devices/system/cpu/cpu2/cpufreq/cpuinfo_ max_freq
+ cat /sys/devices/system/cpu/cpu2/cpufreq/cpuinfo_ max_freq
+ echo performance
+ cat /sys/devices/system/cpu/cpu3/cpufreq/cpuinfo_ max_freq
+ cat /sys/devices/system/cpu/cpu3/cpufreq/cpuinfo_ max_freq
+ echo Local config done
Local config done

RUNNING matmul
DF owm 0x7ffff6179000 32000000
Creating 4 workers for 4 cores
Starting workers
Starting master node 1 nodes 1 workers 4
Deallocate OWM at 0x7ffff6179000
All workers done, goodbye
===
block 2 sum = 6183107
block 0 sum = 6279596
block 1 sum = 6434683
block 7 sum = 6514228
block 4 sum = 6256864
block 5 sum = 6292689
block 9 sum = 6359774

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 63 of 100

block 8 sum = 6118062
block 11 sum = 6462022
block 6 sum = 6273600
block 3 sum = 6374453
block 13 sum = 6488416
block 10 sum = 6295426
block 12 sum = 6443866
block 14 sum = 6361545
block 15 sum = 6359904
block 17 sum = 6445377
block 19 sum = 6307741
block 20 sum = 6313001
block 16 sum = 6475514
block 23 sum = 6785729
block 18 sum = 6426926
block 25 sum = 6543575
block 21 sum = 6345925
block 26 sum = 6163990
block 29 sum = 6219195
block 22 sum = 6139551
block 31 sum = 6299559
block 30 sum = 6272789
block 24 sum = 6353918

block 33 sum = 6275531
block 34 sum = 6361807
block 27 sum = 6375751
block 35 sum = 6657941
block 36 sum = 6500855
block 37 sum = 6081004
block 32 sum = 6534934
block 39 sum = 6283410

block 38 sum = 6244325
block 28 sum = 6293559
*** SUCCESS ***
==================== DF STATS ================ ======
df time: 145072751 ns (145.073 ms)
 core 0: 435126644 insts 435126651 xc 91602 i c, 435218253 cycles
 core 1: 435144577 insts 435144856 xc 73397 i c, 435218253 cycles

 core 2: 435166946 insts 435167225 xc 51028 i c, 435218253 cycles
 core 3: 435079704 insts 435050187 xc 168066 i c, 435218253 cycles

On the screen of the console, the user should observe the following output:

...
$1 exec> keyboard.key 23 A3
$
$1 exec> keyboard.key 39 B9
$
$1 exec> keyboard.key 34 B4
$
$1 exec> keyboard.key 35 B5
$
$1 exec> keyboard.key 30 B0
$
$1 exec> keyboard.key 1C 9C
$
$1 exec> go
$+++ TRESET(START) nanos 179838554
$+++ TSchedule 83 TDestroy 82 TCache 1478582 TLoad 162 Polls 82 TDecrease 80
$+++ TFINISH nanos 328405990 (diff 148567436 ns, 14 8.567 ms)
$EXIT TRIGGER: terminate
$copying node 1 output to /home/scionti/Tools/cotso n-release/branches/tflux-$test/tsuf/test
$cleaning sandboxes

9.5 Further references to more in-depths
Resource usage optimization involves a careful memory management technique, and a heuristic for
task creation throttling. These are described in Chapter 7 of Feng Li's thesis (INRIA) – an extract of
which is presented in the next Section 10.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 64 of 100

10 Research Use Case from INRIA
One general criticism targeting dataflow computing is the cumbersome/inefficient management of
complex data structures. The functional nature of pure dataflow programs implies that all operations
are side-effect free. The absence of side effect means that if tokens are allowed to carry vectors,
arrays, or other complex data structures, an operation on a data structure results in a new data
structure. Which will greatly increase the communication overhead in practice. The problem of
efficiently representing and manipulating complex data structures in a dataflow execution model has
remained a fundamental and practical challenge. The vertically integrated design and flow of
TERAFLUX addresses this challenge. In the following, the design and usage scenarios of Owner
Writable Memory (OWM, designed in WP3 and WP6) is described. The OWM memory model is
loosely coupled. Compared to word-based cache coherence, the protocol is largely simplified with the
assumption that users have to synchronize all the tasks that access to the same OWM subregion to
preserve the ownership atomicity. There is usually a trade-off between programmability and
flexibility, in TERAFLUX some of the complexity of the hardware design is shifted to the user, but at
the same time, it provides a compilation tool chain to simplify this procedure. The OWM extension to
OpenStream provides an easy to use compilation support. Complementary support for complex data
structures also involve Transactional Memory, see the D3.5 and D6.4 deliverables for details.

10.1 Goal of the experiment or example
The Owner Writable Memory model (OWM) has been proposed in TERAFLUX to reduce the
communication overheads when complex data structures are passed over threads. The name and idea
originates from Prof. Ian Watson from the Unversity of Manchester. The design and semantics of
language support for OWM is presented in the D3.5 deliverable. This section mainly covers the
execution model for OWM and its application to concrete use cases.
The OWM protocol was first formalized by François Gindraud during his Master's thesis. A short
overview is provided in this deliverable. The OWM protocol is inspired from a distributed, directory-
based MSI cache coherence protocol. The global OWM memory address is mapped locally to each
node on the NoC. Before a task can access to an OWM subregion, it has to claim ownership
beforehand through a TSUBSCRIBE. The owner will always keep track of the nodes that hold a valid
copy of the subregion. One important property of resolving the ownership of an OWM subregion is
handled as follows:

• The globally addressable OWM is distributed over the platform's nodes. For a given OWM
region, one may tell the node it is originates from (i.e., its allocation) by the address. This
node is the region's first owner.

• When ownership changes, the first owner always keeps the information of the current owner.
When claim ownership or data requests have been received, it forwards the requests to its
owner and renew the ownership information. One problem with the MSI is the atomicity of
bus events. On the NoC, one can assume that all the messages will eventually arrive without
packet loss or duplication, in any order. So it must be ensured that a task accesses a region in
W mode will invalidate all the copies of that region on other nodes before the tasks depends
on being executed. Adding a memory semantic TPUBLISH can enforce this property. When
all the modifications are done within the OWM subregion, the owner task has to execute
TPUBLISH on the region explicitly to ensure all the other nodes depend on the new data will
be invalidated.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 65 of 100

Each node on the NoC operates on two message queues, a send queue and a receive queue. Nodes
communicate via messages. The message sending is abstracted as removing one message from the
send queue of the source node, and add it atomically to the receive queue of the destination node. The
protocol could be divided into three message types:

• DataRequest and DataAnswer messages are equivalent to a BusRd event in the MSI
coherence protocol for directory caches. The request will be sent to the first owner of this
region, and forwarded to the current owner. When the owner node receives this request, it
replies with a DataAnswer message containing the fresh data, and add the request node to the
list of valid nodes. When the request node receives the DataAnswer, it updates the local copy
of the OWM region, sets the valid flag as true, and resets the requested flag.

• OwnerRequest and OwnerAnswer are similar to the BusM event in MSI. In snooping MSI
the bus is guaranteed that only one busM event could occur. In OWM memory model, the
enforced dependences are added between tasks so that no ownership change could occur if
there is another node claimed the ownership and did not publish the data yet. The request
message will be sent to the first owner of this region, and will be forwarded to the current
owner. The first owner will update the ownership information by checking the OwnerRequest
message. When the destination node receives this message, it sets the valid flag to be true, and
send OwnerAnswer which packs the data and ownership response metadata information to the
new owner. When the request node receives this message, it will update the region it requests
by the data received. The valid set information is also sent in the metadata by the previous
owner, the request node will update this information, and add the previous owner to this set.

• Invalidation complements the ownership transfer process. In this case an explicitly
invalidation request is sent to other nodes that have a local copy upon modification. The
InvalidateRequest is sent to all the nodes in the valid set. The valid set will be copied to
Waiting Invalidation Acknowledge Set (WIAS) before it is reset. When the node receives an
InvalidateRequest, it sets the valid flag to false, and send back the InvalidateAck message to
acknowledge the sender. When the sender receives InvalidateAck, it removes the source node
from WIAS.

OWM is one single memory region, but it could be further divided into smaller subregions for finer
granularity. The owm_tsubscribe and owm_tpublish are introduced as an extension to the T* ISA
extension for supporting OWM. One could subscribe (by calling owm_tsubscribe) part of OWM
region to a thread, which means, before this thread is executed, the ownership of the subregion should
be acquired, and ready for access. One thread could publish the modifications to the OWM region it
acquired by calling owm_tpublish. Before the modifications are published, any read from another
thread is not guaranteed to see consistent data. OWM is a weak memory model; it is the
programmer’s responsibility to take care of data consistency and dependences.

Here is the detailed description for the OWM instructions extending the T* ISA:

• void owm_tsubscribe(void *tid, int off, int offowm, int size, int mode)

Subscribes the OWM subregion described by offowm, size, mode to be cached before
executing dataflow thread with thread id (tid): offowm is the initial offset to the global OWM

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 66 of 100

region, size is the size of the OWM subregion to be subscribed, mode describes the access
mode to the region, it could be read-only, write-only or read-write. The pointer to the local
cached OWM region is stored in DF-frame described by (tid, off), where tid is the thread id,
and off is the offset in the thread’s DF-frame.

• void owm_tpublish(void *regptr, int size)

Publishes the modification to the OWM region described by regptr, size. If size is 0, it writes
the region starting at regptr using the size that was registered during the owm subscribe
operation. This way, different threads can be subscribed to different segments of the same
region using different sizes.

OWM is integrated into the OpenStream compiler as a language extension. One could use
OpenStream to decompose programs into tasks and to explicit the flow of data among them, thus
exposing data, task, and pipeline parallelism. The OWM extension of OpenStream takes the form of a
simple cache clause in the task pragma:

#pragma omp task cache (ACCESS_MODE:MEM[OFF:SIZE])

The cache clause subscribes the task with the OWM subregion described by MEM[off:size] with read
(R), write (W) or read-write (RW) access mode (ACCESS_MODE). The current syntax supports only
one dimensional arrays, but it could be easily extended to multiple dimension arrays. A simple
example is presented in the D3.5 deliverable.

As illustrated below with matrix multiplication, the OWM extension can be easily integrated into
dataflow programs. The user may use OpenStream constructs to synchronize between tasks. Feng Li's
PhD thesis presents other use cases. OWM support is implemented in the OpenStream compiler. The
lowered built-in functions are translated directly to the T* ISA, linked with part of the OpenStream
library (run-time related with streaming operations), and part of the run-time support in the COTSon
simulator. In the implementation of benchmarks where two-dimensional arrays are used, one usually
has to remap the memory regions as a single dimension array, which might have extra cost. An
abstract polyhedral representation could be used in this case to represent an OWM region in multiple
dimension arrays situation.

