Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROGRAMME

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Teradevice Compuing

D7.5 — Final Report and Documentation

D8.3 — Final Results from the combination of UD andERAFLUX
dataflow techniques

Due date of deliverable: $March 2014
Actual Submission: T9May 2014

Start date of the project: Januafy 2010 Duration: 51 months
Lead contractor for the deliverable: UNISI

Revision : See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU Public

PP | Restricted to other programs participant (includimg Commission Services)

RE | Restricted to a group specified by the consortiunti§ding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Deliverable numbed7.5 — D8.3

Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 1 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Change Control

Version# | Date Author Organization | Change History
1 05.03.2014 Alberto Scionti UNISI Initial document
2 13.03.2014 Alberto Scionti UNISI First draft
3-13 14.05.2014 Detailed author list isALL Final Draft
presented in a next| PARTNERS
page
14-16 17.05.2014 Roberto Giorgi UNISI Review

Release Approval

Name Role Date

Alberto Scionti Originator 15.05.2014
Roberto Giorgi WP Leader 17.05.2014
Roberto Giorgi Project Coordinator for formal deliv erable | 18.05.2014

Deliverable numbed7.5 — D8.3

Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 2 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

TABLE OF CONTENTS

GLOSSARY 10
EXECUTIVE SUMMARYccuuiiiiiiiiiiiiiiniinreassissiinssns 11
RELATION TO OTHER DELIVERABLESvttteuteutensentetesuesseeseessensensesessensesueensensensensessessesueessensensensessessessesnsensensensensenses 12
ACTIVITIES REFERRED BY THIS DELIVERABLE «...uveuveteetteutestestensesessessesueeseensansensessessessesseentensensensessessessesnesnsensensessessessenns 12
CONCLUSIONS ..uteutentententeeteestestensestesbesaeebeesteusessenbe b e sbeeb e eaten s e s e s e bt sh e eb e eaeem b et e nb e bt eheeb e e aeemt e s e b e bt saeebeemeensenentebeee 13

1 GETTING STARTEDiiiiiiiiieeiiiiiiinieeesiissinnressssssssssssssssssssssssnssssssssssssssssssssssssssnns 14
1.1 STEP LI INSTALLATION ..teutentinterteetteutentensensensesuesseeseensensensesbesueeseeseensese st enbesaeebeeaeense s entenbesbeebeeneensensensenbenee 14
1.2.1 Configuring COTSON SIMUIALAL.cc.eiieeieeeeieie ettt see s 14

1.2 STEP 2: RUNNING A FIRST EXAMPLEcuteutetitestenttestentesessessesuesseeneensensessessesuesseeneensensensensessessesnsensensensensenne 15
13 COTSON SIMULATOR: LOOK AT A GLANCEttttteeeeeeeitttteeeeeesaiteteeeeaesaausseeeeeeeseaanseeeeeeeseennsaeeeeeesesannneeeeas 16
1.4 SUPPORTED PLATFORMS ...euveuteteettententententensessesseeseensensensessesaeeseeseensensensessessteseeneensesensenbesuesseeneensensensensenee 17
1.4.1 Running COTSon in a virtualized enVirONMENL..........cccoecveieriireie e 17

1.5 DOCUMENT STRUCTURE ..uvtuvtuteutensentensessessesueessensensensessessesseessensensensessessesseessensensensensensessessesneensensensensessens 18

2 UNDERSTANDING COTSON: DESIGN AND ARCHITECTUREccoiiiimmiiniiiiiiinnntnnsissinressssssssssssssssssens 19
21 MAJOR DESIGN CHARACTERISTICS AND COMPARISON WITH OTHER SIMULATORS «..evveveenrenrenrensensensesneensesensensensens 19
2.2 TIMING FEEDBACK...cctetteeauttttteeeeeeatttteeeeeesatae e teeeee s e uaeeteeeeesaauas e eeeaeesaaunsbeeeeeeeaaaansbnaeeeeeaaansanaeeaeeeaaanses 20
23 ARCHITECTURE w..vtteteeteetteuteutestestesbesbe et e eseestetens e besaeebeebeeaeeaeen b e s enb e bt sheeb e eates s e s et et e seeebesaeese et ensenneneenbenee 21
2.4 COTSON INSTALLATION STRUCTURE w.ttteeteeauuterteeresesaunenseeeeeesaaneseeeseeesaaasssseeeesssasaunsseaeesssasansseeeeessasannssesees 22

3 COTSON COMPONENTS: SIMNOW, SAMPLERS, INTERLEAVER, TIMERS .23
3.1 VIRTUALIZER: SHORT INTRODUCTION TO SIMNOWcctiiiiiiiiitteeeeeeeeiietteeeeeeeesirteteeeesessnbeeeeeeesessnseneeeeesesnnnes 23
3.2 SAMPLERS «..cuttttetteuteutentestesbeste et e st es et e st e e bt sbe e bt e st e st et e et e bt eh e eb e e aeea b e b e nE e bt e R e e b e e ae et e b et e bt eheehe et e s e nnenr e b nae 25
33 INTERLEAVERS ...ttttteeeee e ettt et e e e e ettt et e e e e e et be et e e e e e e aasae e e e e e e e e e snb et e e eeeee s ansbeeeeeeeasaunsnbaeeeeeesaansnnaeeeaeaann 26
3.4 TIMIERS ettt ettt ettt e e e ettt e e e s e et e e e e e s e s n e et e e e e e s e e et et e e e e e nr e e et e e e e e e nrrne e e e e e e e rrnereeeeeaannee 27

4 COTSON CONFIGURATION......cuuuiiiiiititieniiiiiirrenessiissirrsasssssssstrresssssssssstrmssans 28
4.1 LUA SCRIPTING «..teutentetesueettemteutesestenbeseesueeueessessesessesaeabesseeseensensesesteabesaeeseemtensesenbenbesheebeeneensensensenbenaens 28
4.2 CHANGING THE CONFIGURATION «...ttttteeeeeaauiiitteeeesesausetteeeeeesaassseeeeeaesaassseeeeeeesaaunseeaeeeesaaannsseeeeessasansseeens 29
4.2.1 Lua-Section-1 —optioNS tahle.........ccccveeveieieeecieeeeee e 29
4.2.2 Lua-Section-2 — SIMNOW OptioNS/COMMANAS........coeeiiieiiieie ettt 30
4.2.3 Lua-Section-3 — configuration OPLIONS.........cccevviieieieieiesiesesests ettt este s e s e aessessesesnens 31

5 COLLECTING METRICS......ciitiieuiiiiiiinieieniiiiiirretessssssirrssssssssssstrresssssssssssssssssssssssssssssnsssssssssssssnsssssssssans 33
5.1 LOG STRUCTURE ..cuteuteatesueeteemeentensentensesteeseeseessesesensesaeebeeueeseeneensenseaeeabesaees b enten b e b enbenbesbeebeeneensensensenbenaens 33
5.2 DATABASE STRUCTURE .t ttiuuttttteteeeseauutteteeeesaaauubbeeeaeeessaasaeaeeeeaesaaasnseeeeeeesaaanseeeeeaeeaaanseeaeeeeeesaansnnaeeeaeannn 33
5.2.1 USING @ POSIGrES QL SEIVEL:.....ccuieeieeieeieeieieteettsttettete e te e s e s tasteetae et etessestassessasssesseasesensenes 35
5.2.2 Creating the COTSon PostgreSQL database:.........ccceoveieririenieieieeeeee e 35
5.2.3 Configuring PostgreSQL for COTSO0N CONNECHAN:.........cccevveererieeieieieiesiese et 36
5.2.4 Creating the PostgreSQL COTSon db schema:...........coooiiiiiivieieeeeee e 36
5.2.5 Modifying the “.in” file to save our heartbeats POSIGreSQL:........ccccvevvevvevvvvreeieieieees 37
5.2.6 Running COTSOoN With POStGreSQL........ooviieiiieeeeeee ettt 37

6 SIMPLE EXAMPLES 38

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 3 of 100

Project:T

ERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

6.1 FUNCTIONAL SIMULATION EXAMPLE (FUNCTIONALLIN)..ceeeeuttteeeittieeeereeeeereeeeeesseeeeasseeeeesseseessseeeassesesassssesnnnes 38
6.1.1 Goal of the experiment Or EXAMPIE..........ccoeveievierieieieteee ettt sse s 38
6.1.2 Location Of the INVOIVEd filES.........c.oriiieeee e 38
6.1.3 Detailed INSrUCLIONS 10 STAIL......c.cvvirieieiiieieieeeese ettt eeas 39
I I S T o[Tox (o [11 1 o 10) AT 39

6.2 MEMORY TRACING EXAMPLE (MEM_TRACER.IN) ..c..veuveutetertinrenueemtentetensessessesuesseeeessensensessessessesneensensensensessens 39
6.2.1 Goal of the experiment OF @XaMPIE..........ccooiereiieieeeeeee et 40
6.2.2 Location of the INVOIVEA fil@S.........covrveiriieieee e 40
6.2.3 Detailed INSIrUCHIONS 10 STANL........ccoiiieeieieeeee ettt 40
O S = o 1=Tox 1= To [10 1 o 10) A 40
6.2.5 Defining the Region Of INterest (ROL).......cccveirieriireeeeeeeee et 43

6.3 SAMPLERS: TIMING SIMULATIONvtuteutentetesessensteseensensensessesuesseeseensensensensesuesseeneensensensensessesseensensensensensenne 45
6.3.1 Goal of the experiment Or @XaMPIE..........cccoieirieiieieeeeeee e 46
6.3.2 Location of the INVOIVEM fil@S..........coerveirieeeeee e 46
6.3.3 Detailed instructions to start for NO Sampling fg01e”).......ccooereverereeieeeeeeeee 46
6.3.4 Expected output for NO Sampling (“SIMPI&Y)......cccvoveveieieeeseeeeieeeees et 46
6.3.5 Detailed instructions to start for Dynamic Sampling..........cccccoevevererieieneseseseseeeeee s 46
6.3.6 Expected output for Dynamic Sampling.........cccccevveverieieieieiesisiseeieieese e 47
6.3.7 Detailed instructions to start for Interval Sam@in..........cceoeveiiriieeieieeee e 47
6.3.8 Expected output for Interval SamPliNgG.........cccevevveirieieieeeses et 47
6.3.9 Detailed instructions to start for SMARTS Sampling........cccoooeriviierieieeeeee e 48
6.3.10 Expected output for SMARTS SamMPliNG......ccceiveieieieieieseseeeeeeeetese e 48

6.4 SIMULATION OF ETHERNET CONNECTED CLUSTERS ..eteuuuttttteeeeesauturreeeeeesaaunseeeeesssasunseeeeeessasnnsseeeeessasanseeees 48
6.4.1 Goal of the experiment Or EXAMPIE..........ccceveievereeieieieee ettt 48
6.4.2 Location Of the INVOIVEA filES........cc.o i 49
6.4.3 Detailed INSTUCIONS 10 STAIL........cieirieiriiieeiesee ettt eeaes 49
I S S q o[Tox (o [10 1 o 10) AT 49

7 RESEARCH USE CASE FROM BSC 51

7.1 GOAL OF THE EXPERIMENT OR EXAMPLEeuttutetteuteutensesessessesueesteneansessessessesseeseensansessessessessesseensensessessessenns 51

7.2 LOCATION OF THE INVOLVED FILESveuteuteteeteeueeutesetensestestesueessensensensessessessesseeneensensensensessessesseensensensensessens 51

7.3 DETAILED INSTRUCTIONS TO START ..tuteuteteeuteueenseneesessesuessesseensensansassessessesueessensansessessessessesseeneensensensessessens 51

7.4 EXPECTED OUTPUT ..eutinttsteeteeuteutesestesbesteebeeateste e esbesbesaeeb e eheeseensenbenbeseeebesaeeseemten s e s enbenbesheebeeneensensensenbeneens 52

7.5 FURTHER REFERENCES TO MORE IN-DEPTHScuteuteutestestesuestesueeneentensessessessesueesseneensessessessessessesneensensensessessens 52

8 RESEARCH USE CASE FROM CAPS 53

8.1 GOAL OF THE EXPERIMENT OR EXAMPLE ..t euittttteeeeeeeitttteeeeeesaiasteeeeaesaasnseeeeeeeseaunseeaeeeeseannsaeeeeeesesannsseeeas 53

8.2 LOCATION OF THE INVOLVED FILESveuteuteteeseeueentesetensestestesseessensensensestessessesseeneensensensensessessesneensensensensessens 53

8.3 DETAILED INSTRUCTIONS TO START «.euiuuttttteeesaauutteteeeeesaausaeaeeeeaesaasnseeeeeessaaaunseeeeaessaaansseaeeeesesaasnnneeeasesnn 53

8.4 EXPECTED OUTPUT ..utiatesteeteeuteutetestesbesteebeeuteste e etenbesheeb e ebeese e st enbesbe st e ebesaeeb e emees b e s enb e besheebeeneensensensenbeneens 55

8.5 FURTHER REFERENCES TO MORE IN-DEPTHScuteuteutestetesuestesueensenteneessestessesueessensensessessessessessesneensensessassessens 56

9 RESEARCH USE CASE FROM HP 57

9.1 GOAL OF THE EXPERIMENT OR EXAMPLEc..euttterteeteeueentesensensesueeseeseensensensessessessesneensensensensessessesnsensensensensenne 57

9.2 LOCATION OF THE INVOLVED FILES «.eteeuuuuttttteeseeauutteteeeesssauuneaeeeeeesaaunseeeeeessasaunsseeeeassasansseeeeeeeesaasnnseeeeeeann 59

9.3 DETAILED INSTRUCTIONS TO START ..teuteuteteaueeueestensetensesuessesseeseensensensesseasesuesseeneensensensensessessesneensensensensensens 60

9.4 EXPECTED OUTPUT .tttteeeeeeaauttteeeeee e ettt et e e e e aauabbe e eeeeeesaaabae e eeeeee s e asnseeeeeeesaaansbeeeeaeeaaaanbabbeeeeeesaansnnaeeeaeannn 61

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 4 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

9.5 FURTHER REFERENCES TO MORE IN-DEPTHS ...ceettttuuuieeeeererentneeeeeeressssnaeeeesssessssnnseessesssssnaeeessssssmnneeeessessssnnnnns 63
10 RESEARCH USE CASE FROM INRIA 64
10.1 GOAL OF THE EXPERIMENT OR EXAMPLEevuuuueeeeeeetrtsnieeeeesseessnnnaeeessessssnnaeesssessssnseeessssssssnneeessssssssssneeesssssssns 64
10.2 LOCATION OF THE INVOLVED FILES +vvvvvvvvvsvssssssssssesssens 66
10.3 DETAILED INSTRUCTIONS TO START ..eevtttuuueeeerrrsssnneeeeeesesassnnaeeeeesessssneeeessssssssnnseessssssssnaeeessssssssmmeeeesssssssnnnnns 67
10.4 EXPECTED OUTPUT 1uvuvuvuuuussrens 67
10.5 FURTHER REFERENCES TO IMORE IN-DEPTHS ...ceetttttueieeeeertrestnneeeeeressssnaeeeesssessssnseessesssssnnaeeesssssssnmeeeessessssnnnens 68
11 RESEARCH USE CASE FROM MSFT 69
11.1 GOAL OF THE EXPERIMENT OR EXAMPLEevuuuuieeeeeeertssneeeeeseeessnnnaeeessessssnnaaeesssessssnseeessssssssnmeeessssssssssneeesssssssns 69
11.2 LOCATION OF THE INVOLVED FILES +vvvvvvvvvssens 69
11.3 DETAILED INSTRUCTIONS TO START ..eevvtvuuuneeeerrrsrsnnneeeeesesassnnaeeeessessssnaeeeessssssssnnseessssssssnsneeesssssssnmeeessssssssnnnnns 69
11.4 EXPECTED OUTPUT 1uvvvuvuuuusssens 71
11.5 FURTHER REFERENCES TO MORE IN=DEPTHS 11vvvvvvvvevuvssens 72
12 RESEARCH USE CASE FROM THALES 73
12.1 GOAL OF THE EXPERIMENT OR EXAMPLE0uvuuueeeeeeeertsuneeeeesreessnnaeeessessssnnaeesssessssnnseeessssssssnmeesesssssssssneeessessssns 73
12.2 LOCATION OF THE INVOLVED FILES +vvvvvvvvvsvssens 73
12.3 DETAILED INSTRUCTIONS TO START ..evvvttuuueeeerersssnnneeeeesesassnnaeeeeesessssnseeessssssssnseessssssssneeeesssssssnnmeeeesssssssnnnnns 73
12.4 EXPECTED OUTPUT 1uvvvutuuuusesesssene 74
12.5 FURTHER REFERENCES TO MORE IN=DEPTHS 1.vvtvvvvvtvsvssens 74
13 RESEARCH USE CASE FROM UAU 75
13.1 GOAL OF THE EXPERIMENT «.eeetvtttuueeeeesertstnaeeeessessssnnseeesssssssnnseessesssssneeeesssssssnnneeessssssssnnseessssssssnneeessessssns 75
13.2 LOCATION OF THE INVOLVED FILES +vvvvvvvvvsvssens 75
13.3 DETAILED INSTRUCTIONS TO START .evvvttuuueeeerrrsssnenaeeeesssassnnaeeeeessssssneeeessssssssnnseessssssssnmneeessssssssnmeeeesssssssnnnnns 75
13.4 EXPECTED OUTPUT 1uvvvuvuuuusssens 75
13.5 FURTHER REFERENCES TO MORE IN=DEPTHS 11vvvvvvvvtvssens 76
14 RESEARCH USE CASE FROM UCY 77
14.1 GOAL OF THE EXPERIMENT OR EXAMPLE.......ciiiiiiieiiieieeeeeeeeee ettt ettt e e e e e e e e e e e 77
14.2 LOCATION OF THE INVOLVED FILES +vvvvvvvvvsvssens 77
14.3 DETAILED INSTRUCTIONS TO START ..evvtttuuueeeerrrssssnreeeeesessssnnaeeesesessssneeeessssssssnnseessssssssnaeeesssssssnmmeeesssessssnnnnns 78
14.4 EXPECTED OUTPUT 1uvvvuvuuuusssens 78
14.5 FURTHER REFERENCES TO MORE IN=DEPTHS 11vvvvvvvvtvuvssens 79
15 RESEARCH USE CASE FROM UD 78
15.1 GOAL OF THE EXPERIMENT OR EXAMPLE0vuuuuieeeeererussieeeeerreessnnnaeeessessssnnaaeesssessssnseeessssssssnneesesssssssssnesesssssssns 80
15.2 LOCATION OF THE INVOLVED FILES 1vvvvvvvvvsvssens 80
15.3 DETAILED INSTRUCTIONS TO START .eevvtvuuueeeerrrrrsnnnaeeeessssssnnaeeeessessssnseeessssssssnnseessssssssnmaeeesssssssnneeeessessssnnnnns 80
15.4 EXPECTED OUTPUT 1uvvvuvuuuusssens 81
15.5 FURTHER REFERENCES TO MORE IN=DEPTHS 11vvvvvvvvtrsvssens 81
16 RESEARCH USE CASE FROM UNIMAN 82
16.1 GOAL OF THE EXPERIMENT OR EXAMPLEeuuuuueeeeeeeertsrneeeeeseeessnnaeeessessssnnaaeesssessssnnseeessssssssnneesesssssssssnesessessssns 82
16.2 LOCATION OF THE INVOLVED FILES 1vvvvvvvsvsvssens 82