10.2 Location of the involved files
All example files and instructions are provided on the TSUF branch of COTSon.

http://sourceforge.net/p/cotson/code/HEAD/tree/bran ches/tflux-test/tsuf/README

The software stack uses the DF-proxies branch of the OpenStream compiler, where the T* back-end
implementation and OWM support are integrated. Information regarding the OpenStream compiler
can be found at:

http://openstream.info/download

And for the GIT repository itself:

git clone http://git.code.sf.net/p/open-stream/code

The simulated architecture uses SimNow version 4.6.2, and the most recent version of COTSon with
support for T* architecture (the TSUF branch).

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 67 of 100

10.3 Detailed instructions to start
The sources for the compiler can be downloaded directly from the official repository (see previous
section), using the following command:

$ git clone git://git.code.df.net/p/open-stream/cod e $COTSON-HOME/open-stream

After having downloaded the sources from the official repository the following actions should be
done for installing the compiler:

$ cd $COTSON-HOME/open-stream/
$ make

This automatically performs the following actions:

• Download the sources of any missing libraries needed by OpenStream;
• Build and locally install these dependences;
• Build and locally install the compiler and runtime libraries in open-stream/install/ folder;
• Build the OpenStream codes in the open-stream/examples/ folder;

After the compilation process has finished it is possible to move on the example directory and launch
one of the available examples. For the purposes of this document the Matrix Multiplication example is
illustrated. Matrix Multiplication is a good example to show the expressiveness of OWM in concrete
use cases. This characteristic will be illustrated in this example in three phases: in the first phase, one
task allocates and initializes all the matrices in the OWM memory; in the second phase, the matrix is
partitioned to several blocks, each task will cache the OWM subregion it needs and compute the
results, then store the results to the output matrix; and a final task will wait till the end of all the
previously created tasks, print and verify the results. A detailed description is provided following the
path of the three phases.

10.4 Expected output
The code fragment in Fig. 28 shows the code for matrix allocation and initialization. The input
matrices A, B and output matrix C are allocated by calling tstar_owm_allocate, while fill_matrix
initializes all the matrices. The cache pragma subscribes matrices A, B, C in write mode. At the time
fill_matrix is executed, all the OWM subregion it subscribes will be ready for writing. The
modification will be published at the end of the task. Stream init is used to synchronize between phase
one and phase two, so that the computation could only be started when the initialization finishes.

Fig. 28 – Matrix product – input.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 68 of 100

Fig. 29 – Matrix product – input.

The main computations are done in the following phase. Fig. 29 shows the code for matrix
multiplication. The matrix is divided into blocks, each thread caches BLOCKSZ rows of matrix A,
and the entire matrix B in read mode, and BLOCKSZ rows of matrix C in write mode. Once the
thread is executed, it computes ABLOCKSZ•N•BN•N = CBLOCKSZ•N. At the end of each thread,
the modification to matrix C is published and thus available for reading by other threads. Each task
created in this phase writes a single value to stream finish. Stream finish acts as a waiting barrier in
the last task, which will wait for the termination of all threads created in this phase.

Fig. 30 – Matrix product – input.

Fig. 30 shows the final thread, which waits for the termination of all the threads created in phase two.
Once all the computations are done, it will output the results and do the verification if necessary.
Stream finish acts as a barrier, waits for N/BLOCKSZ inputs from stream finish. Each thread created
in phase two writes to stream finish once finished.

10.5 Further references to more in-depths
The semantics, dedicated memory model and coherence protocol for OWM will be the subject of a
joint publication of the project partners. The Master thesis of François Gindraud is currently the most
accurate information and is available on request. Further experiments are reported in the D2.4
deliverable and in Feng Li's PhD thesis. The experimental validation of OWM memory model is
presented in Chapter 7 of Feng Li's PhD thesis. We have studied four benchmarks with OWM
support: matrix multiplication, sparse LU, Gauss Seidel and Viola & Jones (pedestrian detection);
those benchmarks are validated with COTSon's TSUF branch.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 69 of 100

11 Research Use Case from MSFT
This section demonstrates how to run the TERAFLUX operating system prototype that was developed
to support research and experimentation with the various parallel, distributed and reliable execution
algorithms that are suggested in TERAFLUX. Specifically, the operating system supports execution
of a distributed application over the many-core device using dataflow threads, it was designed to
handle core soft errors with Double Execution mechanism and can handle node hard-failures such that
the application can transparently continue execution as the work that was pending on the failed node
is recovered and executed by the remaining nodes.

The system is simulated over COTSon (running a SimNow instance for each of the nodes) with a
slightly modified version of TSUF, which implements a shared memory mechanism with a weak
consistency model similar to acquire/release. This shared memory is the only mechanism utilized by
the operating system for inter-node communications and shared data.

11.1 Goal of the experiment or example
This experiment launches a distributed Fibonacci sequence computation over the TERAFLUX
operating system. Its goal is to demonstrate how the operating system executes a massively parallel
application made of dataflow threads over all of the cores in the system.

During execution, the simulation displays the operations performed by the run-time and the user code
in the virtual monitor of each SimNow instance, additionally, the output is logged and can be
examined after execution. Soft-errors can be injected randomly to the results to demonstrate the
Double Execution in action, and complete node failure can be triggered by the user to watch the
recovery mechanism.

Various compile flags control some of the run-time mechanisms (e.g., scheduling algorithm, Double
Execution, etc.), and what type of log messages are seen.

11.2 Location of the involved files
The runtime files and sample application are contained in the following folder:

$COTSONHOME/branches/tflux-test/tfos/

Where COTSONHOME is an environmental variable identifying the path where the COTSon
simulator was checked out with:

$ svn co https://svn.code.sf.net/p/cotson/code/ $CO TSONHOME

11.3 Detailed instructions to start
To run this example first checkout and build COTSon, then go to the tfos-tsuf folder mentioned above:

$ cd $COTSONHOME/branches/tflux-test/tfos/

Now start the simulation by executing:

$ make run_multi

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 70 of 100

After startup, the default simulation view will display general information about the node and list
several commands (e.g., show logs, test node failure, etc.) that can be interactively triggered by the
user with keyboard command on the SimNow window.

Some parameters can be configured similarly to those in TSUF, for example the number of nodes in
the system is specified in os-tests/tsu_multi.lua:
cluster_nodes=4

The number of cores in each node is specified by the bsd file used:

--use_bsd('4p.bsd')
use_bsd('16p.bsd')
--use_bsd('32p.bsd')

To test node crashes it is recommended to have more than 4 cores in each node. Notice that the bsd’s
with large number of cores are not created using the default build configuration, they can be
downloaded from:

https://upload.teraflux.eu/uploads/BSDS/bsds_images _initialized_for_karmc64_1Ghz.tar.gz

Some other parameters are specified in os-tests/Makefile:

OWMSZ=67108864 # Size of the shared region.
SZ=44 # Parameter for the application (e.g. Fibonac ci number).
#NT=32 # Number of TSUF workers. Leave undefined to use the number of cores.

Several parameters are specified as compile time flags. Some flags control the nature of the dataflow
jobs. For example:

#define DOUBLE_EXECUTION
//#define INJECT_CORRUPTIONS

The above macro is used to determine whether to globally enable Double Execution, and whether to
randomly corrupt some of the threads results to see the mechanism in action.

The following macro defines whether to include the actual job binary in the control message or only
its name:

#define SEND_JOB_NAMES

When it’s disabled, each job message is self-contained and allows immediate execution on any node
without access to shared storage (of the precompiled jobs), at the cost of possibly sending the same
binary code many times. Although jobs are usually small (100-200 bytes for Fibonacci) this can be
avoided by sending a small job identifier instead of the binary code, later used to load the job from the
common file system (subsequent requests are loaded from cache).

Simple scheduling algorithms can be chosen with the macros:

// Prefer to schedule on the local node until memor y usage is high, then
// a secondary method is used. If this is not defin ed, the method chosen below is //
immediately used.
#define PREFER_LOCAL
// Define only one of the following:
//#define RANDOM_SCHED_POLICY
#define UNIFORM_DISTRIBUTION_POLICY

Those are very simple but demonstrate how the information gathered from heartbeats can be used to
help load balancing among nodes.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 71 of 100

11.4 Expected output
When launched, node instances will open in SimNow windows and display the simulation progress:

Fig. 31 – Two nodes (two SimNow instances) running on the COTSon simulator.

When the simulation completes, the output of each node can be examined in the stdout log files, the
output of node 1 could be for example:
[[Manager 1] Simulation parameters:

[Manager 1] 16 cores in 4 nodes with 4 cores each.
[Manager 1] 64MB public shared memory, 16MB per no de.
[Manager 1] 4*1MB message queues, leaves 12MB for dynamic allocation.
[Manager 1] Starting service thread, ip 0x4202e0.
[Scheduler 1] Dynamic allocation area rounded from 0x7ffff46f4140 to 0x7ffff46f5000, size 12MB.
[Manager 1] Starting service thread, ip 0x40c360.
[Test] Computing fibonacci(41).
[Scheduler 1] Starting message pump.

[Scheduler 1] Submitting job fib_reporter_job with UFI 10010000000200.
[Node 1 Writer] Sending message type 1, 73 bytes in 2 frames.
[Scheduler 1] Submitting job fib_main_job with UFI 10010000000400.
[Node 1 Writer] Sending message type 1, 77 bytes in 2 frames.
[Scheduler 1] Finalizing 0: Write destination updat ed from VFP 200 to UFI 10010000000400.
[Scheduler 1] Submitting write to node 1, tloc 1001 0000000400.
[Node 1 Writer] Sending message type 6, 24 bytes in 1 frames.

[Scheduler 1] Finalizing 0: Write destination updat ed from VFP 200 to UFI 10010000000400.
[Scheduler 1] Submitting write to node 1, tloc 1001 0000000401.
[Node 1 Writer] Sending message type 6, 24 bytes in 1 frames.
[Scheduler 1] Got job load message for UFI 10010000 000200, binary size 17, frame size 8, sc 1.
[Scheduler 1] Creating new job descriptor for UFI 1 0010000000200 @ 0x7ffff46f5140.
[Job 10010000000200] Creating job from desc 0x7ffff 46f5140, UFI 10010000000200, original sc 1, current sc 1.
[BinariesStore] Adding job binary: fib_reporter_job , 142 bytes.

[Scheduler 1] Got job load message for UFI 10010000 000400, binary size 13, frame size 16 , sc 2.
[Scheduler 1] Creating new job descriptor for UFI 1 0010000000400 @ 0x7ffff46f51e0.
[Job 10010000000400] Creating job from desc 0x7ffff 46f51e0, UFI 10010000000400, original sc 2, current sc 2.
[BinariesStore] Adding job binary: fib_main_job, 61 8 bytes.
[Scheduler 1] Got thread write message, tloc 100100 00000400, value 0x10010000000200.
[Scheduler 1] Got thread write message, tloc 100100 00000401, value 0x29.
[Job 10010000000400] Ready.
[Job 10010000000400] [tid 7fffe3fff700] fib main fo r n=41 - spawning.

[Job 10010000000400] Ended.
...
[Scheduler 1] Got thread write message, tloc 100100 00000200, value 0x9de8d6d.
[Job 10010000000200] Ready.
[Job 10010000000200] [tid 7fffe3fff700] report: fib result = 165580141
[Job 10010000000200] [tid 7fffe3fff700] Exit reques ted.
[Job 10010000000200] Ended.

[Scheduler 1] Sending termination requests...
[Node 1 Writer] Sending message type 7, 8 bytes in 1 frames.
[Node 2 Writer] Sending message type 7, 8 bytes in 1 frames.
[Node 3 Writer] Sending message type 7, 8 bytes in 1 frames.
[Node 4 Writer] Sending message type 7, 8 bytes in 1 frames.
[Node 1->1] Got terminate message.
[Scheduler 1] Exiting.

If a node (node 3 in the example) was killed by user input, the recovery node (node 1 was chosen in
the example) will begin to take over and process the work of the failed node and display:

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 72 of 100

Fig. 32 – Output of the simulation when a node in the system fails.

The log should show:
...

[Watchdog] Node 3 probably died, no heart beat rece ived in the last 189 milliseconds.
[Manager 1] Starting recovery procedure for node 3.
[Manager 1] Starting service thread, ip 0x406d60.
[Recovery Scheduler for 3] Checking shared segment sanity...
[Recovery Scheduler for 3] Job descriptors map in s hared memory has 37 items.
[Recovery Scheduler for 3] Adding new job from desc 0x7ffff65793c0.
[Job 1003000000bc00] Creating job from desc 0x7ffff 65793c0, UFI 1003000000bc00, original sc 2, current sc 0.
[Job 1003000000bc00] Ready.

[Job 1003000000bc00] [tid 7fffe3fff700] fib main fo r n=29 - calculating.
[Recovery Scheduler for 3] Adding new job from desc 0x7ffff65791e0.
[Job 2003000000e600] Creating job from desc 0x7ffff 65791e0, UFI 2003000000e600, original sc 2, current sc 2.
[Recovery Scheduler for 3] Adding new job from desc 0x7ffff6579140.
[Job 30030000000c00] Creating job from desc 0x7ffff 6579140, UFI 30030000000c00, original sc 3, current sc 2.
... <More recovered jobs information> ...
[Recovery Scheduler for 3] Has 46 jobs in local mem ory:

 0 initializing
 35 waiting for inputs
 8 ready
 3 running
 0 finished
 0 total completed
[Recovery Scheduler for 3] Starting message pump.

[Recovery Scheduler for 3] Got job load message for UFI 1003000000c200, binary size 13, frame size 16, sc 2.
[Recovery Scheduler for 3] Creating new job descrip tor for UFI 1003000000c200 @ 0x7ffff657a860.
[Job 1003000000c200] Creating job from desc 0x7ffff 657a860, UFI 1003000000c200, original sc 2, current sc 2.
[Recovery Scheduler for 3] Got thread write message , tloc 2003000000e601, value 0x1e.
... <More recovered messages processing> ...

If Double Execution and random error injections are enabled, an injected soft-error will produce
output similar to the following:

Fig. 33 – Double Execution of dataflow threads, and the corresponding verification output.

This is a simple implementation of Double Execution; each job is executed twice (notice the different
tid on each execution), and the results are not committed to the shared memory until the results of
both threads are ready and compared equal. When an error is injected, the mechanism detects it and
launches the job again on two threads.

11.5 Further references to more in-depths
For more details on the operating system structure and its mechanisms that support the reliable
execution of Data-Flow threads while assuming incoherent shared memory and possibility of node
hard-failures, please refer to deliverable D5.4 Section 4. This information is also contained in the
TFOS.pdf document in the source folder.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 73 of 100

12 Research Use Case from THALES
This section shows a subset of the experiments performed on the applications provided by Thales, to
evaluate the TERAFLUX architecture and associated tools in an industrial context. More details on
these analyses can be found in deliverable D2.4.

THALES provided the following two use-cases: the Radar application and the Pedestrian Detection
application. This document focuses on the later one, the Radar application, providing some easy
instructions for its installation and test.

The Radar application is an airborne radar application embedded in planes to detect the position and
radial speed of another flying target despite the presence of jamming devices. It is based on the Space-
Time Adaptive Processing (STAP) algorithm. This application detailed in D2.1 and D2.3 is
characterized by:

• Real-time constraints expressed in the form of throughput requirements;
• The pure dataflow behavior of a signal processing application;
• But very large data (5th dimensional data) being transferred between each task/filter;
• T necessity to manipulate this data (e.g., rotate, transpose, etc.) for each filter to benefits from

cache locality;

12.1 Goal of the experiment or example
The goals of the experiments are: first, to evaluate the scalability of the proposed architecture and
associated dataflow execution models in the context of real-time applications, selecting one
application that is very dataflow friendly (radar).

Second, to evaluate the ergonomics of the tools and associated dataflow languages, and to evaluate the
cost of porting legacy single-core applications to the TERAFLUX platform, including the
parallelization costs versus the obtained speedups, using the available execution models.

Third, to estimate what are the best parallelization options for porting classification algorithms and
signal-processing algorithms to teradevices. In the case of the Radar application its parallelization is
quite straightforward alongside the dataflow pipeline (more details can be found on D2.4).

12.2 Location of the involved files
 To start, the tsuf version of TSU must be checked out with:
$ svn co https://svn.code.sf.net/p/cotson/code/bran ches/tflux-test/tsuf/ $TSUF_HOME

The Radar benchmark (STAP) can be checked out with:

$ svn co https://svn.code.sf.net/p/teraflux-stap/co de $STAP_HOME

12.3 Detailed instructions to start
 Before using the Radar application the following steps must be followed:

1. Checkout, build and install COTSON;
2. Checkout, build and install the TSUF version of the distributed Thread Scheduling Unit

(TSU);
3. Checkout, build and install the SimNow simulator;
4. Checkout, build and install the TERAFLUX-version of the OpenStream compiler;
5. (Optional) Checkout, build and install the OmpSs compiler (not compatible with the Thread

Scheduling Unit models);

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 74 of 100

A Makefile is included with the application. Simply type make to see all the available options. The
makefile should be updated with the paths of the previously installed software (i.e., COTSon,
SimNow, OpenStream and optionally OmpSs). Below the options that concern the OpenStream with
TSU support version of the Radar application:
$ make <stap-os-cotson|run-os-cotson-small|run-os-c otson-large|run-os-cotson-
huge|run-os-cotson-multi-small|run-os-cotson-multi- large|run-os-cotson-multi-
huge|clean-os-cotson>
$ Build OpenStream version of the application.
$ Run COTSON OpenStream version on small input.
$ Run COTSON OpenStream version on large input.
$ Run COTSON OpenStream version on huge input.
$ Run multi COTSON OpenStream version on small in put.
$ Run multi COTSON OpenStream version on large in put.
$ Run multi COTSON OpenStream version on huge inp ut.
$ Clean files created by the OpenStream applicati on.

To launch a single node TSU execution with the small dataset just launch make run-os-cotson-small.
The -cotson-multi- variations will execute a multiple node TSU simulation. Three different input sets
are provided for evaluation.

The sources provide a $STAP_HOME/resources folder with the TSU configuration files, the default
use machine configurations provided by COTSon, modify them to use larger/smaller configurations.

12.4 Expected output
The Radar application doesn’t provide any visual output. It takes a radar signal and detects moving
objects. When running the TERAFLUX version of the application with the make run-os-cotson-

<small|large|huge> command it generates as output the detected objects in a text file with the
name of the selected input set: <small|large|huge>.txt . The Makefile command run-os-

cotson-<small|large|huge> places the output file in run/<os-cotson> . The user can check
that the result is correct by comparing this output against the output of the sequential single core x86
version that can be run with the make run-seq-<small|large|huge> command that generates its
output file in run/seq folder.

Some speedup results for the Radar application observed with different configurations (4 cores per
node) of the TERAFLUX machine compared to the sequential version are reported in table 2.

Table 2 – Radar application speedup against sequential execution

Dataset
Cores Small Large Huge

4 3.48 3.48 3.48
8 6.22 6.24 6.26
16 10.28 10.41 10.44
32 14.33 14.59 14.63
64 16.96 18.08 17.92

12.5 Further references to more in-depths
More details on the Radar and the Pedestrian Detection applications use-cases can be found in
deliverables D2.1 and D2.2. Some implementation details are provided in deliverable D2.3, whereas
the final evaluation is part of deliverable D2.4.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 75 of 100

13 Research Use Case from UAU
This section shows a simplified experiment to investigate the performance overhead induced by the
fault detection mechanisms developed in TERAFLUX. A more detailed analysis can be found in
Deliverable D5.4.

13.1 Goal of the experiment
The goal of this experiment is to show the performance overhead of pessimistic and optimistic Double
Execution of Fibonacci(31) for one TERAFLUX node with 4 cores. The configuration of the
simulator is similar to the one described in Deliverable D5.4.

13.2 Location of the involved files
To start, the fault-tolerant version of the Thread Scheduling Unit (TSU) must be checked out with:

$ svn co https://svn.code.sf.net/p/cotson/code/bran ches/tflux-test/ft-tsu/ $FT_TSU_HOME

The fault-tolerant version of the TSU (tflux_tsu.cpp), the used cpu timer (timer_uau.cpp), and the
COTSon configuration skeleton (tsu_bench.lua) used for the experiment can all be found in
$FT_TSU_HOME.

The benchmarks are stored in:

$ FT_TSU_HOME/examples

13.3 Detailed instructions to start
Before the experiment can be started, the required dependencies must be installed by:

$ FT_TSU_HOME/configure –-simnow_dir /path/to/simno w

The configure script will perform the following tasks:

1. Checkout and build the COTSon simulator;

2. Build and link all required files in $FT_TSU_HOME;

Afterwards the experiment can be started with:

$ FT_TSU_HOME/run_example –-res_folder /path/to/res ults_folder

Where the res_folder option describes the folder where the results of the experiments will be stored.

13.4 Expected output
After the experiment has finished the execution, the raw output files of the simulator runs can be
found in the res_folder.