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 5 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

16.3 DETAILED INSTRUCTIONS TO START ..evvtttuuuneeeererersnnseeeeessssssnnaeeesessssssneeeesssessssnnseessssssssnmaeeessssssssmmeeeesssssssnnnnns 83
16.4 EXPECTED OUTPUT 1uvvvuvuuuusssens 86
16.5 FURTHER REFERENCES TO MORE IN-DEPTHS ...eetvtttuueeeeererustieeeeeesersssnaeeeesssessssnseessssssssneeeesssssssnmeeeessessssnnnens 88
17 RESEARCH USE CASE FROM UNISI 89
17.1 GOAL OF THE EXPERIMENT OR EXAMPLEuuuuuieeeeerertssieeeeeereessnnnaeeessessssnnaaeesssessssnseeessssssssnseesssssssssssneeessessssns 89
17.2 LOCATION OF THE INVOLVED FILES +vvvvvvvvvsvssens 89
17.3 DETAILED INSTRUCTIONS TO START .evvttvuuueeeerrrrsssnneeeeessssssnnaeeseesessssnaeeeessssssssnnseessssssssnmaeeessssssssnmeeeesssssssnnnens 89
17.4 EXPECTED OUTPUT 1uvvvuvuuuusssens 91
17.5 FURTHER REFERENCES TO MORE IN=DEPTHS 1.vvvvvvvvetsvssens 92
18 DRT - ATOOL FOR NATIVE TESTING OF T* BASED PROGRAMS 93
18.1 GOAL OF THE EXPERIMENT «.eetvttttuueeeeeeeressneeeeessessssnneeeesssssssnnseessesssssnneeessssssssnnseeessssssssnnsessssssssssnneeessessssns 93
18.2 LOCATION OF THE INVOLVED FILES +vvvvvvvvvsvssens 93
18.3 DETAILED INSTRUCTIONS TO START ..eevvtvuuueeeererssssnneeeeesessssnnaeeeessessssneeeesssessssnnseessssssssnmaeeessssssssmeeessssssssnnnnns 94
18.4 EXPECTED OUTPUT 1uvvvuvuuuusssens 95
REFERENCES 96
APPENDIX A — LUA LEXICAL CONVENTIONS 97
APPENDIX B — LUA LANGUAGE FEATURESccccittueitenirencreencrenscresesessssessssasssassssesssssssssssssnsennns 99

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 6 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

LIST OF FIGURES

FIG.
FiG.
FIG.
FiG.
FIG. 5 — GRAPHICAL INTERFACE OF THE COTSON SIMULATOR. THE WINDOW CONTAINS A TOOLBAR FROM WHICH INTERACT WITH THE

SIMULATOR, A PANEL DISPLAYING STATISTICAL INFORMATION, AND A CONTROL PANEL FROM WHICH INTERACT WITH THE GUEST

SYSTEIV. ettt euteeeuteesuteesuteesuteesuteesateesuteesaseesateesaseesateesaseesabeesaseessteeaaseesateesab e e st e e sae e e st e e st e e bbe e bbeebteebaeebeeenteenbes 24
FIG. 6 — CORRELATION OF THE PERFORMANCE INFORMATION ACQUIRED BY THE SIMULATOR WITH THE RUNNING APPLICATION PHASES.
... 25
FIG. 7 - A SCHEMATIC REPRESENTATION OF HOW DYNAMIC SAMPLING WORKS. ...veeuveesureerereessreessreessseessseesseessseessssssssensesensns 26
FIG. 8 — A SIMPLE COTSON CONFIGURATION FILE (WRITTEN IN LUA FILE ‘FUNCTIONAL.IN c..vetiieeeieeniteeniieesieeesireesieeesveeesaee e 28
FIG. 9 - AN EXAMPLE OF LUA-SECTION-1 OF THE COTSON CONFIGURATION FILE (SEE ALSO THE EXAMPLE
SRC/EXAMPLE/ONE_SIMPLE_CPULIN). 1uveeiiteesureesireesreesseessseesseessseesseessseesssessseessssesssesssssessseesssesssssessssesssssssseeses 30
FIG. 10 - AN EXAMPLE OF LUA-SECTION-2 OF THE COTSON CONFIGURATION FILE (SEE ALSO ONE_SIMPLE_CPU.IN)veeeeeurreeenns 31
FIG. 11 - AN EXAMPLE OF LUA-SECTION-3 OF THE COTSON CONFIGURATION FILE (SEE ALSO THE EXAMPLE
SRC/EXAMPLE/ONE_SIMPLE_CPULIN) .uvieiveeeereeireesreeeiseeeseeeseesssessseessseessseessseessssesssesssssessssessssessssessssessessssssenses 32
FIG. 12 — LUA CONFIGURATION FILE FOR RUNNING A PURE FUNCTIONAL SIMULATION WITH COTSON. ..ceovvtreiieeiieeniieeiieenieeenees 38
FIG. 13 — EXPECTED OUTPUT FOR THE “FUNCTIONAL.IN" EXAMPLEeeeertreeerureeesnreeesnseeeesssseeesssseessssseesssssseesssseesssssseesnnns 39
FIG. 14 — RELEVANT LINES OF THE LUA CONFIGURATION FILE FOR THE MEMORY TRACER EXAMPLE. IN THIS CASE THE LUA SCRIPT
CONTAINS ANOTHER VARIABLE (NOT SHOWN HERE) THAT SETS TRACE_FILE="/TMP/MEM_TRACER.TXT.GZ”ccvverrrenrnnn. 39
FIG. 15 — EXPECTED OUTPUT FOR THE MEMORY TRACE SIMULATION WITH COTSON SIMULATOR. «...eevvveevieenereenireenieeeneeesaeesnnns 41
FIG. 16 — LUA CONFIGURATION FILE FOR SETTING THE TIMER TO TRACE_STATS.IN EXAMPLE ..eecuveererierereesireesreessreensneessseensesenns 41
FIG. 17 - LUA CONFIGURATION FILE FOR SETTING THE TIMER TO MEM_TRACER2.IN EXAMPLE. ..veevuvierureesereenereesereesneeessneesseeenns 42
FIG. 18 — THE DEFINITION OF THE ROI IN THE EXAMPLE COTSON_TRACER.IN euuvtiurreruteeereenieeenieeessseenseeessaeesseeesseesssessnseesnnes 44
FIG. 19 — EXPECTED OUTPUT FOR “SIMPLE” SAMPLER EXAMPLE. THE EXAMPLE IS BASED ON THE ONE_CPU_SIMPLE.IN LUA
CONFIGURATION FILE. tuuttesuteesureesureesuseesseessseesuseessseesusesssssesssessssessssesssseesssesssseesssessssessssesssseessseensssenseessseessseesnses 46
FIG. 20 — EXPECTED OUTPUT FOR DYNAMIC SAMPLER EXAMPLE. THE EXAMPLE IS BASED ON THE DYNAMIC.IN LUA CONFIGURATION
FILE. wvteuveesureesueeesuseesuseesuteesuteesuseesabeesaseesabeeeabeesabeeeab e e sa b e e ea b e e e b e e e a b e e e bt e e be e e b e e et et e b e e et e e e b eeebeeebeeeheeebeeeaaeenbes 47
FIG. 21 — EXPECTED OUTPUT FOR INTERVAL BASED SAMPLER EXAMPLE. THE EXAMPLE IS BASED ON THE MULTIPLE_CPU_INTERVAL.IN
LUA CONFIGURATION FILE. ..etuvtteureeueeesueessseeesueessesesseesssseessseesssesssseessssessssessssesssessssesssessssessssesssseessseessseesssessssees 47
FIG. 22 — EXPECTED OUTPUT FOR SMARTS SAMPLER EXAMPLE. THE EXAMPLE IS BASED ON THE SMARTS.IN LUA CONFIGURATION
FILE. wvteuteesuteesuseesuseesuseesuseesuseesuseesaseesaseesabeeeaseesabeeeabeesa ke e ea b e e e b e e e ab e e e a bt e e be e e b e e oAb et e b e e et e e e b e e ebee e beeeheeebeeeaaeeres 48
FIG. 23 EXPECTED OUTPUT FOR THE EXAMPLE WHERE MEDIATOR COMPONENT IS USED. THE EXAMPLE IS BASED ON THE TWONODES.IN
LUA CONFIGURATION FILE. .etuvtteuteeueeenueessseeesseesseeesseesssseessseessseesssesssssessssessseesssessssesssessssessssessssesssseessseesssesssees 49
FIG. 24— TWO SIMULATOR WINDOWS ARE USED TO MANAGE THE TWO COMMUNICATING NODES OF THE SIMULATED SYSTEM........ 50
FIG. 25 — RESULTS OF A COTSON SIMULATION ON THE OPENHMPP CONVOLUTION EXAMPLE. .c.vvveeereeireenereensreenseesnseeenseesnes 56
FIG. 26 — MULTI-NODE SIMULATION WITH COTSON
FIG. 27 — SPEEDUP OF FIVE DIFFERENT DATAFLOW BENCHMARKS RUNNING ON DIFFERENT NUMBER OF CORES/NODES.cvven.... 59
FIG. 28 — IMIATRIX PRODUCT — INPUT. ..tttteteeauutetteeaeeesauuseeeeeeessaaunseeeeeeesaaaunsetteeeesaaaunsseaeeeesssaansasaeeeeeesaaannsseeeeeesanannseeaens 67
FIG. 29 — IMATRIX PRODUCT = INPUT. ..eeutterureesureesureessseessseessseessseessesssseessseessssesssessssessssessssessssesssesesssessssesnsessssesnseesnnes 68
FIG. 30 — IMATRIX PRODUCT = INPUT. ..ettttteeauutetteeeeeesauuseeeeeesssaaunseeeeeeesaaaunseeaeeeesaaaansseaaeeesssaansnsaeeaeeesaaannseeeeeessenansenaens 68
FIG. 31 — TWO NODES (TWO SIMNOW INSTANCES) RUNNING ON THE COTSON SIMULATOR. «..eeevreerereenieeenereenseeenseessseesnseesnnes 71
FIG. 32 — OUTPUT OF THE SIMULATION WHEN A NODE IN THE SYSTEM FAILS. ...uuuuttttteeeearunrtteeeeessatereeeeeeesaannseeeeeessesnnnseeeens 72
FIG. 33 — DOUBLE EXECUTION OF DATAFLOW THREADS, AND THE CORRESPONDING VERIFICATION OUTPUT.....eeevrureennrerveeeeeeennes 72

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 7 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

FIG. 34 - EXECUTING TSU++ ON COTSON. «.uiuitittteeeeeiiiittteeeee e ettt ittt e e e s e e auabeeteeeeeaaaunbeeaeeeeesaanbaeaeeeeeesaannsaeeeeeesaaannreeeeas 79
FIG. 35 — CONFIGURING CCNUMA ARCHITECTURE IN COTSON. ..ceuvttiiureeiteesieeniteesiteesiteesieeesseeessseesseeessseesseessseesssesssseesnnes 83
F1G. 36 — CONFIGURING TIM ARCHITECTURE IN COTSON. ...cttttttetiaiititeeee e e ettt e e e s e sttt e e e e e seabeeteeeeeeseannseeeeeeesesnnseeeeas 84
FIG. 37 — CONFIGURING TIM ARCHITECTURE IN COTSON. .c.uutteruteerutteriteeniieesteesiteesiteessseesueeessseessseesseeessseesssessssesssessnseesnnes 85
F1G. 38 — MAKEFILE TO SETUP TM AND TSU HARDWARE FOR SINGLE AND MULTIMODE SIMULATION.etteeeeeraiirreeeeeesannneeeeees 86
FIG. 39 — DEVICE WINDOW WHILE RUNNING COTSON SIMULATION

FIG. 40 — COTSON_TRACER.IN CONFIGURATION FILE SETTING UP THE NUMBER OF CORES IN THE SIMULATED MACHINEcccvvenne.. 86
FIG. 41 — LOG FILE SHOWING ICACHE STATISTICS FOR THE CPU D ..eeuuviiruieeniiieniieeniieesteesiteesiteesieeesaseesseeesaseesseessseesssessnsessnnes 87
FIG. 42 — COTSON GRAPHICAL MAIN WINDOW AND THE CONSOLE OUTPUTuuuuiittteeeeeaiuieeteeeeeesanineeeeeeessaannseeeeeessesnnnseeeens 87
FIG. 43 — CONFIGURING THE SCALABLE TIM ARCHITECTURE IN COTSON. eeuvttiriieenirrenieeniieesieesiieesieeenseeesaseesseeesseessseesnseesnnes 88
FIG. 44 — COTSON SIMULATION SETTING UP AND RUNNING TIM AND TSU HARDWARE.uutttieeeeniiinrreeeeeesaaiiereeeeeesennnseeeeas 88

FIG. 45 — A DRT SNAPSHOT SHOWING THE DOWNLOAD PROCESS
FIG. 46 — A DRT SNAPSHOT SHOWING THE RESULT OF THE TREGRESSION.SH SCRIPT. DURING THE COMPILATION PROCESS, IT IS

PRODUCED IN OUTPUT AN OK MESSAGE (IF NO ERROR IS ENCOUNTERED)cuveuveriieneeriiteienisieeescstenesc st 94
FIG. 47 — DRT EXAMPLE EXECUTION: RECURSIVE FIBONACCI SEQUENCE WITH INPUT SET TO 15 AND DEBUG LEVEL SETTO O........... 95
FIG. 48 — DRT EXAMPLE EXECUTION: RECURSIVE FIBONACCI SEQUENCE WITH INPUT SET TO 15 AND DEBUG LEVELSETTO 1........... 95

LIST OF TABLES

TABLE 1 — COTSON INSTALLATION: SUPPORTED LINUX DISTRIBUTIONS. ...ccveetierietieiinteesteesieesteetestesnee e steesre et eanesanesseens 17
TABLE 2 — RADAR APPLICATION SPEEDUP AGAINST SEQUENTIAL EXECUTION ..uviiurieiieuieitiesiiesieente et ete s sneesreeneesre e enne s 74
TABLE 3 — NODE UTILIZATION AND EXECUTION TIME OF THE BASELINE DATAFLOW EXECUTION......ceiviiiiiiiiniiinieeieeie e 76
TABLE 4 — NODE UTILIZATION AND EXECUTION TIME OF PESSIMISTIC DOUBLE EXECUTIONcoviiiiiiiiiiiiiieiieesiecie et 76
TABLE 5—NODE UTILIZATION AND EXECUTION TIME OF OPTIMISTIC DOUBLE EXECUTIONccovinveeerreniencnnenen 76

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 8 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

List of contributors to the writing of the document

Alberto Scionti, Haileyesus Kifle, Somnath Mazumday Roberto Giorgi
University of Siena

Nacho Navarro, Rosa Badia, Mateo Valero
Barcelona Supercomputing Center

Sebastian Weis, Theo Ungerer
Universitaet Augsburg

Pedro Trancoso, Skevos Evripidou, Giorgos Matheou
University of Cyprus

Amit Fuchs, Yaron Weinsberg
Microsoft Research and Development

Paolo Faraboschi
Hewlett Packard Espafiola

Feng Li, Albert Cohen
INRIA

Mikel Lujan, Behram Khan
The University of Manchester

Stéphane Zuckerman, Jaime Arteaga, Guang Gao
University of Delaware

Laurent Morin
CAPS

Sylvain Girbal
THALES

© 2009-14 TERAFLUX Consortium, All Rights Reserved.