Finally, the simulator outputs can be aggregated by a script, which creates an example_results.csv file
in the res_folder:

$ FT_TSU_HOME/build_example_table.sh –-res_folder / path/to/results_folder

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 76 of 100

The following tables show the results extracted from the example_results.csv for regular dataflow
execution (Table 3), pessimistic Double Execution (Table 4), and optimistic Double Execution (Table
5). For a better classification of the example execution, we also present the results for TERAFLUX
nodes with 1, 2, 8, 16, and 32 cores. The results extracted from the example_results.csv are
highlighted in yellow. Based on the execution times, the run-time overhead for pessimistic and
optimistic Double Execution (compared to the baseline regular execution) can be additionally
calculated. Since the objective is to depict the overhead solely induced by Double Execution, the
overhead has been normalized to the regular execution time using half of the cores.

Table 3 – Node Utilization and Execution Time of the Baseline Dataflow Execution

Cores Node Utilization
[%]

Execution Time
[ns]

1 99.9 34,762,104
2 99.9 17,769,355
4 99.7 9,209,017
8 98.4 4,864,722
16 96.7 2,550,796

Table 4 – Node Utilization and Execution Time of Pessimistic Double Execution

Cores Node
Utilization[%]

Execution
Time[ns]

Runtime
Overhead [%]

2 99.2 35,751,164 2.8
4 99.0 18,741,358 5.4
8 99.2 9,680,112 5.1
16 98.3 5,080,112 4.4
32 94.1 2,921,200 14.5

Table 5 – Node Utilization and Execution Time of Optimistic Double Execution

Cores Node Utilization
[%]

Execution Time
[ns]

Runtime
Overhead [%]

2 99.7 35,611,170 2.4
4 99.5 18,358,568 3.3
8 99.7 9,500,460 3.1
16 98.4 4,996,302 2.7
32 97.0 2,723,690 6.7

13.5 Further references to more in-depths
Please refer to Deliverable D5.4 for a deeper analysis of the fault tolerance mechanisms in
TERAFLUX.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 77 of 100

14 Research Use Case from UCY
In this document the steps followed to integrate the DDM-Style TSU in the COTSon/SimNow
simulation framework are described. The integration allows using the features of the TSU from a
client code without having the TSU executing at user level. The DDM-style TSU has been integrated
into COTSon by using as template the TSU version 2 developed in the project – namely TSU2 (it
integrates also a simplified timing model), and the TSU++ implementation for DDM-style execution.
The TSU2 operates as an intermediate API to provide communication between the user application
and the simulator. A single queue has been used to store threads that are ready for execution and a
FIFO policy for scheduling. The TSU does not operate in busy-wait mode but instead it is performing
event-driven execution, which seems to make simulation faster.

14.1 Goal of the experiment or example
The goal of the experiment is to show the execution of a given benchmark application (i.e., in this
case the Cholesky decomposition application) upon the TSU++ implementation for the TERAFLUX
architecture using the DDM-style execution model.

The Data-Driven Multithreading Virtual Machine (DDM-VM) is a virtual machine that supports
DDM execution on homogeneous and heterogeneous multicore systems. The DDM-VM is composed
of:

• Thread Scheduling Unit (TSU), which is implemented as a software module executing on one
of the cores. Such TSU model is written in C language;

• Run-time support system that (with the help of the TSU) handles the tasks of thread
scheduling, execution instantiation and data management implicitly on the rest of the cores;

The TSU++ is a software implementation of the DDM-VM’s TSU that is written in C++ language. It
allows a programmer to write parallel data-driven programs using the object oriented styling. A
program is described as a graph of tasks and dependencies between those tasks. The TSU++ also
supports distributed execution on independent multi-core systems/nodes. For this functionality, a
Network Interface Unit (NIU) is implemented as a software module that is executing on the same core
as the TSU, as well as a Shared Global Address Space (S-GAS) is supported across all the nodes in
the system to facilitate data movement.

Differences over DDM-VM’s TSU
• The TSU++ it consists of C++ classes which have a well-defined purpose and are easy to test;
• Tasks are defined as functions; hence, there is no need for “goto” statements;
• The development of DDM programs is easier since there is no need to program using macros.

All the programmer’s TSU communication needs are accessible via a TSU object.
The TSU++ is supported also on Windows OS.

14.2 Location of the involved files
The directory containing all the involved files is located at:
$COTSONHOME/code/branches/timing-unisi/tsu.ddm

The directory containing the source code of the TSU++ implementation is located at:
$COTSONHOME/code/branches/timing-unisi/tsu.ddm/TSU

The directory containing the applications that can be run on COTSon is located at:
$COTSONHOME/code/branches/timing-unisi/tsu.ddm/App

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 78 of 100

14.3 Detailed instructions to start
The steps for integrating the TSU++ implementation of DDM-Style based on TSU2 are the following:

� Download COTSon and SimNow
o Download COTSon from COTSon Repository by typing in the shell:
 svn co https://svn.code.sf.net/p/cotson/code/ $COTSONHOME

 For Example: svn co https://svn.code.sf.net/p/cotson/code/ cotson
o Download SimNow Simulator from:

http://developer.amd.com/tools-and-sdks/cpu-development/simnow-simulator/
o Uncompressed the SimNow file

� Configure and Install Cotson With TSU++
o cd $COTSONHOME/branches/timing-unisi/trunk
o sudo sysctl -w vm.max_map_count=4194304 (every time the system restarts)
o sudo apt-get install ruby1.8 ruby1.9.1
o sudo ./configure --simnow_dir <the file where the SimNow is located>

 For Example: sudo ./configure --simnow_dir ../../../../simnow-linux64-4.6.2pub/
o sudo mount -o remount,size=8G /dev/shm (set the size of your RAM. Here it's 8GB)
o cd $COTSONHOME/branches/timing-unisi/; sudo make build
o Download the DDM file (tsu.ddm) from this URL:

https://www8.cs.ucy.ac.cy/projects/ddmgroup/wp/teraflux/cotson/
o Extract the file. You should have a folder named tsu.ddm
o Move the tsu.ddm folder into this path: $COTSONHOME/branches/timing-unisi/
o cd $COTSONHOME/branches/timing-unisi/tsu.ddm and execute:

� make clean; make

� Executing DDM applications
o Go to $COTSONHOME/branches/timing-unisi/tsu.ddm
o Modify the script.bash file

The script.bash file contains the appropriate script code to execute the TSU’s executable.
Below is the content of the script.bash file. The command of the first line is responsible for
transferring the executable (TSUClient) in the simulator. The command of the second line
changes the permissions of the executable, i.e., it gives execution permissions to the current
user. Finally, the command of the third line executes the DDM application in the simulator. The
TSUClient takes the following arguments:

• Program Id: it indicates the benchmark that the user wants to execute. For example, 0 corresponds to matrix multiply and
1 corresponds to Cholesky decomposition;

• Cores: represents the number of cores;
• AQ Threshold: it determines how many tasks will be given to the least loaded worker before checking for the next worker

with the minimum load. The default is 5;
• Matrix Size: is the size of the matrix to be used (valid only for specific benchmarks);

• Block Size: another parameter considered only in specific benchmarks;
• Iterations: it represents the number of times the user wants to execute the application (this argument is optional);

o make run

$ xget $COTSONHOME/branches/timing-unisi/tsu.ddm/TS UClient ./TSUClient
$ chmod +x ./TSUClient
$./TSUClient 1 4 5 1024 32

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 79 of 100

14.4 Expected output
For the purpose of evaluation, the Cholesky decomposition application (which is one of the most
complex applications available at the moment) has been chosen. Fig. 34 shows a screenshot for the
execution of TSU++ on the COTSon simulator. The output timings are shown on the right.

Fig. 34 - Executing TSU++ on COTSon.

The output is stored in the node.1.stdout.log file. It should display a content similar to the following:

14.5 Further references to more in-depths
Further information and details about the TSU++ code is available in the deliverable D6.4.

Worker 0: stack 0xa2f000 16384
Worker 1: stack 0xa34000 16384
Worker 2: stack 0xa39000 16384
Worker 3: stack 0xa3e000 16384
Program: Cholesky decomposition, Cores 4, AQ threshold: 2, Matrix Size: 2048, BlockSize: 32
Deallocate worker frame at 0xa2f000
Deallocate worker frame at 0xa34000
Deallocate worker frame at 0xa39000
Deallocate worker frame at 0xa3e000
All workers done, goodbye
Speedup: 3.480233
Serial time: 24.089845
Parallel time: 6.921906

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 80 of 100

15 Research Use Case from UD
The Delaware Adaptive Run-Time System (DARTS) is a software implementation of the Codelet
Model proposed by Zuckerman et al. [4], and presented in D9.1 and D9.2. It was written with two
main objectives in mind: (1) to be a faithful implementation of the Codelet Model, and (2) to be
modular, so that further research to explore fine-grain event-driven program execution models could
be performed.

DARTS relies on the hwloc library [1] to map the topology of the underlying hardware to the Codelet
abstract machine model required to specify how many synchronization units (similar to DF-Threads'
thread scheduling units) and compute units (or cores) there should be, and how they should be
physically grouped. It also relies on the lock-free data structures provided by Intel Threading Building
Blocks [3] if they are present on the system for efficient work queuing.

Further details about the implementation of DARTS on the generic X86 architecture can be found in
the Euro-Par publication [2] and in D9.3. A detailed explanation of the port of DARTS to the
TERAFLUX simulation infrastructure, including a discussion of the necessary trade-offs, is also
available in D9.3.

15.1 Goal of the experiment or example
This example demonstrates how to build and run examples that come with the port of DARTS on
COTSon simulation infrastructure. In the following it will be demonstrated how to first build DARTS,
then run the experiments. The focus will be on the merge sort example, however all the other
experiments can be built using a similar methodology.

15.2 Location of the involved files
The archive for DARTS-TSUF can be found at:

$COTSON_ROOT/branches/ud-darts/darts-tsuf

The directory containing scripts to run the recursive Fibonacci sequence computation, Matrix
Multiplication, and Merge Sort examples is located at:

$COTSON_ROOT/branches/ud-darts/scripts

15.3 Detailed instructions to start
The Merge Sort example can be run by typing the following commands. In the following, it is
considered that the COTSon repository is located in the path pointed by the variable $COTSON. The
directory where to install and run the experiments is pointed by the variable
$PATH_TO_EXPERIMENTS (note that the two variables can be defined by the user).