Document marked as PU (Public) is published iry)tidr the TERAFLUX Consortium, on theww.teraflux.euweb site and can be distributed to the Public.

The list of author does not imply any claim of owsteép on the Intellectual Properties describedis document.

The authors and the publishers make no express@dpdied warranty of any kind and assume no resipdities for errors or omissions. No liability imssumed for incidental or
consequential damages in connection with or arisirigof the use of the information contained irs thbcument.

This document is furnished under the terms of tBRAFLUX License Agreement (the "License") and mayyobe used or copied in accordance with the tesfithe License. The
information in this document is a work in progrgesytly developed by the members of TERAFLUX Conison ("TERAFLUX") and is provided for informatiohase only.

The technology disclosed herein may be protecteadnigyor more patents, copyrights, trademarks arncide secrets owned by or licensed to TERAFLUXas. The partners reserve
all rights with respect to such technology andteslanaterials. Any use of the protected technolyy related material beyond the terms of the Lieavishout the prior written consent
of TERAFLUX is prohibited. This document containsterial that is confidential to TERAFLUX and its misers and licensors. Until publication, the usesuith assume that all
materials contained and/or referenced in this desurare confidential and proprietary unless otheevindicated or apparent from the nature of sudieniads (for example, references to
publicly available forms or documents).

Disclosure or use of this document or any matedatained herein, other than as expressly permisgutohibited without the prior written conseritTERAFLUX or such other party
that may grant permission to use its proprietaryeni@. The trademarks, logos, and service markplayed in this document are the registered anégistered trademarks of
TERAFLUX, its members and its licensors. The caglyriand trademarks owned by TERAFLUX, whether ttegéxl or unregistered, may not be used in conneutith any product or
service that is not owned, approved or distribitgd ERAFLUX, and may not be used in any manner ighéikely to cause customer confusion or that alisges TERAFLUX. Nothing
contained in this document should be construedrastigg by implication, estoppel, or otherwise, dicgnse or right to use any copyright without #xpress written consent of
TERAFLUX, its licensors or a third party owner @fyasuch trademark.

Printed in Siena, Italy, Europe.

Part numberplease refer to the File name in the document foote

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLISPECIFICATION IS PROVIDED BY TERAFLUX TO MEMBERS "A&" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED
OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIOLAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT,INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGESOF ANY KIND OR NATURE WHATSOEVER (INCLUDING,
WITHOUT LIMITATION, ANY DAMAGES ARISING FROM LOSS (F USE OR LOST BUSINESS, REVENUE, PROFITS, DATA OR GDWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT
CLAIMS BY THIRD PARTIES OR THE SPECIFICATION, WHETHERY AN ACTION IN CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THEORY, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Deliverable numbed7.5 — D8.3

Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 9 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Glossary

Auxiliary Core

A core typically used to help the computation (ariyer core than service cores) also referred
as “TERAFLUX core”

BSD

BroadSword Document — In this context, a file thattains the SimNow machine description
for a given Virtual Machine

CDG

Codelet Graph

CLUSTER

Group of cores (synonymous of NODE)

Codelet

Set of instructions

COTSon

Software framework provided under the MIT licengeH#-Labs

DDM

Data-Driven Multithreading

DF-Thread

A TERAFLUX Data-Flow Thread

DF-Frame

the Frame memory associated to a Data-Flow thread

DVFS

Dynamic Voltage and Frequency Scaling

DTA

Decoupled Threaded Architecture

DTS

Distributed Thread Scheduler (the whole set of J$&nd L-TSUS)

D-FDU

Distributed Fault Detection Unit (per-node FDU,cal2-FDU)

D-TSU

Distributed Thread Scheduling Unit (per-node TSIgp &.2-TSU)

Emulator

Tool capable of reproducing the functional behgviégynonymous in this context of Instruction
Set Simulator (ISS)

ISA

Instruction Set (Architecture)

ISE

Instruction Set Extension

L-Thread

Legacy Thread: a thread consisting of legacy code

L-FDU

Local Fault Detection Unit (per-core FDU, also LIAB)

L-TSU

Local Thread Scheduling Unit (per-core TSU, alseTlSlU, or LSU)

MMS

Memory Model Support

NoC

Network on Chip

Non-DF-Thread

An L-Thread or S-Thread

NODE

Group of cores (synonymous of CLUSTER)

OoOWM

Owner Writeable Memory

(O

Operating System

Per-Node-Manager

A hardware unit including the DTS and the FDU

PK

Pico Kernel

Sharable-Memory

Memory that respects the FM, OWM, TM semanticchef TERAFLUX Memory Model

S-Thread

System Thread: a thread dealing with OS servicé&or

StarSs

A programming model introduced by Barcelona Supemging Center

Service Core

A core typically used for running the OS, or seegicor dedicated I/O or legacy code

Simulator

Emulator that includes timing information; synonymsan this context of “Timing Simulator”

TAAL

TERAFLUX Architecture Abstraction Layer (later renad T*)

TBM

TERAFLUX Baseline Machine (the initial instancetbé TERAFLUX machine)

TLPS

Thread-Level-Parallelism Support

TLS

Thread Local Storage

™

Transactional Memory

T™MS

Transactional Memory Support

TP

Threaded Procedure

Virtualizer

Synonymous with “Emulator”

VCPU

Virtual CPU or Virtual Core

Deliverable numbed7.5 — D8.3
Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 10 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Executive Summary

This deliverable reports on the research carriddirothe context of DoW - Tasks T7.1, T8.2, and
T8.3. The goal is to provide documentation on tERAFLUX simulation infrastructure (based on

HP COTSon) in order to provide a unique refereraretlie first time and advanced users of the
COTSon simulator.

To this purpose, the document provides a shorttitgetstarted” section and continues with an
overview of the main features, such as the ardhitecthe virtualization layer (i.e., the SimNow
component), timers, samplers, and interleaversthiisteps are detailed with the precise command
and the expected outputs. In particular, all théricgethat can be gathered from the simulator &ed t
storage structures (e.g., the database integnatibe isimulator, log files) are presented.

With the aim of helping the user to run simulatiousckly, in the document a set of simple examples
are presented. These examples cover all the ditferiearacteristics of the simulator, such as the
capability of running only functional simulatiome use of samplers, and the simulation of multienod
architectures. Starting from this base of knowledge advanced user can easily start to extend the
simulation platform, in order to simulate and amalyhe behavior of user-defined hardware and
software components. Following this direction, timanual also presents a full set of “TERAFLUX
examples”, one from each partner, where differewaaced aspects related to TERAFLUX research
(e.g., definition of new images, integration of dwaare component, etc.) are reported. These
examples represent also a description of the iategr activity, through the COTSon simulation
platform, of the research of the TERAFLUX partnexs,progressed during the project. The research
example provided by UD also serves as the contedeloverable D8.3. The example illustrates the
main progresses obtained from the integration ®l4b run-time and the TERAFLUX platform.

From this premise, we can conclude that this dociroempletes the series of deliverables for WP7
and WP8, and it's written at this time as the edgrere on using the tool has matured enough. As
previously mentioned, we included also several aded examples (see sections 7 — 17) to show
possible usage in research projects aiming at atrafufuture platforms with 1000+ cores. Hence, all
goals of WP7 and WP8 for the fourth year were aade In the future, this document could
constitute a basis for tutorials and will be re&shfeely for further extensions and improvements.

Document Organization

The purpose of this document is to provide allittiermation needed by a new user to start using the
common simulation platform (COTSon). The documerdrganized into two main parts: from page 5
to page 48 there is a general introduction andrgim of the simulation platform and its main
components, while the rest of the document preseisest of examples demonstrating the use of the
simulator for research activities within the TERAFX project (essentially, one example for each
partner). Given this document organizatiae decide to use sections from 15.1 to 15.4, devbte

the research example from UD, to integrate the coant of Deliverable D8.3 Final Results from

the combination of UD and TERAFLUX dataflow techniques.Thus, example from UD describes
the use of its DARTS run-time ported on the TERARLWlatform. For the purpose of
completeness, we added sections from 18.1 to 18 which we describe the DRT (Dataflow
Run-Time), essentially a simple run-time library that allows to test T* compliant applications
directly on the host systemAlso this section can be considered part of thievBable D8.3

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 11 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Relation to other deliverables

Since the work described in this deliverable referghe activity of all the partners in using the
common simulation platform for their specific resdmactivities, this document shows relations to
several other deliverables. In particular, as gezler will see by reading the rest of the docunthat,
main relations are with:

« D21, D2.2, D2.3, D2.4: analysis and identificatmindataflow potential target applications.
Within the WP2, Thales has ported two main appltcest to the TERAFLUX execution
model, as demonstrated in this document;

* D3.5: transactional memory and OWM memory support;

» DA4.7: compiler technologies targeting dataflow &ailons;

» Db5.4: resiliency technigues (e.g., fault detectinachanisms, etc.) and the OS support for
reliable execution have been developed within tHeBW

* D6.3, D6.4: since the work carried out in WP6 refeer the development of the TERAFLUX
architecture, several examples presented in thgardent clearly use the results coming from
the WP6 (i.e., the TSUF, TSU4, and TSU++ modelstlier hardware TERAFLUX thread
scheduler);

« D7.1, D7.2, D7.3, D7.4: this document is the resdilthe activity carried out within WP7
during the all project time-frame;

» DB8.1, D8.2: this document presents the main resdilthe activity carried out in the context
of WP8. In particular, UNISI and UD continued tochange information regarding their
respective execution models. The result of thigpeoation (WP8) is the porting of UD run-
time on the TERAFLUX system, as also demonstrageithé work in WP9;

 D9.1, D9.2, D9.3: this document presents an exarapfving the results obtained in the
context of WP9.

Activities referred by this deliverable

This deliverable refers to the research carriedimtiask 7.1 (m1-m51), Task 8.2 (m28-m51), and
Task 8.3 (m28-m51). In particular, Task €dvers an ongoing activity for the entire duratioithe
project that ensures the tools are appropriatelgséminated and supported within the consortium

As a summary of the previous work carried out i ¢bntext of WP7 (deliverables D7.1, D7.2, D7.3,
and D7.4), during the first two years, the TERAFLXrtners started using COTSon, and modified it
in order to implement (test and validate) new fesguto meet their research needs. As a resutiof t
activity, we are able to boot a 1000+ cores machir@sed on the baseline architectural template
described in D7.1. The target architecture canaiixpll the features added by the various partteers
the common platform: this is very important for théegration of the research efforts carried out in
the various TERAFLUX WPs. In particular, an initDU interface with the TSU (both DTS style
and DDM style), has been described in D7.2, anthéurdetailed in D7.3. Similarly, in D7.3 a first
model for the development to monitor power consionpand temperature was reported. Finally, the
D7.4, reports the result of an initial knowledgansfer activity. In particular, the document predd
description of the integration research activityotlgh the COTSon simulation platform, as
progressed during the third year of the projeathsas the development of the T* and TSU. Thanks to

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 12 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

an internal dissemination, partners have beenaddsoto transfer their respective research knovdedg
to the other partners.

Task 8.2 and task 8.8overthe joint activity of UNISI and UD. The activity msainly devoted to
interacting each other towards the completion oftipg the UD run-time in the TERAFLUX
platform. As reported in the Annex-I these tasks refer tooamy activities covering the period of
entering the Consortium by UD till the end of thejpct. As a summary of the initial work carried
out in the context of WP8 (deliverables D8.1 and2p8UD and UNISI exchanged information on
their respective execution models (UNISI sharedrmftion regarding activities of all the partners,
acting as the representative of the previous TER&%kconsortium). After this initial period, UD and
UNISI started to identify the best way to integrdl® run-time and the TERAFLUX platform
(essentially by analyzing the features of bothethecution models).

The effectiveness of the Dataflow approach has hegiied on both platforms (Cyclops-64 and
TERFLUX) with a close match on scalability for sarhenchmarks. Transitioning tools from
TERAFLUX to Cyclops-64 was also considered, butfiwally chose the TERAFLUX platform as it
was a better fit as an open-source based reselatébrim

We started with existing tools on each platform amd extensive evaluation was carried out,
achieving an overall improvement of those tools. 8Asesult, we decided to use the UD Runtime
(DARTS) which faithfully implements the dataflowaelet model to show the potentiality of

Cyclops-64 program execution model on the TERAFLiforms (experiments for integrations are
included in this document, while the actual reswitse detailed in D9.3).

Conclusions

The first purpose of this document is to providethé necessary information to start using the
common simulation platform (i.e., COTSon), with pesific focus on the first installation and
configuration phase. The document has also otheritwportant purposes: presenting in a detailed
form, all the components that characterize the kitimn platform, so that the final user is enakied
start designing and developing new hardware andwaod components; second (but not less
important) presenting a full list of research exéapthat serve as a reference for the user in its
research and developing activity for a teradevistesn as described in TERAFLUX (cf. D6.2, D7.1).

This document represents also the culmination lathal work carried out by all the partners during
the project time frame. By inserting examples dpeaf each work package, all the partners
demonstrated to have achieved their research olgsdhrough the usage of the common simulation
platform. All examples have been tested by sey@dhers and by the WP leader (UNISI).

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 13 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1 Getting Started

The goal of this initial part is to enable the uerun a first initial example, starting from swiain
two simple steps.

1.1 Stepl:installation

To use COTSon, you need to install also additisofiivare components, such as AMD SimNow™,
on your Linux system (we refer to Ubuntu 10.04, builar steps can be done, e.g. on Fedora or
other distributions).

The simplest way to get SimNow is through your riné¢ browser (such as Mozilla Firefox, Google
Chrome); you can just click on the following URLdadownload the Linux version of SimNow (at
the time of writing this document, the latest vensof SimNow is 4.6.2):

| http://developer.amd.com/tools-and-sdks/cpu-develop ment/simnow-simulator/ |

The installation process starts by creating th&llagion folder:

[$ mkdir installation_dir |

The following command will copy the downloaded pagé in that folder:

$ mv simnow-linux64-4.6.2pub.tar.gz installation_di r/
$ cd installation_dir

Another prerequisite is the availability of the bsersion’ package. At the same time you can install
‘md5sum’. To install them, for Ubuntu or Debianues

| $ sudo apt-get —y install subversion coreutils |
Alternatively, for Fedora issue:

| $ sudo yum -y install subversion coreutils |

It's warmly recommended that you verify the corrdotwnload of the package with the following
command:

| $ md5sum simnow-linux64-4.6.2pub.tar.gz |

Check that the produced string is the same as ob Adbsite. Then unpack the module as follows:

| $ tar xvzf simnow-linux64-4.6.2pub.tar.gz |

At this point, in order to download COTSon, thddaling command can be issued.

| $ svn co https://svn.code.sf.net/p/cotson/code/trun k cotson |

1.2.1 Configuring COTSon Simulator

Once the two components have been correctly dowehhat is possible to run the configuration and
installation process. The installation process st&®f source file compilation, and installationthe
host system. To run the compilation, the followingmmand must be issued (administrative
permission may be required to complete the process)

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 14 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

$ cd cotson
$./configure --simnow_dir ../simnow-linux64-4.6.2p ub/

It is important to note that during the installatiprocess an error message could be showed ty notif
the user about host system configuration. For itimeilator installation it is required to set thetual
mapping to a minimum value of 4194304. The errossage is:

SIMNOW_DIR: "../simnow-linux64-4.6.2pub/'
ERROR: vm.max_map_count = 2048757 is too small
Increase it to at least 4194304 by running
sudo sysctl -w vm.max_map_count=4194304

To make it permanent, add the following line to letc/sysctl.conf
vm.max_map_count = 4194304

To continue without generating errors, you canassu

| $ sudo sysctl -w vm.max_map_count=4194304 |

Later you can make it permanent as suggested afitneeinstallation process ends by issuing the
following command (this may require 10 to 15 mirsutiepending on the speed of your machine):

| $ make release |

During the compilation phase some windows couldpbpped up. These windows are part of the
installation process and are closed at the enldeoifistallation.