• Building DARTS-TSUF. After having checked the COTSon's files out, do:

$ cd $PATH_TO_EXPERIMENTS/
$ mkdir $PATH_TO_EXPERIMENTS/darts-build
$ cd $PATH_TO_EXPERIMENTS/darts-build
$ cmake $COTSON_ROOT/branches/ud-darts/darts-tsuf
$ make

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 81 of 100

• Running the DARTS-TSUF merge-sort example. First, copy the scripts from the script folder
as follows:

$ mkdir $PATH_TO_EXPERIMENTS/scripts
$ cd $PATH_TO_EXPERIMENTS/scripts
$ cp $COTSON_ROOT/branches/ud-darts/scripts/* .

Configure the config.lua script so that it points to the right tflux_tsu.so library, as well as the right
script to run (in this example, msort.sh). Then edit msort.sh's variables:

$ export OUTPUT_PATH=$PATH_TO_EXPERIMENTS
$ export DARTS_PATH=$PATH_TO_EXPERIMENTS/darts-buil d
$ export COTSON_PATH=$COTSON_ROOT/trunk/bin
$./launch.sh

15.4 Expected output
The output is stored in the results.txt file. It should display a content similar to the following:

DF owm 0x7ffff7674000 10000000
Creating 1 workers for 1 cores
Starting workers
Starting master node 1 nodes 1 workers 1
mergesort(500)
Done
Time:2.39678e+08 ns
Deallocate OWM at 0x7ffff7674000
All workers done, goodbye
=== ======
==================== DF STATS ================ ======
df time: 240736779 ns (240.737 ms)
core 0: 23360631 insts 240736779 xc 0 ic, 240736779 cycles

The number of elements to be sorted is displayed (the example tries to merge 500 random numbers).
If the simulation went through, the “Done” message is displayed, followed (on the next line) by the
amount of in-simulation nanoseconds it took to run the experiment.

15.5 Further references to more in-depths
More details about the DARTS run-time and the Codelet model can be found in the deliverables D9.1,
D9.2, and D9.3. Deliverable D9.3 also explain the process of porting the run-time on an x86-based
TERAFLUX architecture.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 82 of 100

16 Research Use Case from UNIMAN
Our main goal is the design and implementation of Transactional memory (TM) system in the
COTSon simulator. We have developed TM system that supports lazy and eager version management
and conflict detection mechanism. The TM models have been extended and a scalable TM system has
been developed. The scalable system is a purely lazy implementation but the commit process takes
advantage of a hierarchical organization of cores into nodes. The committed changes are broadcasted
within the node but outside the node the invalidations are sent only to the nodes that were actually
sharing the committed data. In order to implement the scalable TM system we have used directory
based cache coherence protocol as a starting point for our baseline version.

In the following subsections, we will be explaining in detail of how to run our TM models in the
COTSon simulator along with the directory based protocols on which our scalable TM version is
based on.

16.1 Goal of the experiment or example
The main goal of the experiment is to show how to run different benchmarks on the TM system
developed in COTSon. We will show how to run applications on scalable directory based simulator as
well as the TM system implemented on top of the directory infrastructure. We will also be giving
detailed description of running dataflow benchmarks with transactions running on the simulator. We
will be showing how the TM model works along with the TSU to run dataflow plus transactional
memory benchmarks.

16.2 Location of the involved files
The complete TM infrastructure is present in the following two locations.

$COTSONHOME/branches/tm-uniman

And
$COTSONHOME/branches/tflux-test/tsuf

First is the cache coherent NUMA architecture. The code for this directory based coherent
architecture is present in:
$COTSONHOME/branches/tm-uniman/trunk/src

The configuration files for the scalable system are present in:
$COTSONHOME/branches/tm-uniman/trunk/src/example/un iman/cc_numa_tracer

The code for the TM system developed at uniman is present in
$COTSONHOME/branches/tm-uniman/trunk/src

And the configuration files are in
$COTSONHOME/branches/tm-uniman/trunk/src/example/un iman/tm_tracer

The code for the scalable TM system is present in
$COTSONHOME/branches/tm-uniman/trunk/src

And the configuration files are in
$COTSONHOME/branches/tm-uniman/trunk/src/example/un iman/tm_tracer_scalable

Finally the configuration files to run TM system along with the TSU to run dataflow plus
transactional benchmarks are present in
$COTSONHOME/branches/tflux-test/tsuf/test

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 83 of 100

We will be looking at all these files and give example of running simple benchmarks on all these
configurations in order to help the user in using our TM infrastructure for further experimentation.

16.3 Detailed instructions to start
The first step is to check out the full COTSon repository (including branches) and set $COTSONHOME:

Next the user has to compile the main trunk and also the ‘branches/tm-uniman/trunk’:

if the configure terminate successfully than just type:

Again for “branches/tm-uniman/trunk”:

Running benchmarks on Scalable ccNUMA architecture
In order to run scalable directory based ccNUMA architecture we need to configure the COTSon
simulator:

$ cd $COTSONHOME/branches/tm-uniman/trunk/src/examp les/uniman/cc_numa_tracer

The main file that configures the system is cotson_tracer.in. Fig. 35, shows the snapshot of that
configuration file.

Fig. 35 – Configuring ccNUMA architecture in COTSon.

The configuration file sets up the number of nodes in the system totalNumOfNodes as well as total
number of cores in each node. It also sets up the directory structure and the protocol being used to
implement coherency.

$ svn co https://svn.code.sf.net/p/cotson/code cots on
$ export COTSONHOME=<installation_dir>/cotson

$ cd $COTSONHOME/trunk

$./configure –simnow_dir <path_to_simnow_installat ion>

$ make

$ cd $COTSONHOME/branches/tm-uniman/trunk

$./configure –simnow_dir <path_to_simnow_installat ion>
$ make

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 84 of 100

In the same directory there is the file run.sh, which contains paths of all the benchmarks that need to
run on the simulator (in the examples directory there are several benchmarks, in this case the default
is Micro-Benchmarks/microtest). In order to run benchmarks the user just needs to type make. The
result containing all the execution statistics is saved in the log file after the simulation exits
successfully, in the same directory.

Running benchmarks on TM architecture

Configuration files for TM architecture are reached by issuing:

$ cd $COTSONHOME/branches/tm-uniman/trunk/src/examp les/uniman/tm_tracer

cotson_tracer.in file configures the simulator to run TM benchmarks. Fig. 36 shows the screenshot of
that configuration file.

Fig. 36 – Configuring TM architecture in COTSon.

As shown in the figure, the configuration file sets up the TM protocol. It configures the network and
the caches used in implementing TM protocol. The caches are modified to contain extra information
for saving and committing transactional data.

In the same directory there is the file run.sh, which contains paths of all the benchmarks that need to
run on the simulator (in this case, the path to vacation binary). In order to run benchmark the user just
needs to type make. The result containing all the statistics of the execution is saved in the log file after
the simulation exits successfully, in the same directory.

Running benchmarks on Scalable TM System

Scalable TM system builds on top of directory based protocols. The configuration files to implement
the scalable TM system are reached by issuing:

$ cd $COTSONHOME/branches/tm-uniman/trunk/src/examp les/uniman/tm_tracer_scalable

cotson_tracer.in file configures the simulator to run TM benchmarks. Fig. 37 shows the screenshot of
the configuration file.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 85 of 100

As shown in the figure, the configuration file sets up the scalable TM protocol. It configures the
network, the caches and the directories used in implementing TM protocol. The caches and the
directories are modified to contain extra information for saving and committing transactional data and
implementing the TM protocol. Directories are configured to implement the TM protocol rather than
conventional coherence protocol.
To run the benchmark (Micro-Benchmarks/microtest in this case) the user has to do a make. The file
run.sh contains paths of all the benchmarks and the log file contains all the stats of the execution.

Fig. 37 – Configuring TM architecture in COTSon.

Running dataflow plus TM benchmark in COTSon using TSU and TM hardware

This section explains how to set up the simulator so that it has both the TSU and TM hardware
working together to run applications that have dataflow and transaction properties.
In order to run dataflow and transaction benchmarks, the COTSon simulator needs to implement the
TSU hardware as well as TM hardware so that both aspects of the applications can be handled in
hardware for greater efficiency.
The configuration files to set up TM mechanism along with TSU hardware are reached by issuing:

$ cd $COTSONHOME/branches/tflux-test/tsuf
$ make
$ cd $COTSONHOME/branches/tflux-test/tsuf/test
$ make run_htm_single (or make run_htm_multi)

There are two configuration files tsu_tm_single.lua and tsu_tm_multi.lua to run single node and multi
node simulation respectively. The user has to do a make run_htm_single or make run_htm_multi. The
snapshot of the make file in shown in Fig. 38.

As shown in the figure, the makefile sets up TM running on single and multi-node with the TSU
hardware. The tsu_tm_single.lua and tsu_tm_multi.lua files configure the network, the caches and the
directories used in implementing TM protocol.

To run the benchmark the user has to do a make. HTMTESTS variable in the makefile contains the
list of the benchmarks to run. The log file contains all the stats after the execution exits successfully.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 86 of 100

Fig. 38 – Makefile to setup TM and TSU hardware for single and multimode simulation.

16.4 Expected output
This section explains some of the output files that are generated when the execution successfully
exits. We will also be showing some screen shots to show the execution in progress and the output
that should be expected when running the benchmarks.

Running benchmark on Scalable ccNUMA architecture

Fig. 39 shows the devices when running ccNUMA COTSon simulation. The cotson_tracer.in sets up
the number of cores in the system as shown in Fig. 40. In this example the number of cores is 4,
which is reflected in Fig. 39. The log file is generated when the execution successfully exits. Fig.
41shows the snapshot of the log file, which is generated when the matrix multiplication example
finished execution. The log file shows the cache stats of the simulation running with 4 cores.

Fig. 39 – Device window while running COTSon simulation

Fig. 40 – cotson_tracer.in configuration file setting up the number of cores in the simulated machine

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 87 of 100

Fig. 41 – Log file showing icache statistics for the cpu 0.

Running benchmarks on TM architecture

Fig. 42 shows the COTSon simulation running vacation transactional memory benchmark. As you can
see in the figure the number of commits and aborts are printed in the console.

Fig. 42 – COTSon graphical main window and the console output.

The output of the benchmark is printed on the COTSon main graphical window. Finally the
simulation stats are written to the log file that is created in the same folder where the configuration
files are present.

Running benchmarks on Scalable TM architecture
Fig. 43 shows COTSon simulation running Genome benchmark. The figure shows how the scalable
TM system is configured containing many nodes, distributed memory structure and a shared L3 cache
within each node.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 88 of 100

Fig. 43 – Configuring the scalable TM architecture in COTSon.

This configuration is setup in the cotson_tracer.lua configuration file. The structure of the system can
be changed by making modifications in the lua file. The user can increase or decrease the number of
cores within a node. The levels of cache hierarchy, the directory and network structure can also be
configured. The log file is created when the simulation exits successfully.

Fig. 44 – COTSon simulation setting up and running TM and TSU hardware.

Running dataflow plus TM benchmark in COTSon using TSU and TM hardware
The final experiment we will show in this report is how to run TM hardware along with the TSU
hardware for benchmarks that have transactions and dataflow properties. Fig. 44 shows the COTSon
simulation configuring and then running a simple micro benchmark using the TM and TSU hardware.
The dataflow instructions are handled by the TSU hardware and the transactional memory instructions
are handled by the TM hardware. The log file is created at the end, with all the simulation statistics.

16.5 Further references to more in-depths
Refer to previous deliverables (D7.4, D7.3, D7.2 and D7.1) for more details about the TM models and
their integration with the common simulation platform.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 89 of 100

17 Research Use Case from UNISI
One of the main building blocks of the TERAFLUX project is the implementation of the Thread
Scheduling Unit (TSU) model, running in the COTSon simulation platform. As result of the research
activity, several versions of the TSU model has been implemented and made available to the other
partners. The two most stable versions at the current moment are the TSUF and the TSU4. Both of
them allow the execution of dataflow benchmark kernels (such as the recursive Fibonacci, and Matrix
Multiplication) both on a single node simulated system, and a multi-node simulated system. The
purpose of the TSU model is the scheduling of dataflow threads (namely DF-Threads) among the
available cores, as expected from the hardware counterpart.

17.1 Goal of the experiment or example
The main goal of the experiment is to show how to run a dataflow benchmark application using the
TSU model developed within the COTSon simulator. To this end, the following subsections describe
how to run a simple test using the TSU4 model (for the TSUF implementation, refers to the chapter 9,
sections from 9.1 to 9.5). The experiment allows the user to understand how the scheduling unit
model has been integrated in the simulation platform, and which information it provides to the user.

17.2 Location of the involved files
The scheduling unit model is distributed in a dedicated directory contained in the branches folder:
$COTSONROOT/branches/timing-unisi/tsu4

17.3 Detailed instructions to start
As an example, detailed instructions to run the recursive Fibonacci benchmark kernel on the TSU4
model of the thread scheduling unit will be provided. This benchmark is used to stress the thread
scheduling unit since it is able to generate a huge number of DF-Threads even for a small size of the
input. In order to run the example, move on the correct folder:
$ cd $COTSONROOT/branches/timing-unisi/tsu4

Open the Makefile file with a text editor and check that the first line is correctly pointing the source
folder in the trunk COTSon folder. Then, in the same file set the variable TESTS to fib, in order to run
the selected benchmark:
$ vim Makefile

ROOT=../../../trunk/src
DATE=$(shell date +%s)
PWD=$(shell pwd)
MCAST=$(shell expr 1 + $(DATE) % 250)
DEBUG=1
TESTS = fib

all: tsu_monitor.o tsu_manager.o tflux_tsu.so tsumo n $(TESTS)
...

Open the run_script.sh file with a text editor. In the opened file set the variable TESTS to fib, in order
to run the selected benchmark. In order to properly set the configuration of the simulated system (i.e.,
size of the input of the benchmark, number of cores, etc.), the following variables must be checked:
NUM_NODE defines the number of nodes composing the system, CORES defines the number of
cores in each node, SZ and MT_SIZE define the input size for the used benchmark (SZ refers to the
Fibonacci kernel, while MT_SIZE refers to the Matrix Multiplication kernel). In this example the
Fibonacci kernel with 14 as the input size is run. SH_MEM variable defines the name of the object in
the host system used to implement the shared memory across the nodes. Finally, OUTPUT variable
point to the folder where the simulation output will be recorded (set also TSU_STATS, SCRIPT, and
REPORT_DIR variables).

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 90 of 100

$ vim run_script.sh

!/bin/bash

number of nodes
NUM_NODE=1
benchmarks
TESTS="fib"
number of cores per node
CORES=4
TTCORES=$(($CORES*$NUM_NODE))
#for fibonacci
SZ=14
#for matrix multiply
MT_SIZE=512 # matrix size
#shared memory name (unique for each simulation)
SH_MEM="DTHREADSharedMemory"

if [[$SH_MEM]]; then
 export DTHREAD_OBJ=$SH_MEM"1"
 export DTHREAD_READY_OBJ=$SH_MEM"2"
 export DTSU_SYNC_OBJ=$SH_MEM"3"
fi

BIN_BENCH_DIR=$PWD

if [-z $OUTPUT] ; then OUTPUT=./S-LOG ; fi

SCRIPT="$OUTPUT/script"
TSU_STATS="$OUTPUT/stats"
FILE_LAST_LOG="file_last"
REPORT_DIR="$OUTPUT/report"
...

The Lua configuration file is set to run a timing simulation (sampler object is set to simple) of the
target system:

$ vim tsu.lua

abaeterno_so="tflux_tsu.so"
wd=os.getenv("PWD")

tmpdir=wd
runid="tsu"
-- clean_sandbox=false

options = {
 --max_nanos='3G',
 exit_trigger='terminate',
 -- sampler={type="no_timing", quantum="10M" },
 sampler={type="simple", quantum="10M"},
 heartbeat={ type="file_last", logfile=runid ..".log" },
 custom_asm=true,
 tsu_ignore_errors=true,
 -- tsu_speculative_threads=true,
 -- tsu_statfile="/tmp/xx.dat",
}

one_node_script="run_interactive"
-- display=os.getenv("DISPLAY")
copy_files_prefix=runid.."."
-- clean_sandbox=false

simnow.commands=function()
 -- use_bsd('32p.bsd')
 use_bsd('4p.bsd')
 -- use_bsd(BSDS)
 use_hdd('karmic64.img')
 --use_hdd('debian.img')
 set_journal()
 send_keyboard('xget '..SCRIPT..' script')
 send_keyboard('sh -x script | tee LOG 2>&1')
end

function build()
 i=0
...

At this point is possible to launch the simulation. To this end, the reader needs to open two console
windows. In the first console (after moving in the $COTSON-ROOT/branches/timing-unisi/tsu4) the

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 91 of 100

reader launches the external monitor (i.e., the object that is used to manage the shared memory across
the nodes)
$ make run_tsumon

Once the monitor is running, the following output should be presented:
$Booting TSU Monitor ...
$Start TSU Monitor
$TSU Monitor is configured with 1 nodes
$TSU Monitor is initializing shared memory (DTHREAD SharedMemory1) $....
$TSU Monitor is initializing ready shared memory (D THREADSharedMemory2)
$TSU Monitor is initializing sync shared memory (DT HREADSharedMemory3)
$TSU message queue m2n(DTHREADSharedMemory1mq_mon2n ode0) for node(0) is initializing....
$TSU message queue n2m(DTHREADSharedMemory1mq_node2 mon0) for node(0) is initializing....
$Initialization for shared memory finished!

Finally, on the second console the user launches the benchmark execution as follows:
$ make run

17.4 Expected output
The following files are involved in the output process. The file node.1.tsu.log contains the statistics
gathered by COTSon during the simulation:
Input values:
cpu0.bpred_perfect false
cpu0.branch_mispred_penalty 8
cpu0.commit_cpi 1.0
cpu0.dcache.fudge 1.0
cpu0.icache.fudge 1.0
cpu0.twolev.hlength 14
cpu0.twolev.l1_size 1
cpu0.twolev.l2_size 16kB
cpu0.twolev.use_xor 1
cpu0.type timer0
cpu1.bpred_perfect false
cpu1.branch_mispred_penalty 8
cpu1.commit_cpi 1.0
cpu1.dcache.fudge 1.0
cpu1.icache.fudge 1.0
cpu1.twolev.hlength 14
cpu1.twolev.l1_size 1
cpu1.twolev.l2_size 16kB
...
Output values:
cpu0.cycles 149999985
cpu0.haltcount 108195301
cpu0.hb_ATC_flush 67
cpu0.hb_CR3_different 36
cpu0.hb_CR3_equal 31
cpu0.hb_ev_Exception 692
cpu0.hb_ev_HW_interrupt 219
cpu0.hb_ev_SW_interrupt 0
cpu0.idlecount 112802301
cpu0.instcount 24655697
cpu0.invalid_translation_bytes 1936557
cpu0.iocount 4069258
cpu0.metadata_bytes 10468840
cpu0.other_exceptions 210511
cpu0.plain_invalidations 2988
cpu0.range_invalidations 32
cpu0.read_mmios 368
cpu0.read_pios 1062
cpu0.segv_exceptions 0
cpu0.timer.cycles 37823009
cpu0.timer.instructions 24147071
cpu0.timer.twolev.lookup 2048709
cpu0.timer.twolev.misses 83286
cpu0.timer.twolev.reset 0
cpu0.timer.twolev.update 2048709
cpu0.trace_cache_size 0
cpu0.valid_translation_bytes 90649248
cpu0.write_mmios 564
cpu0.write_pios 4169
cpu1.cycles 149999985
cpu1.haltcount 121463351
cpu1.hb_ATC_flush 24
cpu1.hb_CR3_different 1
cpu1.hb_CR3_equal 23
cpu1.hb_ev_Exception 504
cpu1.hb_ev_HW_interrupt 30
cpu1.hb_ev_SW_interrupt 0
cpu1.idlecount 121840334
...

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 92 of 100

The file terminal_fib_0_4 (enter in the subfolder S-LOG – see the Makefile configuration in the
previous subsection) contains the output generated by the benchmark and the simulator during the
simulation:
Loading module abaeterno.so.
Using image path: "/home/scionti/Tools/cotson-relea se/trunk/data"
Known Device: Deerhound RevB QuadCore Socket L1
Known Device: Intel(R) Pro/1000 MT/PT Desktop Netwo rk Adapter
Known Device: USB JumpDrive
Known Device: AMD-8111 I/O Hub
Known Device: AMD-8131 PCI-X Controller
Known Device: AMD-8132 PCI-X Controller
Known Device: AMD-8151 AGP Tunnel
Known Device: Debugger
...

1 exec> open /home/scionti/Tools/cotson-release/tru nk/data/4p.bsd
Opening "/home/scionti/Tools/cotson-release/trunk/d ata/4p.bsd"
created device Machine
Instructions per Microsecond: 3000
CPU Model Name: Opteron
System Bus Frequency: 100
CPU Clock Mul: 4
Turbo_Port61: 0
Turbo_Vsync: 0
Guard Memory Required: TRUE
CPU Manages Cycles: TRUE
Disk Block Cache Size: 64K
Disk Block Cache Depth: 5
Disk Block Cache Bits: 12
info: creating device #0 "AMD 8th Generation Integr ated Northbridge"
info: creating device #1 "Dimm Bank"
info: creating device #2 "AMD-8111 I/O Hub"
ATA: Image [/home/scionti/Tools/cotson-release/trun k/data/karmic64.img] does not have an ID field.
info: creating device #3 "Memory Device"
info: creating device #4 "Winbond W83627HF SIO"
...
BSD Load completed!