1.2 Step 2: running a first example

In order to verify the correctness of the instadlatprocess (it is worthy to observe that during th
simulation framework installation, several teste automatically run to check the process), it is
possible to run a simple example as follows. Mowéar the example folder:

| $ cd src/examples |

Start the functional simulation of a simple targethitecture through the following command:

| $../../bin/cotson functional.in |

If everything is correct, the user should be pradpb press enter (or ctrl-c to abort). Pressingren
causes the following window to be displayed (Fig. 1

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 15 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

-] El=
File View Special Keyboard Help
TR

| Numeric Display(s) -
| SimulatorStats——— IDE Primary Display— - IDE ndary Display - Diagnostic Part: - Floppy Display

‘W Host Seconds |—U master read !—U master read !lﬁ|ﬁ ‘E |_FB_ 83- 80/ || 0 read

| 20.00 Sim Seconds |7ﬂ master writt=n iiﬂ master writtzn ||E|OD ‘00 inn B87- 84 i 0 written D}
/70}“9 MIPS Resetﬁ\vgl [0 slave read [0 slave read [00 W’EWES-EG

‘W MRS — | _Fl_ slave written |_ __"“E_l_ slave written

| PICIPIO made | PICPIO. mode

.9761761 kjournald starting. Commit interval 5 seconds
.9761911 EXT3-fs: mounted filesystem with ordered data mode.
¢ Rumning sscriptsslocal-bottom ...

¢ RBumning sscriptssinit-bottom ...

.0132821 EXT3 FS on sdal, internal journal
.0948321 shpchp 0000:00:06.0: Cannot reserve MMID region
.09468571 shpchp 0000:00:0a.0: Cannot reserve MMID region
.094883]1 shpchp 0000:00:0b.0: Cannot reserve MMID region
Jetting preliminary keymap. ..
Setting up console font and keymap...
s Starting OpenBSD Secure Shell server sshd
buntu 9.10 cotson ttyl

1 login: root
rd:

login: Wed Nov 24 14:22:57 UTC 2016 on ttyl

Fig. 1 — Graphical control window of the COTSon simulator

At this point, you can click inside the “black” vdow (enlarge it to see the last lines, the icoroieef
the last one in the command bar), press the “pbagton (seventh icon of the command bar in this
picture) and issue, e.g., an ‘I’ command. Oncesdgou can close this window a return to the shell
of the host system.

1.3 COTSon simulator: look at a glance

COTSon is a simulation framework, whose aim isrovjgle an evaluation platform for real systems
like current multi-core Personal Computers consigtdf x86 64 processors and all classical
peripherals, and running available operating systemeh as Linux (or, not shown here, Windows™).

It was originally developed by HP Labs and AMD, antargets cluster-level systems composed of
hundreds or thousands of commodity multi-core n@shektheir associated devices connected through
a standard communication network like, e.g., aciateer.

An accurate evaluation may require to model noty dhke functional behavior (like in common
“virtualizers” like VMWare™, Virtualbox™ and simitq but also the timing behavior of the
architectural components. With COTSon the evalaatin range from high-simulation speed (and an
“idealistic timing model” of 1 instruction per cy)l through an accurate timing model (up to desired
level of accuracy). Moreover, COTSon can trade ktman speed with accuracy by offering about
seven built-in sampling policies that can enhanmmatly the simulation speed (and the user can
provide his/her own sampling policies).

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 16 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1.4 Supported platforms

In order to run COTSon the user needs a computépged with a 64 bit processor. This is required
in order to correctly run the AMD SimNo@M virtualization layer (this component is availablaly

for Linux AMD64 and Windows XP 64-bit version, hoveg the entire simulation framework is
available only under the Linux environment. Hereaftre refer to the virtualization layer simply as
SimNow). CurrentlyCOTSon (v680) requires thel.6.2pubversion of SimNow, while it supports the
following Linux distributions:

Supported Linux Distributions

Debian Fedora Ubuntu

Lenny Werewolf Intrepid

Squeeze Leonidas Jaunty
Goddard Karmic
Laughlin Lucid
Lovelock Maverick
Verne Natty
Beefy Miracle Oneiric
Spherical Cow Precise
Schrédinger's Cat Quantal

Raring

Table 1 — COTSon installation: supported Linux distributions.

The minimum hardware configuration required for the installation is as follows:
» Processor: AMD Athlon™ 64 X2 Dual Core Processor 4600+ or equivalent;

e Memory: 2 GB of main memory (8GB or more recommended);

Please also note that for licensing issues thelatorushould be run on AMD machines, even though
Intel processors are also reported to function).

1.4.1 Running COTSon in a virtualized environment

Installation under Windows environment is suppartbcdough the use of virtualization software (e.qg.,
VirtualBox, VMware, etc.), by allocating enough oesces to the guest machine. This kind of
installation is also suited for shared environmemisere a single server can host several virtuglize
machines. In this case virtualized machine candmotely accessed. For further information on
virtualization software, please refer to the specifanual of AMD SimNow.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 17 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1.5 Document structure

The rest of the document is organized as follonectiBn 2 and section 3, are devoted to the
description of the main characteristics of the satar. In particular, the guide focuses on the gaine
architecture, the mechanism implemented to colieting information, and the description of the
main internal components (such as the virtualizatayer, the interleavers, the samplers, etc.). An
entire section is devoted to the user interfaced useconfigure and interact with the simulator.
COTSon adopts the LUA language (see Appendix-1prtwvide a flexible way to describe the
configuration of the target system (i.e., the &edture of the system to be simulated), and the
parameters for the experiment setup (e.g., funatisimulation vs. timing simulation, structure for
storing collected measures, commands for the Vizatson layer, etc.). Structures for collectingala
during simulation are deeply described in sectiowlile section 6 presents to the user a set gblsim
examples that illustrate all the features previpud#scribed. Following these examples the user
should be able to set-up the simulation environgmamd to run architectural simulations of interest.
Finally, sections from 7 to 17 illustrate advanesdmples that reflect research activity carriediout
the TERAFLUX project at the scale of 1000+ coref1f. They can be used as a reference for
setting-up advanced simulation experiments. Ini@adr, they can be used to understand how to
extend the simulation infrastructure.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 18 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2 Understanding COTSon: Design and Architecture

Simulation, combining some architectural structunesrmits to create virtual systems in which
hardware components are shaped, in order to makefurgctional units, or entire microprocessor
systems. The aim of a simulator is to show, reeod analyze the performances and the behavior of
applications, and select the best architecturedoh of them. Simulators can be also used to develo
new software and hardware components that canusewérified in their behavior. The increasing
complexity of computing systems has made simulatadirst choice for their design and analysis. In
fact, a good simulator infrastructure can help aed®ers, designers and developers in verifying if
their decisions are correct or not, possibly figdsome optimal solutions. Speed, accuracy, full-
system capability and ability to extract specifietrics are the main characteristics of a simulatat
also what makes one simulator different from anothe

COTSon is a simulation framework targeting manyecarchitectures, initially developed by HP
Labs. The key feature of COTSon is the adoptioafahctional-directedsimulation approach, where
fast functional emulators and timing models cootgeta improve the simulation accuracy at a speed
sufficient to simulate the full stack of applicatty middleware and OS. Functional simulation
emulates the behavior of the hardware componergs ®mmon devices such as disks, video, and
network interfaces) of the target system, withoasidering latency information. On the contrary,
timing simulationis used to assess the performance of the systanadels the operation latency of
devices simulated by the functional simulator assuges that events generated by these devices are
simulated in a correct time ordering.

2.1 Major Design Characteristics and comparison with other
simulators

Depending on how the functional and the timing paft the simulator are controlled and on their
relationship, it is possible to define differenpég of simulations:

» Timing-directed or execution-driveihere the timing model of the simulator is in geaof
driving the functional simulation. In this case fectional and timing parts are programmed
tightly coupled to let the two parts cooperate lgasi

* Functional-first or trace-drivenin this case the functional simulation producespen-loop
trace of the instructions that have been exectieen, these instructions will be passed to the
timing simulator. This type of simulator is usuabyilt using particular libraries such as
Atom or Pin;

» Timing-first timing and functional models are decoupled amdnig drives the simulation. In
this approach the timing simulator precedes thetfanal simulator, and uses the latter to
periodically check and correct the simulation sfeteentually functional execution may have
to be undone);

* Functional-directed timing and functional models are decoupled antttional drives the
simulation. In this approach was proposed to tbettier complex benchmarks and to afford
greater speed scalability; the timing feedbackemtsr the timing so that it becomes visible to
the application running on the simulated machine.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 19 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

COTSon uses the later approach (functional direstedlation: the functional and timing simulation
are clearly separated using two interfaces. Thisageh allows reusing existing functional simulator
(very difficult to implement and maintain). COTS®nfunctional simulator is SimNow that
functionally models most of the existing hardwarattcan be found on a modern AMD system (in
this sense it supports generic X86_64 architectu&sNow contains also the internal capability of
timing simulation but such information is complgtediscarded when used in conjunction with
COTSon: only the CPU capability is used in thiseca€OTSon is highly modular, and this
characteristic enables users to select differemnfj models, depending on the particular experiment
they want to perform. It is also possible to prograew timing models (e.g., a new coherence
protocol) or to adapt the existing ones (e.g., eaohing with MESI protocol), and incorporate them
into COTSon. Another very important aspect of COT3® the speed. In fact even if it is not
significant in terms of simulation results, a fallstem model simulator can be five or six orders of
magnitude slower than the real system, and this lbe@pme unsustainable, as it limits the coverage
of experiments. To speed up the simulations COT8ses virtual machine techniques for its
functional simulation (that comprehends just in g€incompiling and code caching) and also
sophisticated techniques such as “dynamic sampling”

2.2 Timing Feedback

As discussed in the previous section, the aim off 8@h is to achieve the best possible trade-off
between simulation speed and accuracy for manyscegstems (e.g., systems equipped with
hundreds or even thousands cores). To this endlébgn choice made was to use a functional-
directed approach, where the functional simulatbbrthe target architecture (fast) is periodically
updated and its timing is integrated with inforroaticoming from timing models of the architecture
components.

In a pure trace-driven systems in fact, there isnfloence on the functional part coming from the
timing part. This does not represent a big limitatin case of single core systems, but can be a
problem in multicore systems. In fact the lattanally change their functional behavior depending on
their performance. For example, threads in a ntifdaded application exhibit different interleaving
patterns, depending on the performance of eactadhfpossibly running on different cores). On
another level, many networking libraries such ass$age Passing Interface (MPI) change their
policies and algorithms depending on the particptaformance of the network

Device functions
and software

Functional events
(instructions, ...)

Functional
Simulator Timing Models
(SimNow)

Timing
information
feedback

Metrics and time
information

Fig. 2 - Interaction between functional simulation components and timing components in COTSon simulator.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 20 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Having timing feedbacki.e., a communication path from the timing to tl@ctional simulator
becomes fundamental for analyzing this kind ofatititns. From this viewpoint, COTSon makes its
functional simulator run for a time intervalt that is dynamically set. The produced stream of
references (i.e., instructions and data memory ss&se but in general “events”) is sent to the
respective CPU timing models. At the end of sudbriral using the metrics coming from the CPU
models, the actual time interval to process sudast of reference is known (saAy) and it is given
back to the functional simulator. The user cancaldferent interval sizes to choose the accuracy-
speed trade-off. Therefore, COTSon (realizing thigle-off between accuracy and speed) enables
users to avoid uninteresting parts of the codeh(sisanitial loading of the system) simulating thaim
lower accuracy.

2.3 Architecture

The COTSon architecture has been developed hamimgind the simulation of clusters. From this
viewpoint COTSon uses a SimNow instance to reptesgch node of the cluster. SimNow has been
augmented, by HP-Labs and AMD, with a double compation layer to allow any device to export
functional events and obtain timing informationl the events are directed by COTSon to the timing
models.

There are two types of communication mechanismsibégd by devices: synchronous and
asynchronousSynchronougsommunication is used for devices that immediatespond with timing
information for each event received (and the ewvlE@s not occur very frequently). An example of
synchronous communication is the simulation ofsk dead by the functional simulator: a read event
(instead of an interrupt) is issued to COTSon, Whitelivers this event to a disk model that
determines the operation's latency, which is use@&imNow to schedule the functional interrupt,
which signals the end of the read.

Synchronous communication is not usable when tiseaehigh frequency of events of this type (e.g.,
main memory accesses, CPU simulation, etc.). Isetltaseasynchronous communicatiaggineeded.
Differently from the synchronous case, the SimNdmusator does not do a call per event, but
produces “tokens” describing dynamic events, thdltlve parsed by COTSon and delivered to the
appropriate timing modules. These modules will lsked by COTSon at specific moments to
aggregate timing information (in term of numberimgtructions and cycles) and give them back to
each functional core.

Timing
simulation

Current

= Previously observed

and predicted CPls

Fig. 3 — Example of timing feedback with asynchronous communication for estimating the IPC in COTSon.

For example, in Fig. 3 we show the situation wheméng module is used for a processor pipeline
with the purpose of estimating the number of Cyétes Instruction (CPI). The resulting CPI, given

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 21 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

back to the functional module, is used by SimNowst¢bedule the progress of instructions in each
core and in this way the timing feedback is useadtlie functional simulations. However in many

situations the timing feedback has to be filtered anodified, in order to obtain an increase in

simulation accuracy. For example if a particulareas mostly idle it doesn't give an accurate estam

of the CPI. To solve this problem, COTSon offerinaing feedback interface that handles these
modifications transparently. This interface is albbe correct and predict future CPl by using

mathematical models, such as Auto-Regressive-Mekiverage (ARMA) model, that is used, e.g., in

forecasting time series. A simple example of thertg feedback mechanism is shown in Fig. 3.

2.4 COTSon installation structure
Once COTSon is installed the user will get a doscstructure as follows:

* bin: contains binaries of the simulator;

» data contains thésdimages and thdiskimages used to run simulations;

» share contains some common scripting files

* src: contains all the files related to the developnwdrihe simulator;

» sandbox it's the template of a ‘sandbox’ on the host usedcontrol a node during the
simulation

» etc COTSon general configuration files

» shin COTSon general system binaries

» daemoncontains files for running the simulator in atdisuted environment (not described in
this document);

» weli COTSon web control (not described in this docunen

Thesrc directory has the following structure:

. src/abaeternbit is the core COTSon infrastructure. This diregtoontains timers, samplers
and the simnow interface;

. src/commontommon utilities (metrics, options, etc.) for afearo and network;

. src/disksimdisksim distribution for COTSon;

. src/distorm/distorm (x86 disassembler) for COTSon;

. src/examplesgimple simulation examples (we will analyze thdtera);

. src/libluabind/C++ binding for LUA (used for COTSon scripting);

. src/network/COTSon (HP) network mediator (for distributed dyramization);

. src/mcpat used for power and area estimation tgrothe HP McPAT tool

. src/slirp/ slirp library (NAT access from guest) for COTSon;

. src/test.regressiorgimple regression tests;

. src/tools/tools to support simulation experiments;

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 22 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3 COTSon components: SIMNOW, Samplers, Interleaver,

Timers

The main parts of a COTSon node, are the functisimalilator SimNow, the timing models (timers),
the sampler, the interleaver, and the time predidforeover, the networkediator and theControl
are two components of COTSon that allow the sinwtabf cluster configurations (Fig. 4). The
dynamically loaded library (DLL@abaeterng is also a fundamental part of COTSon, becausenwh
loaded by SimNow, it determines the time the sitmtais taking, and it contains the implementation
of all types of timers, samplers, etc., that canded by COTSon.

| Time Synchronization, Simulation Parallelization,
Network Instrumentation, Network Statistics, ...

(Inter-node Network/Switch Model)

=

(Node Functional-Model)

Core Core = ' :
2 ELL N =
: | Functional Simulation

1‘;;.

80E[aU| |84U0D) UDS1OD

CPU,
Trace Collection, i AT Memory,
Profiling, Hooks, ... ‘ Timing intertace Interconnects
Timing-Models

(Sampii
e mbs ‘ Sampling driver

Interleaving, ...

Timing Simulation

Fig. 4 — COTSon components overview

3.1 Virtualizer: short introduction to SimNow

It implements the x86 and x86_64 instruction setsluding system devices. It allows the user to
configure a full-system architecture by changing #arious components (i.e., CPU type, number of
CPUs, organization, main memory size, etc.).

SimNow provides several CPU models, dynamic trdimsiaof instructions (the instruction input
stream is translated into C-like language and tiercompiled for the native machine) and
deterministic execution; it can simulate the majorof existing hardware uniprocessor and
multiprocessor that are available on a modern AMBtes. It also uses caching techniques and
supports the booting of an unmodified Operatingt&ys(such as Windows and Linux) over which
some complex applications can be executed. Insfidled mode SimNow performance is around 100-

Deliverable numbeD7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 23 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

200 MIPS (i.e., it has a 10x slowdown with respecthe native execution). It comes with several
Broad-Sword Document (BSD) configurations, i.dgdicontaining setup parameters of a simulated
target machine. The host machine, in which the Isitou runs, and the guest machine, i.e. the
simulated machine, can communicate through a taottadled Xtools mainly constituted of two
commands: i) xput, which is run on the guest toycagdile from the guest to the host and ii) xget,
which is run in th guest to copy a file from theshto the guest SimNow can be controlled from the
shell (command line mode) or through a User Interfé/indow (graphical mode — see Fig. 5). When
using the graphical mode, users see and modiftatiget system configuration (i.e., the configunatio
of simulated devices such as disk images, BIOS, MRAd CPU) from the main windows, and they
can access to the results of the simulation as iMed main window is divided in two main parts: one
shows time results of the simulation, while in thieer a console provides a textual interface fatust

information and a command-line control for the gu@S running in the host.