1 exec> ide:0.image master /home/scionti/Tools/cots on-release/trunk/data/karmic64.img
ATA: Image [/home/scionti/Tools/cotson-release/trun k/data/karmic64.img] does not have an ID field.
MASTER drive Image file is now /home/scionti/Tools/ cotson-release/trunk/data/karmic64.img

1 exec> ide:0.journal master on
Journaling was already enabled

1 exec> keyboard.key 2D AD

1 exec> keyboard.key 22 A2

1 exec> keyboard.key 12 92

1 exec> keyboard.key 14 94

1 exec> keyboard.key 39 B9

1 exec> keyboard.key 34 B4

1 exec> keyboard.key 35 B5
...
1 exec> go
TIME=3.33333 ms IPC (0.993879 0.707539 1 1)
TIME=6.66667 ms IPC (0.991326 0.98112 1 1)
TIME=10 ms IPC (1 1 1 1)
TIME=13.3333 ms IPC (0.958046 0.8369 1 0.814146)
TIME=16.6667 ms IPC (0.99788 1 1 0.99697)
TIME=20 ms IPC (0.968307 0.966541 1 0.995992)
TIME=23.3333 ms IPC (0.774968 0.774076 1 0.982427)
TIME=26.6667 ms IPC (0.995373 1 1 0.965398)
TIME=30 ms IPC (1 1 1 1)
TIME=33.3333 ms IPC (0.998995 0.999206 1 1)
TIME=36.6667 ms IPC (1 1 1 0.99992)
TIME=40 ms IPC (1 1 1 1)
TIME=43.3333 ms IPC (0.99907 0.999325 1 1)
TIME=46.6667 ms IPC (1 1 1 0.999914)
TIME=50 ms IPC (1 1 1 1)
TIME=53.3333 ms IPC (0.999072 0.999391 1 1)
TIME=56.6667 ms IPC (1 1 1 0.99992)
TIME=60 ms IPC (1 1 1 1)
TIME=63.3333 ms IPC (0.998833 0.999323 1 1)
TIME=66.6667 ms IPC (1 1 1 1)
TIME=70 ms IPC (1 1 1 1)
TIME=73.3333 ms IPC (0.998844 0.998883 1 1)
TIME=76.6667 ms IPC (1 1 1 1)
TIME=80 ms IPC (1 1 1 1)
TIME=83.3333 ms IPC (0.998409 0.999379 1 1)
TIME=86.6667 ms IPC (1 1 1 1)
TIME=90 ms IPC (1 1 1 1)
TIME=93.3333 ms IPC (0.998437 0.999356 1 1)
TIME=96.6667 ms IPC (1 1 1 1)
TIME=100 ms IPC (1 1 1 1)
TIME=103.333 ms IPC (0.998433 0.999404 1 1)
TIME=106.667 ms IPC (1 1 1 1)
TIME=110 ms IPC (1 1 1 1)
...

17.5 Further references to more in-depths
Refer to previous deliverables (D7.4, D7.3, D7.2 and D7.1) for more details about the TSU models
and their integration with the common simulation platform.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 93 of 100

18 DRT - A tool for native testing of T* based pro grams
DARTS is not the only research effort for providing an efficient way to execute application on large
computing systems. Looking towards building exascale systems (e.g., next generation
supercomputers, large data-centers, etc.), the OCR project (Open Community Run-time Framework
for Exascale Systems [5]) has been set up by Intel and other academic and industrial partners. The
main objective of the OCR project is the implementation from the scratch (but reusing as much as
possible current design aspects of run-time systems) of a software level, which is able to help meeting
the requests of future exascale systems (i.e., high performance, low power consumption, use of
different programming models and languages, etc.). This piece of software should provide a clear and
common interface for both the upper side software modules, and the hardware infrastructure.

On the same direction, but with different goals in mind, the TERAFLUX project proposed the
Dataflow Run-Time – DRT. In particular, with the aim of facilitating the development and debugging
of dataflow-oriented applications using the T* ISA extension, within the TERAFLUX project, a run-
time library (DRT) has been devised. DRT is a piece of agile software that helps in providing very
efficient environment to run programs with a dataflow execution model. It is organized as a library.
The library is intended to be linked with the application source code, allowing the execution of the
application directly on the host system. More specifically, the run-time exposes the same interface of
the library used within the simulator to execute dataflow applications. The library contains functions
that wrap T* instructions. Similarly, the DRT contains functions that reproduce the same functional
behavior of their T* equivalent (cf. deliverables D7.1, D7.2, and D7.3 to deeply analyze the T*
Instruction Set Extension). The run-time Application Programming Interface (API) has been designed
to provide a two-way mechanism in which it supports the development of an efficient compiler and on
another side, to provide for a good architectural support.

In the proposed approach, the DRT allows showing how easily can be to harness the maximum
capacity of the computing nodes in the TERAFLUX project using the dataflow execution model. The
main objective to provide this piece of software is to show users that DRT can easily provide a very
small and powerful run-time, for executing different piece of codes that are coded in different
programming model, but how easily can be executed in a dataflow style.

18.1 Goal of the experiment
DRT provides a simple script file for the “first time” whole checking. Currently, some initial
examples have been tested, from simple (like the classical recursive Fibonacci sequence computation
and matrix multiplication). DRT contains some environment variables that help the user to retrieve
more information during the dataflow application execution. Two of them are: DRT_DEBUG and
DRT_FSIZE. DRT_DEBUG can be used to get more detailed information about the current
execution. DRT_FSIZE is used to set the size of internal frame (allocated memory) queue.

18.2 Location of the involved files
The source code is uploaded for public access in following repository. The repository is available at:

http://sourceforge.net/projects/drt

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 94 of 100

18.3 Detailed instructions to start
In this section, it will be shown one sample example, and how to download and compile DRT in a
Linux-based system.

Step 1: the user needs to download the code from the repository. User can access the source code
from its Linux terminal executing the svn command. In the terminal just type:
$ svn checkout svn://svn.code.sf.net/p/drt/code/ dr t-code
$ cd drt-code

Pressing the enter key will start the download process (which can be seen in the below snapshot).

Fig. 45 – A DRT snapshot showing the download process.

Step2: The user can notice the script file tregression.sh, which can be used to check whether all the
files are compiled successfully or not. After executing this script, it will generate one reference file
and one output file for each example. The reader can also control the debugging information level by
exporting a new variable called DRT_DEBUG.
$./tregression.sh

Fig. 46 – A DRT snapshot showing the result of the tregression.sh script. During the compilation process, it is

produced in output an OK message (if no error is encountered)

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 95 of 100

18.4 Expected output
The final step will be to check a simple example: the recursive calculation of the Fibonacci sequence.
The program calculates the 15th Fibonacci number implementing the dataflow execution model.

Fig. 47 – DRT example execution: recursive Fibonacci sequence with input set to 15 and debug level set to 0.

As shown in Fig. 47, the program terminates with a correct result. As already mentioned, DRT can
also provide detailed information using the DRT_DEBUG variable. The level of verbosity can be
increased using the increasing numbers (i.e., 0, 1, 2, 3, etc.). In the above example, the environmental
variable has been set to 0, by exporting it as DRT_DEBUG=0. It is worth noting that 0 corresponds to
the default debug value. To increase the verbosity level, just set the debug value to 1 (i.e., export the
variable as DRT_DEBUG=1). Fig. 48 shows the result of the program execution with the new debug
level set.

Fig. 48 – DRT example execution: recursive Fibonacci sequence with input set to 15 and debug level set to 1.

So, by increasing this verbosity level the user can retrieve more information about the current
execution.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 96 of 100

References
[1] Broquedis, F.; Clet-Ortega, J.; Moreaud, S.; Furmento, N.; Goglin, B.; Mercier, G.; Thibault, S.; Namyst, R., hwloc: A Generic

Framework for Managing Hardware Affinities in HPC Applications, Parallel, Distributed and Network-Based Processing (PDP),
2010 18th Euromicro International Conference on , vol., no., pp.180,186, 17-19 Feb. 2010.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5452445&isnumber=5452403

[2] Joshua Suetterlein, Stéphane Zuckerman, and Guang R. Gao. 2013. An implementation of the codelet model. In Proceedings of
the 19th international conference on Parallel Processing (Euro-Par'13), Felix Wolf, Bernd Mohr, and Dieter Mey (Eds.). Springer-
Verlag, Berlin, Heidelberg, 633-644. DOI=10.1007/978-3-642-40047-6_63.
URL: http://dx.doi.org/10.1007/978-3-642-40047-6_63

[3] Thomas Willhalm and Nicolae Popovici. 2008. Putting intel® threading building blocks to work. In Proceedings of the 1st
international workshop on Multicore software engineering (IWMSE '08). ACM, New York, NY, USA, 3-4.
DOI=10.1145/1370082.1370085.
URL: http://doi.acm.org/10.1145/1370082.1370085

[4] Stéphane Zuckerman, Joshua Suetterlein, Rob Knauerhase, and Guang R. Gao. 2011. Using a "codelet" program execution model
for exascale machines: position paper. In Proceedings of the 1st International Workshop on Adaptive Self-Tuning Computing
Systems for the Exaflop Era (EXADAPT '11). ACM, New York, NY, USA, 64-69. DOI=10.1145/2000417.2000424. URL:
http://doi.acm.org/10.1145/2000417.2000424

[5] The Open Community Runtime Framework for Exascale Systems.
URL: https://01.org/open-community-runtime

[6] Solinas M., Badia, R.M., Bodin F., Cohen, A., Evripidou, P., Faraboschi P., Fechner B., Gao G.R., Garbade A., Girbal S.,
Goodman D., Khan B., Koliai S., Feng Li, Lujan M., Morin L., Mendelson A., Navarro N., Pop A., Trancoso P., Ungerer T.,
Valero M., Weis S., Watson I., Zuckermann S., Giorgi R. "The TERAFLUX Project: Exploiting the DataFlow Paradigm in Next
Generation Teradevices". 16th Euromicro Conference on Digital System Design, September 2013, doi: 10.1109/DSD.2013.39

[7] Aaron Landwehr, Stephane Zuckerman, Guang R. Gao "Toward a Self-aware System for Exascale Architectures", In Proceedings
of Euro-Par 2013: Parallel Processing Workshops; the 1st Workshop on Runtime and Operating Systems for the Many-core Era
(ROME 2013), Aachen, Germany, August 2013.