The part showing time results is called SimStatsiairs composed of 4 components:

* Host Second§l): showing the number of seconds spent (botlsgr and system mode) by

the host CPU, since the simulation has started;

* Sim Second@): showing the time spent in the simulation siftdas started;
 Avg MIPS(3): showing the instantaneous values of the dtoul performances, that is

measured in millions of executed (simulated) ingtams per host.

 MIPS (4): showing the number of simulated instructidrem the start of the simulation,

divided by host seconds;

Below there is th€onsole Window5): providing the guest output and control fa luest OS;

File View Special Keyboard Help

761 kjournald starting. mit interval 5 seconds

in: Running /scrip

¢ Runming ~sscriptssinit-botton ...

821 EXT3 FS on sdal, internal journal

d keymap. ..
Shell server sshd

otson login: root

Last login: Wed Nowv 24 14:22:57 UTC 2010 on ttyl
_inux cntson 2 6 31-22_ceruepr #AB-llhunty SHP Tue (ct 2

O =N O ERC a2 | @
Numeric Display(s)

1 5 Simulator Stats IDE Primary Display— - IDE Secondary Display — Diagnostic Porls Floppy Display
\~ 0.04 Host Seconds 0 master read 0 master read 00 [00 |96 [FB 83-80 | 0 read
2 “——18.07 Sim Seconds | 0 master writien | || 0 master written| | [00 [00 [00 [00 87- 84 0 written

0 Avg MIPS Reset Avg 0 slave read 0 slave read 00 |00 |00 |00 e3-e0
000 MIPS—_ | 0 slave written | O.slave writlen
. > 3 PIOPIO mode PIOPIO mode
~a 4 ! L

3.9761911 EX tem with ordered data mode.

Fig. 5 — Graphical interface of the COTSon simulator. The window contains a toolbar from which interact
with the simulator, a panel displaying statistical information, and a control panel from which interact with

the guest system.

Deliverable numbeD7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD

and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 24 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.2 Samplers

COTSon can be configured to use a full-speed fanati modality or a sampled modality. The
samplers are one of the most important parts of &@iTinfrastructure, as they represent the way
functional and timing simulations are integratedetiher. This can be seen also in Fig. 4, where the
sampler is placed between the front-end (functisimallator) and the back-end (timing models of the
architectural components) of the COTSon node. Sag crucial for asynchronous devices and it is
the process through which the timing simulation gonply simulation) is turned off or on. A good
sampler is required to select a simulation intersiath that the simulation metrics taken in that
interval well approximates the statistics of theolehexecution. So the timing simulation will be
performed only in appropriate moments and for gor@griate duration, thus avoiding the slow-down
of timing simulation.

The type of sampler required for a certain expeninaad the lengths and the type of the samples can
be configured by writing proper values in the COmSonfiguration file (see Section 4). With this
information, the sampler gives a command to enterad the following phases:

* Functional during this phase only functional simulation erformed and so no events are
produced by the simulated devices, that so arelatatiat full speed;

* Warming (simple/detailed): this phase is necessary to gem® functional to timing
simulation; during it the timing models are warmegd to prepare them to the timing
simulation. If only the high-hysteresis elementg{sas caches and branch target buffers) are
warmed up, the warming is said to be simple, otiswif also the low-hysteresis elements
(such as reorder buffers and renaming tables) armed up, the warming is called detailed;

» Simulation this phase is the opposite of the functional phétere the devices must produce
events that are sent to the timing models, satittiétg simulation can be performed,

In order to determine sampling intervals, it ises=sary to find out what are the most representative
and relevant parts of the application's execufidiis selection is based on the phase analysis,hwhic
determines the phases of a program, i.e., the pértee execution that have a similar behavior,
independently of temporal adjacency. Depending ow fthe phases of a program are detected
different samplers can be implemented. The mostoitapt samplers ar&MARTS SimPoint
dynamic samplers, andnterval-basedsamplers. The first two require an a priori piofil or a
preprocessing of the code and don't allow timireglfeack.

—IPC
Exceptions

Fig. 6 — Correlation of the performance information acquired by the simulator with the running application
phases.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 25 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Because of these two characteristics, they resudetless flexible than dynamic samplers and may be
subject to errors due to the absence of timinglfaekl In the interval-based sampler the duration of
each phase (state) of the sampling (functionalmiray, simulation) is fixed. Dynamic Sampling is
based on the consideration that all functional famous (such as fast emulators, like SimNow, or
virtual machines, like VMware) keep track of interstatistics of two types:

» Those related to their internal structures (traimtacache, software TLB), such as code cache
invalidations, code exceptions, and I/O operations;

 Those related to the emulated code, such as nuwbexecuted instructions, memory
accesses, exceptions, and bytes read or writtenftom a device;

Both types of metrics are strictly related to tleddvior and the performance of the emulated sofwar
and can be used to detect phase changes in acaijgplis execution. Fig. 6 shows an example of
how an internal statistic (number of code Excejas correlated to the application's performance
(IPC) and thus to the application's phases. Theamhjm sampler lets a timing simulation start
whenever the first-derivative of the chosen intestatistic overcomes a threshold. After a certain
number of instructions, the simulation returns édflinctional, until the next phase change is detkct
and so on. Fig. 7 shows a schematic view of howaldyn Sampling works.

Monitored !
variable 3 threshold
14 k4 [T]

.

]

Timing

sampies HIHE 0 0o B

Fig. 7 - A schematic representation of how dynamic sampling works.

Different types of samplers can be selected byudes, writing appropriate values in the COTSon
(LUA) configuration file.

3.3 Interleavers

The interleaver is a component that is used duthey simulation of SMP (Symmetric Multi-
Processor), i.e., multi-core systems. In factyfiesvises the buffering and the reordering of thents
coming from the functional simulation. These operet are fundamental when multiple cores are
simulated. To this end, SimNow simulates multi-sovwdth an interleaved sequence. After a certain
interval of time, calledsynchronization quantunduring which the cores operate independently, all
the cores arrive to the same point in time. After $ynchronization quantum, all the events aredtor
in a queue and then they are interleaved. Onhhiatrhoment they are ready to be carried to the
timing models of the CPUs.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 26 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.4 Timers

There is a timer for each architectural componéat tan be simulated, and its role is to collect
events coming from the functional simulation, argk them to update the timing model of the
component. In other words a timer is software fiaulates the timing behavior of each component.
There are timers for the CPU, for the Memory, far tlisks, and for the NIC (Network Interface). The
type of timer (e.g., timer0 — for an in-order sig@adar processor, timerl — for an out-of-order
superscalar processor, bandwidth — for measuriegnmbBmory bandwidth, etc.) can be set in the
COTSon configuration file. The feedback informatisrgoverned by théme predictor based on the
metrics collected by the timing simulation, it d#=s how to feedback information to the functional
simulator.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 27 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4 COTSon configuration

A simple COTSon configuration file (written in ldige ‘functional.in’) to run a functional simulatio

is shown in Fig. 8. It uses the ‘functional temeldfrst line), shows a graphical display for Simno
(second line), where (‘simnow.commands’) the aeadtitral configuration of the SimNow uses the
‘1p.bsd’ (fourth line, that also stores the snapstamd modifications of the running simulation), an
off-the-shelf hard disk image with the Operatingst8yn (this remains unmodified during the
simulation, fifth line), and we enable the journgliof the file system (sixth line)

one_node_script="functional'

display=os.getenv("DISPLAY")

simnow.commands=function()
use bsd('1p.bsd')
use_hdd('karmict4.img')
set_journal()

end

Fig. 8 — A simple COTSon configuration file (written in lua file ‘functional.in’

4.1 Lua Scripting

The COTSon simulation infrastructure is controlleg setting all the relevant information about
simulation and the target system configuration inimput configuration file. COTSon usésia
scripting languageto manage this configuration file. The Lua scrigtlanguage is powerful, fast,
lightweight, and embeddable. It combines simplecpdural syntax with powerful data description
constructs based on associative arrays and extersgmantics. Lua is dynamically typed, runs by
interpreting bytecode for a register-based virtualchine, and has automatic memory management
with incremental garbage collection, making it iddar configuration, scripting, and rapid
prototyping. For further information about Lua laage syntax, see Appendix A — Lua lexical
conventions, and Appendix B — Lua language features

Suppose the user wants to run the functional exanfphctional.i present in the directory
cotson/src/examples

| $ cd cotson/src/examples |

Then simply issue the command:

| $../../bin/cotson functional.in |

This will launch the SimNow window as explainedSaction 1.2 (Step 2: running a first example).

One of the nice features of the Lua scripts is thay accept Lua parameters either in files ohe t
command line. Anything that is not strictly an eixig object, is considered part of the Lua syntax
(see Appendix A — Lua lexical conventions). The lsadpt is the concatenation of the contents of all
the files and the Lua syntax, and it is passednto @art of COTSon that would need it (like the
COTSon Control script — named ‘cotson’, the ‘abamike library). Even if not every part of the
elements written in the Lua file is needed by thesmponents, each of them can select the parts that
are needed.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 28 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4.2 Changing the configuration
The Lua configuration file used in COTSon is diddeto 3 main sections:

* LUA-SECTION-1describes general simulation options. This aciailedoptions table;

* LUA-SECTION-2 describes options/commands for SimNow. This pgrtalled SimNow
table and is used by the control scripts to determme to set up the SimNow execution;

 LUA-SECTION-3 describes the target system configuration inidetahis part is called
build function.Anything inside it or in theoptions tableis used by the abaeterno library.
(Anything that follows may be by the COTSon cont@ald web interface to determine what
kind of execution to make);

4.2.1 Lua-Section-1 —options table
This first section in the Lua file is delimited by:

| options={} |

Here several options can be specified, in partictie following variables can be set:

* max_hanosis the variable where we specify how long we whstsimulation to last in terms
of nanoseconds (e.g. “10M”, see Fig. 9);

» sampler where the type and the various options of thepsanchosen can be specified (e.g.
type="simple” indicates a detailed timing simulati@the opposite of the pure functional
simulation) and quantum="100k” indicates how oftka functional part has to synchronize
with the timing part — see Fig. 9); also note hogvaan nest multiple lua commands.

» heartbeatthis is used to specify how to log statistics (eype="file_last” indicates to dump
all statistics in a file at the end of the simwatand in such case
logfile="on_cpu_simple.log” indicates the name loé file — see Fig. 9). There can be
instantiated up to eight heartbeat options (“hemth’, “heartbeatl=", ...,” heartbeat7=").

Other general options can be:
* max_samplesere the maximum number of samples is specified;
» fastforward here it can be specified an amount of time thlthe skipped by the simulation;

There are also several other types of sampler ablaillike dynamic, interval (see Section 6.3
“Samplers: timing simulation”). Similarly for tHeeartbeatjt is possible to use the sqlite database (or
files) and the statistics can be dumped at interdaking the simulation — see Section 5.2 Database
structure for more details). Whenever the resubtsstored in the database, the user has to spdsdy
two particular fields that arexperiment_icandexperiment_ descriptiomeeded to store the data in
the correct field inside the database tables foirg more experiments. Below (Fig. 9) an examile o
COTSon configuration file — section 1, taken frdra file one_cpu_simple.iis shown.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 29 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4.2.2

options ={

max_nanos:"lOM"l\ This is how we can set the duration of the

entire simulation (in this case 10 millions of

sampler={ nanoseconds).
type="simple",

Sampler options (to set).
quantum="100k"

}I

heartbeat={
_ng: "
type="file_last", This is needed to set the simulator for

logfile="one_cpu_simple.log" storing periodic statistics. Heartbeat is the
} period between two stores.
r

The log file one_cpu_simple.log is where
the statistics are recorded.

Fig. 9 - An example of lua-section-1 of the COTSon configuration file (see also the example
src/example/one_simple_cpu.in).

Lua-Section-2 — SimNow options/commands

This section is opened by the line:

| simnow.commands=function() |

This part is where the SimNow commands are grouppéen the following options must be set
(depending on the type of example the user is ngniii can use a subset of the options listed below

In Fig.

use_bsd(:) here the bsd location is set. Possible typessdf dre available in the folder
cotson/data.

use_hdd(:) here we set the position of where the hard disfige is located, for example
karmic64.img is available in the folder cotson/data

set_journal() this function is needed to enable the journatihthe file system.
send_keyboard(:)this function allows the user to run a commanside the OS of the
simulated machine.

10 the reader can see an example of lutese?, taken fronone_cpu_simple.irOther option

(not show in Fig. 10 - An example of lua-sectiomthe COTSon configuration file (see also
one_simple_cpu.in)) can be:

execute(:) here the user can select the name of a (gudst}dibe executed during the
simulation (e.g., a bash script file). This file gepied from the host to the guest at the
beginning of the simulation and has to be in theeséolder where the lua script is stored.
subscribe_result(:)serves to automatically copy the listed filesnfrthe guest to the host at
the end of the simulation.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 30 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

This function is where the SimNow

. . commands are grouped.
S|mnow.commands=funct|on()//

use_bsd("/cotson/trunk/data/1p.bsd') This location is where the BSD
(BroadSword Document) of the SimNow
is stored in the host. The 1p.bsd sets a
single CPU machine .

use_hdd("/cotson/trunk/data/ka rmic64.im])&

This is the position where the hard

. disk image is located. The
set_journal()

karmic64.img is the image of the

This is needed to enable the Ubuntu Karmic-64 Linux.

journaling of the file system

send_keyboard('gcc-03 -c -w /home/user/test.i')

This command allows the user to run a command
end inside the OS of the machine that is simulated (in

this case Ubuntu Karmik-64-Linux). The hard disk

image contains a test.i file compiled with gec

inside the simulated system.

Fig. 10 - An example of lua-section-2 of the COTSon configuration file (see also one_simple_cpu.in)

4.2.3 Lua-Section-3 — configuration options

This section begins with the command (see Fig. 11):
| function build() |

After that, there is a part where the number okglis the system is specified and for each disk the
appropriate timer is set. Then, in the same ways ifound the number of the various Network
Interfaces attached to the system and to each aneris assigned. Then we can specify the number
of CPUs that are in the system. If the number is,z8e simulation is stopped. The numbering of the
disks, NICs, CPUs will begin from zero (i.e., imaulti-core system CPUs are named as cpu0, cpul,
etc.). Similarly to disks and NICs, to each CPUagipular timer is assigned (e.g. “timer0” means a
simple superscalar in-order processor). For the angmnd caches, it is possible to decide the values
of their main features, such as the latency. Theaong is set following a hierarchical approach, in
other words, usually the setting starts from thénmaemory, then the cache with its levels. For each
cache level, we can set the values of some importaiables, such as:

*« name determines the name of the considered cache level

* sjze determines the total size of the considered chmrat;

» latency determines the hit latency to access the coresidesiche level;

¢ num_setsdetermines the number of sets that are preseheinonsidered cache level,

» write_policy. determines the write policy of the consideredhealevel (“WB” means Write
Back, “WT” means Write Through);

« write_allocate if it is set to true, it means that the considecache level is of type “write
allocate”, otherwise, the cache is of type “write-allocate”;

Once all the memory components are set, we canecbrthem to the CPU using some particular
commands such as:

cpu:instruction_cache(ic)
cpu:data_cache(dc)
cpu:instruction_tlb(it)
cpu:data_tlb(dt).

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 31 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

All the various parts previously described, canseen in Fig. 11, which is an example of lua-
sections3, again taken froome_cpu_simple.in

This function contains the configuration

of the simulated machine.
function build() Here the number of the
i=0
- attached disks to the system
while i < disks(] do < ;
disk=get_diski) :Efu . :"d hu?huﬂp o
disk:timer{ name="disk'_i, type="simple_disk" } i sets the pr
=i+l
end
i=0 . In this case the number of attached
while i < nics() do interfaces (NICs) to the system is
::E':'igfntn!_rl:l[I;: :'ne-'nu: i, type="simple_nic" } checked and for each of the NIC
£ = T - PRE= - ! discovered is set the proper timer.
=i+l B i
end —

Here we get the number of CPU

x=cpus() . : E
if x ~= 1 then !n_mlled in the target system. If
emor|“This experiment only wants to handle 1 cpu") it is different from 1, the
simulation stops. The numbering

end
of the CPU starts from 0.

select and set the time for the CPU with 1D 0.

This memory is the external DRAM of the target
system. It is possible to choose main features such as

mem=Memory{ name="main", latency=150 = latency

Instantiation of the 2™ lavel cache,
with custom features [e.g. atency,
sizes, number of sets).