[8] Joshua Suettlerlein, Stephane Zuckerman, Guang R. Gao: "An Implementation of the Codelet Model". Euro-Par 2013, Aachen
(Germany), August 2013, doi: 10.1007/978-3-642-40047-6_63.

[9] Bernhard Fechner, Arne Garbade, Sebastian Weis, Theo Ungerer: "Fault Detection and Tolerance Mechanisms for Future 1000
Core Systems". HPCS 2013, Helsinki (Finland), July 2013, doi: 10.1109/HPCSim.2013.6641467.

[10] George Matheou, Paraskevas Evripidou: "Verilog-based simulation of hardware support for Data-flow concurrency on Multicore
systems". SAMOS XIII 2013, Samos (Greece), July 2013, doi: 10.1109/SAMOS.2013.6621136.

[11] Javier Bueno, Xavier Martorell, Rosa M. Badia, Eduard Ayguadé, Jesús Labarta: "Implementing OmpSs support for regions of
data in architectures with multiple address spaces". ISC '13: Proceedings of the 27th international ACM conference on
International conference on supercomputing, June 2013, doi: 10.1145/2464996.2465017.

[12] Fahimeh Yazdanpanah, Carlos Alvarz-Martinez, Daniel Jimenez-Gonzalez, Yoav Etsion: "Hybrid Dataflow/von-Neumann
Architectures". Parallel and Distributed Systems, IEEE Transactions on (Volume:PP , Issue: 99), April 2013, doi:
10.1109/TPDS.2013.125.

[13] A. Garbade, S. Weis, S. Schlingmann, B. Fechner, T. Ungerer, "Impact of Message-Based Fault Detectors on a Network on
Chip," in 21th International Euromicro Conference on Parallel, Distributed and Network-based Processing (PDP), Belfast,
February 2013, doi: 10.1109/PDP.2013.76.

[14] Daniel Goodman, Behram Khan, Salman Khan, Mikel Luján, Ian Watson: "Software transactional memories for Scala. J. Parallel
Distrib. Comput". (JPDC) 73(2):150-163, February 2013, doi: 10.1016/j.jpdc.2012.09.015.

[15] Nhat Minh Lê, Antoniu Pop, Albert Cohen, Francesco Zappa Nardelli: "Correct and efficient work-stealing for weak memory
models". In Symp. on Principles and Practice of Parallel Programming (PPoPP), Shenzhen, China, February 2013, doi:
10.1145/2517327.2442524 and doi: 10.1145/2442516.2442524

[16] Boubacar Diouf, Can Hantaş, Albert Cohen, Özcan Özturk, Jens Palsberg. "A decoupled local memory allocator". ACM
Transactions on Architecture and Code Optimization (TACO), selected for presentation at the HiPEAC 2013 Conf., January
2013, doi:10.1145/2400682.2400693

[17] Antoniu Pop and Albert Cohen. "OpenStream: Expressiveness and Data-Flow compilation of OpenMP streaming programs".
ACM Transactions on Architecture and Code Optimization (TACO), selected for presentation at the HiPEAC 2013 Conf.,
January 2013, doi: 10.1145/2400682.2400712

[18] R. Giorgi, R. M. Badia, F. Bodin, A. Cohen, P. Evripidou, P. Faraboschi, B. Fechner, G. R. Gao, A. Garbade, R. Gayatri, S.
Girbal, D. Goodman, B. Khan, S. Koliaï, J. Landwehr, N. Minh L, F. Li, M. Lujàn, A. Mendelson, L. Morin, N. Navarro, T.
Patejko, A. Pop, P. Trancoso, T. Ungerer, I. Watson, S. Weis, S. Zuckerman, M. Valero "TERAFLUX: Harnessing dataflow in
next generation teradevices", Journal of Microprocessors and Microsystems: Embedded Hardware Design (MICPRO), April
2014, doi: doi.org/10.1016/j.micpro.2014.04.001

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 97 of 100

Appendix A – Lua lexical conventions
Names (also called identifiers) in Lua can be any string of letters, digits, and underscores, not
beginning with a digit. This coincides with the definition of names in most languages. (The definition
of letter depends on the current locale: any character considered alphabetic by the current locale can
be used in an identifier.) Identifiers are used to name variables and table fields. The
following keywords are reserved and cannot be used as names:

and break do else elseif
end false for function if
in local nil not or

repeat return then true until
while

Lua is a case-sensitive language: and is a reserved word, but And and AND are two different, valid
names. As a convention, names starting with an underscore followed by uppercase letters (such
as VERSION) are reserved for internal global variables used by Lua. The following strings denote
other tokens:

+ - * / %
^ # == ~= <=

>= < > = (
) { } []
; : , . ..

…

Literal strings can be delimited by matching single or double quotes, and can contain the following C-
like escape sequences: '\a' (bell), '\b' (backspace), '\f' (form feed), '\n' (newline), '\r' (carriage return),
'\t' (horizontal tab), '\v' (vertical tab), '\\' (backslash), '\"' (quotation mark [double quote]), and '\''
(apostrophe [single quote]). Moreover, a backslash followed by a real newline results in a newline in
the string. A character in a string can also be specified by its numerical value using the escape
sequence \ddd, where ddd is a sequence of up to three decimal digits. (Note that if a numerical escape
is to be followed by a digit, it must be expressed using exactly three digits.) Strings in Lua can contain
any 8-bit value, including embedded zeros, which can be specified as '\0'.

Literal strings can also be defined using a long format enclosed by long brackets. We define
an opening long bracket of level n as an opening square bracket followed by n equal signs followed by
another opening square bracket. So, an opening long bracket of level 0 is written as [[, an opening
long bracket of level 1 is written as[=[, and so on. A closing long bracket is defined similarly; for
instance, a closing long bracket of level 4 is written as]====]. A long string starts with an opening
long bracket of any level and ends at the first closing long bracket of the same level. Literals in this
bracketed form can run for several lines, do not interpret any escape sequences, and ignore long
brackets of any other level. They can contain anything except a closing bracket of the proper level.

For convenience, when the opening long bracket is immediately followed by a newline, the newline is
not included in the string. As an example, in a system using ASCII (in which 'a' is coded as 97,
newline is coded as 10, and '1' is coded as 49), the five literal strings below denote the same string:

a = 'alo\n123"'

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 98 of 100

a = "alo\n123\""
a = '\97lo\10\04923"'
a = [[alo
123"]]
a = [==[
alo
123"]==]

A numerical constant can be written with an optional decimal part and an optional decimal exponent.
Lua also accepts integer hexadecimal constants, by prefixing them with 0x. Examples of valid
numerical constants are:

3 3.0 3.1416 314.16e-2 0.31416E1 0xff 0 x56

A comment starts with a double hyphen (--) anywhere outside a string. If the text immediately after --
 is not an opening long bracket, the comment is a short comment, which runs until the end of the line.
Otherwise, it is along comment, which runs until the corresponding closing long bracket. Long
comments are frequently used to disable code temporarily.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 99 of 100

Appendix B – Lua language features
Lua is commonly described as a “multi-paradigm” language, providing a small set of general features
that can be extended to fit different problem types, rather than providing a more complex and rigid
specification to match a single paradigm. Lua, for instance, does not contain explicit support for
inheritance, but allows it to be implemented with metatables. Similarly, Lua allows programmers to
implement namespaces, classes, and other related features using its single table implementation; first-
class functions allow the employment of many techniques from functional programming; and full
lexical scoping allows fine-grained information hiding to enforce the principle of least privilege. In
general, Lua strives to provide flexible meta-features that can be extended as needed, rather than
supply a feature-set specific to one programming paradigm. As a result, the base language is light –
the full reference interpreter is only about 180 kB compiled – and easily adaptable to a broad range of
applications. Lua is a dynamically typed language intended for use as an extension or scripting
language, and is compact enough to fit on a variety of host platforms. It supports only a small number
of atomic data structures such as boolean values, numbers (double-precision floating point by default),
and strings. Typical data structures such as arrays, sets, lists, and records can be represented using
Lua's single native data structure, the table, which is essentially a heterogeneous associative array.
Lua implements a small set of advanced features such as first-class functions, garbage collection,
closures, proper tail calls, coercion (automatic conversion between string and number values at run
time), coroutines (cooperative multitasking) and dynamic module loading. By including only a
minimum set of data types, Lua attempts to strike a balance between power and size.

Loops

Lua has four types of loops: the while loop, the repeat loop (similar to a do while loop), the for loop,
and the generic for loop.

--condition = true
while condition do
 --statements
end

repeat
 --statements
until condition

--delta may be negative, allowing the for loop to count down or up
for i = first,last,delta do
 --statements
 --example: print(i)
end

The generic for loop, would iterate over the table _G using the standard iterator function pairs, until it
returns nil:

for key, value in pairs(_G) do
 print(key, value)
end

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.5 – D8.3
Deliverable name: Final Report and Documentation + Final Results from the combination of UD
and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 100 of 100

Functions

Lua's treatment of functions as first-class values is shown in the following example, where the print
function's behavior is modified:

do
 local oldprint = print
 -- Store current print function as oldprint
 function print(s)
 --[[Redefine print function, the usual print function can still be used
 through oldprint. The new one has only one argument.]]
 oldprint(s == "foo" and "bar" or s)
 end
end

Any future calls to print will now be routed through the new function, and because of Lua's lexical
scoping, the old print function will only be accessible by the new, modified print.

Tables

Tables are the most important data structure (and, by design, the only built-in composite data type) in
Lua, and are the foundation of all user-created types. They are conceptually similar to associative
arrays in PHP, dictionaries in Python and Hashes in Ruby or Perl.

A table is a collection of key and data pairs, where the data is referenced by key; in other words, it's a
hashed heterogeneous associative array. A key (index) can be any value but nil and NaN. A numeric
key of 1 is considered distinct from a string key of "1". Tables are created using the {} constructor
syntax:

a_table = {} -- Creates a new, empty table

Tables are always passed by reference.

Record

A table is often used as structure (or record) by using strings as keys. Because such use is very
common, Lua features a special syntax for accessing such fields. Example:

point = { x = 10, y = 20 } -- Create new table
print(point["x"]) -- Prints 10
print(point.x) -- Has exactly the same meaning as line above

Array

By using a numerical key, the table resembles an array data type. Lua arrays are 1-based: the first
index is 1 rather than 0 as it is for many other programming languages (though an explicit index of 0
is allowed). A simple array of strings:

array = { "a", "b", "c", "d" } -- Indices are assigned automatically.
print(array[2]) -- Prints "b". Automatic indexing in starts at 1.
print(#array) -- Prints 4.
 -- # is length operator for tables and strings.
array[0] = "z" -- Zero is a legal index.
print(#array) -- Still prints 4, as Lua arrays are 1-based.