[2=Cache{ name="12cache", size="512kB",
line_size=16, latency=20, num_sets=4, next=mem,
write_policy="WB", write_allocate="true" }

t2=TLE{ name="I2tIb", page_size="4kB",
entries=512, latency=80, num_sets=4, next=mem,
write_policy="WB", write_allocate="true" }

ic=Cache{ name="icache”, size="16kB", line_size=16,
latency=0, num_sets=2, next=I2,
write_policy="WT", write_allocate="false" }

de=Cache{ name="dcache", size="16kB", line_size=16, Here we set all the various
latency=0, num_sets=2, next=|I2, " components of the caches to the
wirite_policy="WT", write_allocate="false" } oustom values.

it=TLE{ name="itlb", page_size="4kB", entries=40,
latency=0, num_sets=40, next=t2,
wirite_policy="WT", write_allocate="false" }

dt=TLE{ name="dtlb", page_size="4kB", entries=40,
latency=0, num_sets=40, next=t2,
write_policy="WT", write_allocate="false" }

cpu:instruction_cache(ic)
cpu:data_cache(dc) connection of the various components
cpucinstruction_tlb(it) instantiated to the CPU, calling a set of
cpu-data_tib{dt) functions.

end

Fig. 11 - An example of lua-section-3 of the COTSon configuration file (see also the example
src/example/one_simple_cpu.in)

Deliverable numbeD7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 32 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

5 Collecting Metrics

All the collected simulation measures can be peandy stored in a specific data structure. The user
can chose which structure to use for storing infdiom. The simulator provides two types of storing
structures: the simplest idag file, while the more advanced is represented OgtabaseLog file is
generally enough to store data collected duringnalation. However, for keeping track of measures
collected over several simulations, the databagkeidest choice. It allows maintaining information
structured and it allows easily finding specifidaldy simply querying it. COTSon uses a flexible
data storage resorting to a SQL server. By doingC$dTSon allows to search through simulation
results in a more consistent way using a famileaiarative language like SQL.

5.1 Log structure

A log file is a simple text file, where all the informatioatigered by the simulator during a simulation
is written. Since it is a text file, it can be awktically parsed at the end of the simulation. izen
drawback of this structure is that it grows rapigigh the increase of simulation complexity.

5.2 Database structure

The simplest way to use a SQL server to store sl heartbeats (i.e., periodic information
collected by the simulator, such as instructionntpmemory read misses, etc.) is to use SQLite
server (currently at version 3). It should be ithethby default with the Linux distribution. Howavye

it is possible to check for its presence by ushegfollowing command:

[sqlitea |

One example that uses the database is governdteibgdlite.in” lua script in tharc/examples
directory. To run it:

| $ cd src/examples; make run_sqlite |

You can check the content of the database by igsuin

| $ sqlite3 /tmp/test.db |

The tables in the database (hereafter DB for soitp)i can be analyzed by typing the following
command (th&QLite server prompt is presented to the user):

[sqlite> .tables |

This should be the output the list of tables whesallts of the experiment are stored:

These are the tables where the SQLite module stbeeslata if we selecqlite as output for the
simulation heartbeats and the data related toxpergnent. In general, to enable the use of SQLite
storage, the user has to change the configurateoadding the “heartbeat” line in the options gatt

as in the following example (see file ‘sqlite.in’ thesrc/examples directory):

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 33 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

options = {
heartbeat={
type="sqlite",
dbfile="/tmp/test.db",
experiment_id=1,
experiment_description="T1"
h
}
}

In order to get same the data from this DB the sBeuld first look for the needed metric id:

sglite> select * from metric_names where name like '%dcache.write_miss%'; |

The user should get the following output:

And then look for the associated data in the metable using the “metric_id” values.

sqlite> select * from metrics where metric_id = 76;

And obtain a long list (here we show only the thste elements):

This is where things may not seem clear at firge Table is organized so that the first n-1 records

contain the value for every sample in the valuldfi€he last one contains the actual result (is thi
case the sum of all of the previous records). Saitler can get the actual result with:

sqlite> select value from metrics where metric_id=7 6 and heartbeat_id is
(select max(heartbeat_id) from metrics);

The user should be the one showed below, whichldladsp be the same obtained from the flat file:

ect value from metrics where metric_id=76 and heartbeat_id is (select max (heartbeat_id) from metrics):;

As far as the write miss rate is concerned thiagajn, change a bit. This time we are looking for
the sum but for a rate so we can only get the wdileetly:

sglite> select value from metrics where metric_id=2 81 and heartbeat_id is
(select max(heartbeat_id) from metrics);

This time the expected values is:

t max (heartbeat_id) from metrics);

You get more digits from this than from the fldefbecause the value field is a “float8”. You cae s
this by looking at the table schema:

sglite> .schema metrics |

which outputs:

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 34 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

5.2.1 Using a PostgreSQL server:

While using SQLite can be very convenient as iegiyou the ability to store your heartbeats in a
SQL server without the hassle of configuring a IQL server it may not be the best solution if the
user wants to store a very big amount of data aiidavants to offload the burden of saving data to
another machine. In this case the best solutidmeitaimore demanding from the administrator
viewpoint, might be setting up a second computén WostgreSQL and using it to store the heartbeats
produced by the simulations.

As an example in the following the PostgreSQL seigesupposed to run on the same machine
running COTSon (note that the process to run & glassical client-server configuration is the same
as explained here).

As PostgreSQL is not usually installed by defaLit hecessary to install it. Type:

| $ sudo apt-get —y install postgresgl postgresg|-cli ent |

Now the user should have its instance of Postgre§®hand running on the specified machine. To
verify it, the user can issue this command:

| $ netstat -atp | grep post |

This should be the output the user obtains:

If so then you can start configuring PostgreSQmake it talk to COSTon.
5.2.2 Creating the COTSon PostgreSQL database:

In order to configure PostgreSQL the user hasdaterthe “cotson” user in the database:

$ sudo —i

$ su - postgres
$cd

$ createuser cotson

Answer “NQO” (n) to the three questions followindstitommand and then issue:
| $ createdb cotson -O cotson |

The user can verify that everything is ok by quegyPostgreSQL and asking for the databases list:
[$psql -l |
The output should be similar to the following

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 35 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

5.2.3 Configuring PostgreSQL for COTSon connection:

Once the database is ready, the user needs tayomfit, in order to allow incoming connections

from COTSon. To do so the user (still as ‘postgussT is ok) has to modify the following file:

| /etc/postgresql/*/main/pg_hba.conf |

Becoming root, then the user can change the filgngdhe lines highlighted below:

TYPE DATABASE USER CIDR- ADDRESS METHOD
"local" is for Unix domain socket connections onl y
local all all ident

IPv4 local connections:

host cotson cotson 127.0.0.1/3 2 trust # add this line in this place
host all all 127.0.0.1/32 md5

IPVv6 local connections:

host cotson cotson ::1/128 trust # add this line in this place

host all all :1/128 md5

Then the last thing to do is to restart the Po&@leserver. Still as a root issue the command:

| $ /etc/init.d/postgresq| restart |

Finally:

$ psql -d cotson -U postgres -¢c "GRANT ALL PRIVILEG ES ON DATABASE cotson
TO cotson;"

$ psql -d cotson -U postgres -¢ "ALTER USER cotson WITH PASSWORD
‘cotson’;”

At this point the user can press two times thel“Dtrto exit the postgres user shell and the rdwmlls

5.2.4 Creating the PostgreSQL COTSon db schema:

Then, there is need for creating the databasetsteuasing the file éxperiment_definition " in
the ‘src/tools/ ’'directory.

[$ cd srcitools

We modify for example add the following line at #d of the file, instead of:

We can write:
| INSERT INTO experiments(experiment_id, description) VALUES(1,T1); |

Then we can enter again the DB with:

| $ psql -h localhost -d cotson -U cotson |

At the prompt, provide the password ‘cotson’

To setup the database schema:

| Postgres=# \i experiments_definition |

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 36 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

This should output:

Then we return to the shell with “Ctrl-D”.

5.2.5 Modifying the “.in” file to save our heartbeats in PostgreSQL:

At this point the configuration phase is complet&d.check that this works, we can modify the
sqlite.in example as follows:
$ cd src/examples

$ cp sqlite.in pgsql.in

Then we can modify the file “pgsqgl.in”, by changitige heartbeat type from “sqlite” to “pgsql” and
setup the “dbconn=...”" line as shown below:

heartbeat = {
type="pgsql",
dbconn="host=localhost dbname=cotso n user=cotson password=cotson",
experiment_id=EXP,
experiment_description="T1"

h

5.2.6 Running COTSon with PostgreSQL

Now, the user is ready to run a complete experiman€OTSon and stores the collected statistics in
the PostgreSQL database server.

[$.././bin/cotson pgsgl.in |

The user should be aware that using PostgreSQEkrsenvthe same machine can be painful slow. As
a rule of thumb, the user should expect that flas fare the fastest way to save your data, there i
SQLite server as a middle speed solution, whiletgpeSQL server (on the same machine) is the
slowest option.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 37 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

6 Simple Examples

All the examples that will be refer to, can be fdum the following path:
| cotson/src/examples |

A more complete verification test can be launchgéyping the following command:
| $ make run |

In this case, several examples contained in thenpbeafolder are sequentially executed. Following
this verification procedure, the reader can seferdifit examples executing, each of them targeting a
specific feature of the simulator.

From this folder, the user can also run a speeX@mple that have been setup through the Makefile,
by typing the following command:
| $ make run_ nane_of _the_exanpl e |

Where the stringhane_of _t he_exanpl e identifies the file name associated to the exan(iyiee
“Is *.in” to see names of possible examples. Eay.running the “functional.in” example type:
[$ make run_ functi onal |

6.1 Functional Simulation example (functional.in)

As said in the first part of the guide, a functibsiaulation doesn't use timing at all. For thiagen it
is very fast but assuming an ideal (“CPI=1" timimgpdel). Here, the Lua fileunctional.in(see Fig.
12 below) that will be used.

one_node_script='functional'
display=os.getenv("DISPLAY")

simnow.commands=Ffunction()
use_bsd{'ip.bsd')
use_hdd('karmicé4.img"')
set_journal()

end

Fig. 12 — Lua configuration file for running a pure functional simulation with COTSon.

6.1.1 Goal of the experiment or example

As can be seen in the previous figure, in the sthigre is the optiondhe_node_script=...'that tells
COTSon to refer to a template “functional”, whiabneains default options for running a functional
simulation. The second line of the code is neededidplay the SimNow Graphical User Interface.
Then, there are the SimNow commands that allowuer to choose the bsd and hdd by inserting
their absolute paths or otherwise by placing therdd bsd and hdd in the directory cotson/data.

6.1.2 Location of the involved files

All the files needed to run the example are coetin the following folder:
| $SCOTSONHOME/src/examples |

Where £OTSONHOME is an environment variable identifying the instidla path of the COTSon
simulator.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 38 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

6.1.3 Detailed instructions to start
To run one example, move on the following folded éaunch the simulator:

$ cd src/examples
$ make run_functional

To start the simulation it is necessary to press gtart button (circled in red in Fig. 13 — see
subsection 6.1.4). At this point the simulation Ist&rted and the prompt of the guest (emulated)
machine can be used.

6.1.4 Expected output
After launching the application the graphical us¢erface should appear as follows:

Elle View SpesialKeyboard Help

H’“’l“iﬂ‘*‘f‘\ [=] e
Numeric Display(s) =
- Simulaior Stats | IDE Primary Display | - IDE Secondary Display - Diagnestic Ports | Floppy Display

| 0.04 HostSseonds 0 masterread | | 0 master read | |[00 [00 (96 [FB. ss—an‘i} 0 read

3 masterwiten| 160 50 [30 [0 87 84| [@ witton

[1807 Sim Ssconds I 0 masterwritsn

| omoWPs Aewiag|| Odwerss [0 smer [6 [03 [0 [0 =3-20|
[000 MiPs — || 0 slave writen | || S Sl wentan
[PIGFIO mode [FIOPIC mode

3.9761761 kjournald starting. Commit interval 5 seconds
3.9761911 EXT3-fs: nounted filesystem with ordered data mode.

4.0132821 EXT3 FS on sdal, internal journal

4.0941841 shpchp 0000:00:06.0: Cannot ve MMIO region
4.094209]1 shpchp 0000:00:0a.0: Cannot reserve MMID region
4.094235]1 shpchp 0000:00:0b.0: Cannot reserve MMID region

g preliminary keymap. ..
up console font and keymap...
ta g OpenB3D Secure Shell server sshd
tu 9.10 cotson ttyl

otson login: root

Last login: Wed NHov Z4 14:2Z:57 UTC 2010 on ttyl
Linux cotson Z.6.31-ZZ-server #68-Ubuntu SMP Tue Oct 26 16:50:02 UTC 2010 xB6_64

To access official Ubuntu documentation, please visit:
fhttp: - help.ubuntu.cons
poot@cotson:™# _

Stopped

Fig. 13 — Expected output for the “functional.in” example

6.2 Memory tracing example (mem_tracer.in)

To analyze in detail the performance of a systeis, éften useful to record a trace of the refeesnc
that are flowing through the system. This is supggbrin COTSon through the “tracers”. In the
“mem_tracer.in” example we can see how to setupcet.

mem=Memory{ name="main", latency=150 }

trace=Tracer{ name="trace", trace file=TRACE_QUT, next=menm }

bus=Bus{ name="bus", protocol='MOESI', latency=25, bandwidth=4, next=trace }
busT=Bus{ name="tlb_bus", protocol='MOESI', latency=25, bandwidth=4, next=mem }

Fig. 14 — Relevant lines of the Lua configuration file for the memory tracer example. In this case the lua
script contains another variable (not shown here) that sets TRACE_FILE="/tmp/mem_tracer.txt.gz”

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 39 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

6.2.1 Goal of the experiment or example

Memory tracing is achieved by placing a transpaodiect that intercepts every memory request and
dumps this information to a file for further anagysThis is how it is specified in the example
mem_tracer.in. The ‘trace=" option inside théuild function specifies to intercept every access to
the main memory. The tracer is not only limitedite main memory, it is also possible to intercept a
request to any memory unit in the memory hierar@®iyply placing the tracer before L2 or L1
cache, it is possible to intercept every acceshaaespective cache. A memory tracer is addekeo t
memory hierarchy through the line (see also Fi}. 14

| trace=Tracer{ name="...", trace_file="...", next="..."} |

The tracer is defined inside tbeild function of the Lua configuration script. Its pareters must be
defined in a Lua table callétacer. This table has three fields: (i) the fieldmespecifies the name
of the “tracer object”, (ii) the fieldrace_file specifies the file where the trace output is duthn@ad
(iii) the field nextspecifies the name of the memory unit whose adsasgercepted by the tracer. As
mentioned above, this type of objects can be platasy position of the memory hierarchy to trace
different hardware blocks. In the examphem_tracer.init is placed just before the main memory
(setting next=mem), so it will record each memargess in a file, specified by writing:

| trace_file=" path_of the file' |

The output of the tracer is a gzip compressed ftlextA line in the output corresponds to a single
memory access where each line is composed of fildsf The first field is a time-stamp of the
access, the second field indicates the accessitgpér’ for read and 'w' for write, the thirddafourth
fields indicate the physical and virtual addressespectively; finally, the fifth field specifiesdm the

cpu where the access is originated and the typeogactions generated at each level of the memory
hierarchy (see Fig. 15).

6.2.2 Location of the involved files
All the files needed to run the example are comigin the following folder:

| SCOTSONHOME/src/examples |

Where £OTSONHOME is an environment variable identifying the instiadla path of the COTSon
simulator.

6.2.3 Detailed instructions to start

To run the example, move on the example folderthad run the example as follows:

$ cd src/examples
$ make run_mem_tracer

6.2.4 Expected output

After launching the application the following traiseproduced by the program, and displayed on the
host shell:

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 40 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1
442
448
647
838

1025
1031
1223
1224
1666
1858
1860
1877
2084
2565
3008
3011
3202
3388
3388
3389
3838
4029
4474
4660
4846
4851
4853
5077
5330
5772
5777
5976
6169
6355
6355
6808
6809
7032
7253

=
.
b
;
v
r
o
i
=
5
:
.
2
5
-
r
-
r
b
¢
v
r
o
i
=
5
.
.
2
5
"
o
-
r
b
¢
=
r
o

r

OXFFFFFFFFB8101268C
0x0000000001775E50
OXFFFFFFFF810126C0O
OXFFFFFFFF81012700
OXFFFFFFFF81012A40
0x0000000001775DF8
OXxFFFFFFFF81012A80
OXFFFFFFFF81011E60
0x0000000001775E38
OXFFFFFFFF81011E83
0x00800000019FCBSO
0x00800000019F3FB8
OxFFFFFFFFB81012AC1
OxFFFFFFFF81012801
OxFFFFFFFF810140D0
OXFFFFFFFF81014100
0x00000000019FC6D8
OXFFFFFFFF81014141
0X00000000019F3F78
OxXFFFFFFFF810106D23
0x000000000179C898
OXFFFFFFFF81010D41
OXFFFFFFFF8152ETEQ
OXFFFFFFFF8152E801
OXFFFFFFFFB152E748
0x00000000019F3F38
0x0080000001904FA8
OxFFFFFFFF8152E781
OXFFFFFFFFB152E841
OxFFFFFFFFB81064F00
0x00000000019FE378
OXFFFFFFFFB81064F40
OXFFFFFFFFB81064F80
OXFFFFFFFFB81064FCO
0x0000000001821120
OXFFFFFFFF81045B73
0x0000000001A060E8
OXFFFFFFFF81045B86
OXxFFFFFFFF81065000
0x000000000177401C

tmp/mem tracer.txt.gz

OxFFFFFFFF8181268C
OxFFFFFFFF81775E50
OXFFFFFFFF810126C0
OXFFFFFFFF81012700
OxFFFFFFFF81012A40
OXFFFFFFFF81775DF8
OxFFFFFFFF81012A80
OXFFFFFFFF81011E60
OXFFFFFFFF81775E38
OXFFFFFFFF81011E83
OxFFFF8800819FCB98
BOxFFFFB800019F3FB8
OXFFFFFFFF81012AC1
OxFFFFFFFF81812B01
OxFFFFFFFF810140D8
OxFFFFFFFF81014100
OxFFFFB8800819FC6D8
OXFFFFFFFF81014141
OXFFFF8800019F3F78
OXFFFFFFFF81010D23
OxFFFFFFFF8179C898
OxFFFFFFFF81010D41
OXFFFFFFFF8152E7EQ
OXFFFFFFFF8152E801
OXFFFFFFFF8152E748
BxFFFF8800819F3F38
OxFFFFFFFF81904FA8
OxFFFFFFFF8152E781
OXFFFFFFFF8152E841
OxFFFFFFFF81064F00
OxFFFF8800819FE378
OxFFFFFFFF81064F40
OXFFFFFFFFB1064F80
OXFFFFFFFF81064FCO
OxFFFFFFFF81821120
OXFFFFFFFF81045B73
OxFFFF880081A060B8
OXFFFFFFFF81045B86
OXFFFFFFFF81065000
OXFFFFFFFF8177401C

[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
:[cpud(icache
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
[Trace:
:[cpud(dcache

[Trace

[Trace

[cpud(icache
[cpud(dcache
[cpud(icache
[cpuB(icache
[cpud(icache
[cpud(dcache
[cpud(icache
[cpud(icache
[cpud(dcache
[cpud(icache
[cpub(dcache
[cpub(dcache
[cpud(icache

[cpud(icache
[cpud(icache
[cpud(dcache
[cpud(icache
[cpue(dcache
[cpud(icache
[cpud(dcache
[cpud(icache
[cpud(icache
[cpuB(icache
[cpud(icache
[cpub(dcache
[cpub(dcache
[cpub(icache
[cpud(icache
[cpud(icache
[cpud(dcache
[cpud(icache
[cpud(icache
[cpud(icache
[cpud(dcache
[cpud(icache
[cpud(dcache
[cpud(icache
[cpub(icache

R)(1l2cache
W)(l2cache
R)(l2cache
R)(1l2cache
R)(12cache
W)(1l2cache
R)(12cache
R)(l2cache
W)(1l2cache
R)(12cache
R)(12cache
W)(12cache
R)(12cache
R)(1l2cache
R)(1l2cache
R)(12cache
R)(12cache
R)(1l2cache
W)(l2cache
R)(12cache
R)(12cache
R)(12cache
R)(12cache
R)(1l2cache
R)(1l2cache
W)(12cache
R)(12cache
R)(12cache
R)(12cache
R)(1l2cache
R)(1l2cache
R)(12cache
R)(12cache
R)(l2cache
R)(l2cache
R)(1l2cache
R)(1l2cache
R)(1l2cache
R)(12cache
R)(1l2cache

R)(bus

R)11

RX)(bus R)1]

R)(bus
R)(bus
R)(bus

R)11
R)11
R)1]

RX)(bus R)]1]

R)(bus
R)(bus

R11
R)11

RX)(bus R)]1]

R)(bus
R)(bus

R)1]
R)11

RX)(bus R)]]

R)(bus
R)(bus
R)(bus
R)(bus
R)(bus
R)(bus

R)11
R)11
R)11
R)11
R)11]
R)11

RX)(bus R)1]

R)(bus
R)(bus
R)(bus
R)(bus
R)(bus
R)(bus

R)11]
R)11]
R)11]
R)11
R)11
R)1]

RX)(bus R)]]

R)(bus
R)(bus
R)(bus
R)(bus
R)(bus
R)(bus
R)(bus
R)(bus
R)(bus
R)(bus
R)(bus
R)(bus
R)(bus
R)(bus

R)1]
R)11
R)11
R)1]
R)11
R)11
R)11
R)11
R11
R)11
R)1]
RI11
R)11
R)11

Fig. 15 — Expected output for the memory trace simulation with COTSon simulator.

The same result can be found in the host file:

| /tmp/mem_tracer.txt.gz

As can be seen in the Lua configuration filem_tracer.inthe chosen sampler is of type interval,

meaning that a timing simulation is done after dixetervals of time, and has a fixed duration (more
details on samplers are in Section 6.3). Duringsiheulation, for each sample the time elapsed from
the beginning of the simulation and the calculdRd are printed on the shell screen (see below).

Modification to the sampling policy is available tine examplesrace_stats.inrandmem_tracer2.in.
Here, the traces are obtained by changing the ofpine CPU's timer (see Fig. 16) and setting
TRACE_OUT="tmp/mem_tracer.txt.gz".

while 1 < cpus() do
-- we assign a timer that dumps all instructions
-- and prints stats of them at the end. The traces
-- are stored in /tmp
get_cpu(i):timer{ name='cpu'..i, type="trace stats",
trace_file=TRACE_OUT(1i) }
i=i+1

end

Fig. 16 — Lua configuration file for setting the timer to trace_stats.in example

Deliverable numbed7.5 — D8.3
Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 41 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The trace_stats is in this case a “fake” CPU tilfs&e ‘./abaeterno/timer_cpul/trace_stats.cpp’ for
more details) that prints some trace statistidhénspecified file. The output on the host screethiis

case is:

In the case ofmem_tracer2.inexample (see Fig. 17 below) the “fake” timer is€mmracer (see
‘.Jabaeterno/timer_cpu/memory_tracer.cpp for maraits)

while 1 < cpus() do
cpu=get_cpu(i)
cpu:timer{name="cpu'..i, type="memtracer",
tracefile=TRACE_OUT,
shared="false",
binary="false",
size="16MB" ,line_size=64,num_sets=8 }
i=1+1

end

Fig. 17 - Lua configuration file for setting the timer to mem_tracer2.in example.

The output on the screen is:

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 42 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

And the content of trace file is:

The values in this case represent in order: i)niim@mber of nanoseconds (timestamp), ii) he type of
operation (r for read, w for write), iii) the addeeinvolved, iv) the content of the x86 CR3 registe
and v) the cpu identifier.

6.2.5 Defining the Region Of Interest (ROI)

Although the discussion of how to setup a the Reddd Interest is presented as part of a tracer
example, the technique is general and serves teureaetrics related to the portion of the codé tha
is marked by the user.

COTSon comes with the capability of timing simuatiof a specific part of a benchmark, hereafter
referred to askegion Of Interes(ROI). Currently this is achieved in two ways, tiwst one is to
enable the timing just before the benchmark startsto disable it right after the benchmark fingshe
This approach considers the whole benchmark aBR@ile The second approach is to mark a portion

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 43 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

of the benchmark for which a timing simulation égjuired. A practical example of the first approach
is provided insidesrc/examples/tracefseeFig. 18).

options = {

sampler={ type="selective_tracing”,guantity="2",
constructor="sampler constructor",changer="zone changer" },
}
-— the function that decides what timer to use
function sampler constructor (i)
if 1 == 0 then resturn {type="no_timing", quantum="1M"} end
if 1 == 1 then return {type="simple”, gquantum="1M"} end
end
-- the function that decides the zone segquence
function zone_changer (start,i)
if start then -- entering zone 1
print ("### entering zone " .. i}
return 1
end
if not start then -- leaving zone i
print ("§## leaving zone " .. 1)

return 0
end

endl
Fig. 18 — The definition of the ROI in the example cotson_tracer.in

To achieve this, the sampler to be used must bgpef “selective_tracing; which in essence is a
collection of other samplers, each of which is uaden a certain condition is met during the entire
simulation. For the specific scenario, the selecgampler is composed of two sample&rs: timing
andsimple In this case, the simulation runs in a timing mad in functional mode until a certain
trigger is given by the application (see belowkrthanother trigger stops the timing simulation,
therefore freezing the timing statistics update.

The configuration filecotson_tracer.ifFig. 18) is an example, which shows how these parameters
are specified.run.sh is the script that executes inside SimNow (sincasi specified by the
“execute(‘run.sh’)” simnow.commands function) abddntains specific commands (or “triggers”) to
mark the start and the end of the timing simulatibhis requires that the selected hard-disk image
(hdd) provides the ‘cotson_tracer’ executable (ihithe case for the “karmic64,img” hdd that comes
by default with COTSon) essentially, tlwdtson_traceris an helper program that takes three
arguments and is supposed to be used inside tleatexescript as in the following format:

cotson_tracer 101 0

./benchmark

cotson_tracer 101 1

The first argument specifies the type of the sampded, number 10 is reserved $etective_tracing
The second argument is an integer value used #&deatification of the simulation zone for which
timing simulation is enable/disabled (in this c#se indicates “Zone 17). Finally, the third argunte
is a switch to enable/disable the timing simulatidence, cotson_tracer 10 1 0 implies that timsg i
enabled for zone 1 and cotson_tracer 10 1 1 imfiestiming is disabled for zone 1.

A finer grain control is possible too. In this cade steps are the following:

i) The user as to include the “cotson_tracer.h” heamtewvided in the src/example/tracer
directory;

i) The wuser can then mark the portion of code of ager (ROl) with a
COTSON_INTERNAL(10,1,0) to start the timing simudet for “Zone 1" and
COTSON_INTERNAL(10,1,0) to stop the timing simudatifor “Zone 1”;

Note that, in this case, it is hot necessary teehhe “cotson_tracer” helper program in the hddgena

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 44 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

6.3 Samplers: timing simulation

There are several types of samplers available kchibeir implementations in the folder
cotson/src/abaeterno/sampler). Here we discuss dedads about the following four samplers:
* simple: timing simulation is always on. For example thype of sampler is used in the
example configurationne_cpu_simple.jn
* interval: the duration of each phase (state) of the samgpgfimctional, warming, simulation)
is fixed. This type of sampler is used in the exlmpconfiguration in
multiple_cpu_interval.in
» dynamic: the sample intervals are determined dynamicafiyhe sampler according to the
variation of a monitored variable This type of sénfis used in the example configuration in
dynamic.in
« SMARTS: the duration of each phase (state) of the samp{fogctional, warming,
simulation) is fixed, but the sampling instants det¢ermined by a previous profiling phase.
This type of sampler is used in the example coméijon insmarts.in

To specify the full timing simulation the lua fit®ntains the following (see filene_cpu_simple.)n

sampler={ type="simple", quantum="100k" }, -- quant umis in cycles |

To specify the interval based simulation, wheredkecution takes systematically a given amount of
time for the functional, warming and timing simidet, the lua file contains the following (see file
multiple_cpu_interval.in

sampler={ type="interval", functional="1M", warming ="100k", simulation="100k", },
-- the sampler will execute warming , simulation and then functional for
-- their respective interval length s. After the first simulation sample,
-- though it will finish (due to ma x_samples being 1)

To specify the interval based simulation, wheredkecution takes systematically a given amount of
time for the functional, warming and timing simidet, the lua file contains the following (see file
smarts.in; this is similar to the “interval sampling” but this case a profiling phase is also required”:

sampler={ type="smarts", functional="100k", warming ="100k", simulation="100k", },
-- the sampler will execute warming , simulation and then functional for
-- their respective interval length s until reaching 1M nanos

To specify the dynamic based simulation, whereettecution is switched to full timing according to
phases that are detected through an “non-timingalke (in this case the variable is the number of
exceptions on any cpu simulated), the lua file aimst the following (see fildynamic.in:

sampler={ type="dynamic", functional="100k", warmin g="100k", simulation="100k",
maxfunctional=10, sensitivity="90
variable={"cpu.*.other_exceptions W1
-- the sampler will execute warming , simulation and then functional for
-- their respective interval length s until reaching 1M nanos

The length of the intervals, where functional, wign full-timing simulation is performed, is
specified in a way similar to the interval simutati If the first-derivative of this variable goesyond

the sensitivity (set by the lingensitivity="90") there is a phase change in the program and so a
timing simulation can start. The variabteaxfunctional="10" is needed to set the maximum number
of time intervals passed in the functional statéofgea new timing simulation starts. This type of
sampler is used in dynamic.in. As you can see #am20 the intervals between the printed values of
time are not regular but they are variable.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 45 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

6.3.1 Goal of the experiment or example
The main purpose of the example is the illustratibthe use of different sampler.

6.3.2 Location of the involved files

All the files needed to run the example are cowigin the following folder:
| $SCOTSONHOME/src/examples |

where £OTSONHOME is an environment variable identifying the instidla path of the COTSon
simulator.

6.3.3 Detailed instructions to start for NO Sampling (“simple”)

To run the example, move on the example folderthed run the example as follows:

$ cd src/examples
$ make run_one_cpu_simple.in

6.3.4 Expected output for NO Sampling (“simple”)

After launching the application the following outmhould be obtained (see Fig. 21). In this cdse, t
timing simulation is always on:

Fig. 19 — Expected output for “simple” sampler example. The example is based on the one_cpu_simple.in
Lua configuration file.

6.3.5 Detailed instructions to start for Dynamic Sampling

To run the example, move on the example folderthed run the example as follows:

$ cd src/examples
$ make run_dynamic

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 46 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

6.3.6 Expected output for Dynamic Sampling

After launching the application the following outmhould be obtained (see Fig. 20):

TIME=0.09375 ms IPC (0.868536)
TIME=0.21875 ms IPC (0.937296)
TIME=0.625 ms IPC (1.01141)
TIME=0.71875 ms IPC (1.05867)
TIME=0.8125 ms IPC (1.25066)
TIME=1.1875 ms IPC (©.607328)
TIME=1.59375 ms IPC (1)
TIME=2 ms IPC (1)
TIME=2.40625 ms IPC (1)
TIME=2.5625 ms IPC (1)
TIME=2.6875 ms IPC (1)
TIME=3.09375 ms IPC (1)
TIME=3.5 ms IPC (1)
TIME=3.6875 ms IPC (1)
TIME=3.78125 ms IPC (1)
TIME=4.1875 ms IPC (1)
TIME=4.59375 ms IPC (1)
TIME=5 ms IPC (1)

TIME=5.1875 ms IPC (©.271158)
TIME=5.59375 ms IPC (1)
TIME=6 ms IPC (1)
TIME=6.28125 ms IPC (1)
TIME=6.375 ms IPC (1)
TIME=6.78125 ms IPC (1)
TIME=7.1875 ms IPC (1)
TIME=7.3125 ms IPC (©.0359127)
TIME=7.71875 ms IPC (1)
TIME=8.125 ms IPC (1)
TIME=8.28125 ms IPC (1)
TIME=8.375 ms IPC (1)
TIME=8.78125 ms IPC (1)
TIME=9.1875 ms IPC (1)
TIME=9.59375 ms IPC (1)
TIME=10 ms IPC (1)

MAX NANOS: 10000000

Fig. 20 — Expected output for dynamic sampler example. The example is based on the dynamic.in Lua
configuration file.

6.3.7 Detailed instructions to start for Interval Sampling

To run the example, move on the example folderthad run the example as follows:
$ cd src/examples
$ make run_multiple_cpu_interval

6.3.8 Expected output for Interval Sampling

After launching the application the following outhould be obtained (see Fig. 21). As a variant, i
this case 4 CPUs are simulated, the simulatioassfbrwarded for 2 second and then the next 50 ms
are simulated with full timing but up to 5 samplleat are taken at successive regular instants:

Fig. 21 — Expected output for interval based sampler example. The example is based on the
multiple_cpu_interval.in Lua configuration file.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 47 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

6.3.9 Detailed instructions to start for SMARTS Sampling
To run the example, move on the example folderthed run the example as follows:

$ cd src/examples
$ make run_smarts

6.3.10 Expected output for SMARTS Sampling

After launching the application the following outpghould be obtained (see Fig. 21). In this case,
similarly to the dynamic sampling, the samplingams$ are not uniformly distributed with the time:

Fig. 22 — Expected output for SMARTS sampler example. The example is based on the smarts.in Lua
configuration file.

6.4 Simulation of Ethernet connected clusters

A cluster is a set of loosely coupled computers wark together as if they were a single computer.
COTSon has the capability of simulating clustes #ire interconnected through an Ethernet based
network card and through a simulated switch (calteddiator”) by using an individual full-system
instance of SimNow for each node. It is worth oficethat the SimNow instance run in parallel & th
simulation host has enough cores.

6.4.1 Goal of the experiment or example

When simulating a cluster with COTSon there is fimsoe component that is heeded to connect all
the SimNow instances of the different COTSon nodadied Mediator (i.e., a component in the

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 48 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

simulator architecture that is responsible to mantge network communication among different
nodes of the simulated system — see also Fig.H3. dpplication, together with other external tools
such asSlirp, allows more than one COTSon node (i.e., an instarf SimNow plus abaeterno) to
communicate with the rest of the network. COTSoregponsible for coordinating the activity of the
nodes, which are possibly running in different niaeb. The simplest example about clusters is
twonodes.in that implements a cluster of two nodes pingindheztber.

6.4.2 Location of the involved files
All the files needed to run the example are comigin the following folder:

[$COTSONHOME/src/examples |

Where £OTSONHOME is an environment variable identifying the instiadla path of the COTSon
simulator.

6.4.3 Detailed instructions to start
To run the example, move on the example folderthed run the example as follows:

$ cd src/examples
$ make run_twonodes

6.4.4 Expected output
After launching the application the following outiould be obtained (see Fig. 23):

giovanna@giovannapc:~/Scrivania/cotson/src/examplesS$ make run_twonodes
Running a cluster of 2 nodes pinging each other

Simulation runs in background -- be patient (a few minutes)

Type =<return> to start or =ctrl-c> to abort

Firing console view
node ©
node 1
executing vncviewer in background: vncviewer :58
no display found
Firing console view
node @
node 1
executing vncviewer in background: vncviewer :51
executing vncviewer in background: vncviewer :50
pDumping the network trace
time 409246 from fa: to Ffofr:ff:ff:Tr: len 64
time 489246 from fa: :8:1 to farcd:1:8:8:
time 409246 from fa: :8:1 to fa:cd: :
time 409305 from fa: :0:2 to fa:cd:
time 409305 from fa: HH fa:cd:
time 409305 from fa: :0:
time 409403 from fa:
time 607435 from fa:
time 608500 from fa:
time 667532 from fa: cd
time 668597 from fa:cd:
time 868629 from fa:cd:
time 869694 from fa:cd:
time 1068726 from fa:cd:1:8:0:1 to fa:c
time 1069815 from fa:cd:1:8:0:2 to fa:c
[16] time 1069815 from 0:08:0:0:8:0 to 0:0:0:0:0:0
glovanna@giovannapc:~/Scrivania/fcotson/src/examples$ l

1 0 0 1
1:0:0:2
1:0:0:1
1:0:8:2

Fig. 23 expected output for the example where mediator component is used. The example is based on the
twonodes.in Lua configuration file.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 49 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

While the simulation is running, the following wioms (see Fig. 24) should appear on the screen
indicating that the two nodes have been bootechditey are communicating each other:

File ¥iew Sog Hlz View Special Keyboard Help
Y [[- [a 1[a]e
Numeric Display] Nurmeric Cisplay(s) «
- Simulator Stals| - Simulator Stats- |DE Primary Display—— - IDE Sacondary Display| - Diagnostic F ||
@HDSI Sec 21.54 Host Seconds | ©42,080 master read 0 mastor read ||| 00 (o0 |98 |1
|18.45 Sim Se’iE 18.45 Sim Saconds | 121,072 mastor written| 0 master written| [0 [00 |00 |
| 818 Avg MIP] 923 Avg MIPS Bosar A\,gl [0 slave read 0 slavareac [ag oo foo |
| 0.08 MIPS i 5.09 MIPS I l,,,,,,,,, Oslavewritten ||| 0 slava written
iDMNP\O mode PIO/PIO muode vl

57 UTC 2810 on tiyl

uer #68-Ubuntu SAF Tue Oct 26 16:50:0Z UTC ZB10 x86_h4|
cumcntation, pleasc wisit:

..rsdatascluster.sh b : sh .-sb

Running Bunning

Fig. 24— Two simulator windows are used to manage the two communicating nodes of the simulated system.

Deliverable numbed7.5 — D8.3
Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD

and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 50 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

7 Research Use Case from BSC

This section shows how to use the TERAFLUX systerage and benchmark repository that has been
put in place to ensure partners use a common dawelat platform and can reproduce each other's
results.

7.1 Goal of the experiment or example

The goal is two-fold: to show how the system image be used for development, and show how
experiments from the benchmark repository can he ru

7.2 Location of the involved files
First of all, one must download the system imagi\arify its integrity by downloading files

| wget http://lwww.teraflux.eu/sites/teraflux.eu/files lteraflux-v5.img.bz2 |
Then:
| waget http://www.teraflux.eu/sites/teraflux.eu/files fteraflux-v5.img.bz2.md5 |

Then executing:

$ md5sum -c teraflux-v5.img.bz2.md5
teraflux-v5.img.bz2: OK
$ bzip2 -d teraflux-v5.img.bz2

Next, one must download thieeraflux Simulation Managg(tfsm), a simple script to help using the
image:

| $ svn co https://teraflux.eu/svn/tfx/tfsm |

This script requires installing a few packageswal as support for hardware virtualization in arde
to provide maximum performance during developmeut rative testing:

$ sudo apt-get —y install gemu-kvm libvirt-bin vina gre gemu-system virt-manager gcc-4.4

$ sudo adduser “whoami* kvm
$ sudo addgroup libvirt

$ sudo adduser “whoami’ libvirt
$ sudo modprobe kvm-amd

The benchmark repository is included in the imaige ibut it can also be independently downloaded:

| $ svn co https://teraflux.eu/svn/tfx/ems |

7.3 Detailed instructions to start
To start developing with the image, one must $tamwith the following command:

| $ /ttsm/tfsm edit teraflux-v5.img 512 2 |

This will start a virtual machine with 2 cores &it?2 MB of memory, ready to use for development
and benchmark testing. Once the virtual machineining, one can start installing programs and
developing. Both the login and password aser.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 51 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

After the changes are ready, one can launch meltipdes to test the benchmarks natively. First of
all, the maximum number of nodes must be estaldigein this case), and the editable virtual
machine must be stopped. The following commands babe issued at the virtual machine prompt:

$ sudo ./guest/nodes 2
$ sudo halt

One can then start two identical nodes to runibigied benchmarks natively witfsm

$./tism/tfsm gemu teraflux-v5.img 2 512 2

Creating inter-node network...

Creating VMs...

You can now connect to the VMs (e.g., 'virt-manager " or 'vinagre :5900"
[Press enter to destroy all Vms]

The benchmarks are run with tBgperiment Management Systé@mg that is included in the image
(this command again can be issued inside the Vintaghine):

$ cd ems
$./ems run kernels/cholesky small

7.4 Expected output

Running 'kernels/cholesky/smpss' small into kernels /cholesky/smpss//run/1
$ cat kernels/cholesky/smpss/run/1l/ems_output

+ cholesky_simple 64 64

25003147, 907

Since the experiment is natively run igeémt mode (using hardware virtualization), the actual
contents of thems_outpufile will change.

7.5 Further references to more in-depths

The tfsm script also includes commands to start SImNOW @@ir'Son nodes. Please refer to the
README file in thetfsmrepository, and the environment-specific detaflstber partners for more
information on the necessary arguments.

The emsscript also handles benchmark compilation, evendh the TERAFLUX disk image comes
with pre-compiled benchmarks. Please emmswithout arguments and read tREADMEfile in the
emsrepository for more details. To update the benckmapository in the TERAFLUX disk image
run:

$ cd ems
$ svn https://teraflux.eu/svn/tfx/ems update

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 52 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

8 Research Use Case from CAPS

This section describe the experimental platfornduseevaluate, first, the new CAPS compiler back-
end developed during the project, and second then®@C dataflow extension, on the common
TERAFLUX architecture using the SImNOW virtualizati system and the COTSon simulation
platform. The experimentation has been performedao@onvolution benchmark programmed in
OpenHMPP and offloading the parallel computationtt@CPU using a C back-end.

8.1 Goal of the experiment or example

The goal of the experiment is to validate the ekenwf the OpenHMPP Convolution benchmark on
the COTSon system. This experiment will perfornuactional validation of a code pre-compiled by
the CAPS compiler by the execution of the binagetber with the CAPS compiler runtime.

8.2 Location of the involved files

To run the experiment, one has to use the tooltemmgnted by the collaborative effort from UNISI &
BSC: the COTSon simulation platform with the asated SimNow virtualization system, and the
Teraflux Simulation Managdtfsm). The COTSon system is taken from the trunk:

| $ svn co https://svn.code.sf.net/p/cotson/code/trun k cotson |

The tfsm is fetched from the original source:

| $svnco hitps:/iteraflux.eu/svn/tix/tfsm |

The other files have been developed at CAPS eigeeising a branch of the CAPS many-core
compiler and the access is subject to a formalesigio CAPS entreprise:

e karmic64-capse.imgthe image containing the CAPS compilation framdwand the
Convolution example, it contains pre-compiled fifesm the CAPS compiler, and requires
only a minimal SDK;

« CAPSCompilersRuntimes-3.3.4-TFtarb#2e CAPS compiler run-times for compiling the
OpenHMPP applications;

» CAPSCompilersSDK-3.3.4-TF.tar.b2Be CAPS compiler SDK (partial, without the cofapi
binaries, does not need a license token generator);

« CAPSCompilersRuntimes-install-she automatic deployment script;
e capse.inthe Lua configuration script running the expernimneith timing enabled;

e capse-interactive.in the Lua configuration script running the functbnsimulator in
interactive mode;

8.3 Detailed instructions to start
Deployment

This experiment requires the deployment of the G&B@piler run-time, and the recompilation of
the Convolution application on a virtual machineaga. For that purpose one has to use the “edit”
mode of thefsm(see previous section):

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 53 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

| $./tfsm edit karmic64-capse.img 512 2 |

Then, one has to perform a standard installatigh@fprototype CAPS-compiler run-time and simply
builds the Convolution application. Note that thegeerations are easier to perform wiém is
modified to run QEMU with a tunnel for SSH in p@&22:

$ cp tfsm tfsm-capse
<REPLACE the corresponding lines below in tfsm-caps e>
cmd_edit () {
which $QEMU >/dev/null || error "cannot find QEMU: $QEMU"
sys $QEMU -enable-kvm -hda $IMAGE -m $MEM -smp $NCO RES -redir tcp:2222::22
}

Doing so, the update process can be automatizg issinc andssh commands from the host:

$./tfsm-capse edit karmic64-capse.img 2048 8 &

$ scp -P 2222 CAPSCompilersRuntimes-install.sh root @localhost:/home/user/CAPSe/

$ scp -P 2222 CAPSCompilersRuntimes-3.3.4-TF.tar.bz 2 root@localhost:/home/user/CAPSe/
$ scp -P 2222 CAPSCompilersSDK-3.3.4-TF.tar.bz2 roo t@localhost:/home/user/CAPSe/

$ ssh -p 2222 root@localhos7 /home/user/CAPSe/CAPSC ompilersRuntimes-install.sh

$ ssh -p 2222 root@localhost 'shutdown -h now'

On Ubuntu/Debian Linux distributions, the usage le# QEMU virtual machine requires the user to
belong to the “kvm” group (as in the previous exéampf Section 7). Note that in this example, the
host machine is called “localhost” and executes@@TSon system. Once the deployment of the
CAPS-compiler performed on the COTSon system ha mone, the experimental snapshot is
prepared using the SImMNOW:

$ export PATH="$PATH:."; In —s ../simnow-linux64-4. 6.2pub/simnow
$./tism-capse simnow karmic64-capse.img 4 4p-reset .bsd

Note also that théfsm script needs to know the installation locationtloé SimNow virtualization
system (it can be set through the SIMNOW envirortalevariable). At the end of the boot process,
the snapshot is prepared with the appropriate emwient (in the console after the login root/root):

$ cd /home/user/CAPSe

$ source CAPSMC/bin/capsrt-env.sh
$ cd Convolution

$ make clean && make

After the initialization is completed, the user glibstop the simulation and save the snapshot under
the name “4p-capse.bsd” in the COTSon data dirgctor

COTSon Simulation

The functional validation is performed using a sfeg containing the CAPS-compiler run-time and
the Convolution example ready to run. A very simpilea configuration scriptcgpse.in is called
using the following command:

| $../cotson/bin/cotson capse.in |

The lua configuration script activates the standenthg of the simulation using the abaeterno lifpra

and the “build” function. It also uses the “fastf@rd” keyword to delay the simulation up to the
OpenHMPP kernel execution. The simulation can bécked in visual mode if the appropriate line
comments are removed from the Lua configuratiofipscfhe core command of the script is the

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 54 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

following:

simnow.commands=function()
use_bsd('4p-capse.bsd’)
use_hdd(‘karmic64-capse.img’)
set_journal()

end

send_keyboard('./convol-hmpp.exe -e 1 data/Michal -* tif -0 ./Michal.tif")

The functional validation of the computation is ddmy the comparison of the picture generated by
the Convolution execution with a valid referencheTiming result of the simulation is stored in the

file “node.1.hmpp_simple.log”.

An interactive mode is available with the scripapse-interactive.in”, a variant of the previous one
activating the functional simulator with the SimNomindow enabled. The user has to run the
simulator, and then it can interact with the agglan. An overview of the simulator window is given

in Fig. 25.

8.4 Expected output

The deployment and installation output is the felleg. It must contain a correct compilation

Convolution example and a proper execution.

of the

[laorans@noval8 ~]$ ssh -p 2222 root@ localhost /home/use r/CAPSe/CAPSCompilersRuntimes - install.sh
root@localhost's password:

Uncompress package

------ Clean Convolution -----

rm -rf *convolution*_c.hmg *convolution*_c.hm g.0 *convolution*_c.hmg.rc.o *convolution*

rm -rf

rm -rf src/picturelnterface.o src/mainutils.o src/f ilters5x5.hmpp.o src/main-hmpp.hmpp.o convol-hmpp.e
hmpp_c.translated.o

rm -rf src/*.hmpp.o src/*.translated.o

rm -rf properties_tune_*.psc

rm -rf *_out.tif out*.tif

rm -rf core.*
rm -rf *.translated.i *.extracted.* *.halt.* *.hdpp * *.inline.* *.preproc.* *.capstune.i
rm -rf *__hmpp_acc_region__*.0 *__hmpp_acc_region__ * fatbin *__hmpp_acc_region__*.hmf

—————— Build Convolution -----

gcce -Wall -fopenmp -DHMPP_V3b -DHMPP_OPTIM_2 -DHMPP _C -c-03 -Isrc/ -0 src/picturelnterface.o src/pict
gce -Wall -fopenmp -DHMPP_V3b -DHMPP_OPTIM_2 -DHMPP _C -c -0O3 -Isrc/ -0 src/mainutils.o sre/mainutils.c
gce -Wall -fopenmp -DHMPP_V3b -DHMPP_OPTIM_2 -DHMPP _C -c -0O83 -Isrc/ -o srcffilters5x5.hmpp.o srcffilte
srcffilters5x5.¢:48: warning: = hmppsi_lookup = defined but not used

srcffilters5x5.c¢:54: warning: - hmppsi_g_convolution_lookup defined but not used

gcce -Wall -fopenmp -DHMPP_V3b -DHMPP_OPTIM_2 -DHMPP _C -c -0O3 -Isrc/ -0 src/main-hmpp.hmpp.o src/main-h
src/main-hmpp.c: In function Emain I

src/main-hmpp.c:49: warning: ignoring #pragma hmpp

src/main-hmpp.c:58: warning: ignoring #pragma hmpp

src/main-hmpp.c:59: warning: ignoring #pragma hmpp

src/main-hmpp.c:60: warning: ignoring #pragma hmpp

src/main-hmpp.c: At top level:

src/main-hmpp.c:108: warning: “hmppsi_lookup I defined but not used
g++ -C -Ilhome/user/CAPSe/CAPSMC//include -I/lhome/u ser/CAPSe/CAPSMCl/include/openacc -fPIC -0 convolu
g++ -shared -fPIC -o convolution_c.hmg convolution _c.hmg.o
gcce -Wall -fopenmp -DHMPP_V3b -DHMPP_OPTIM_2 -DHMPP _C -083 -0 convol-hmpp.exe src/picturelnterface.o sr
src/main-hmpp.hmpp.o convolution_c.hmg -Im -Itiff - |1z -WI,-rpath,/home/user/CAPSe/CAPSMC//slib -WI,-rp
L/homefuser/CAPSe/CAPSMC//lib -lhmpprti -lhmpprt -| hmpperr -lhmppstr -lhmppos -lhmppabi -lhmppos -lhmp
------ Run Convolution
.Iconvol-hmpp.exe -e 1 data/Michal-Osmenda-Mont_Sai nt_Michel-CC_BY_SA_2.0.tif -0 ./Michal-Osmenda-Mon
[0.056758] (0) WARN : Cannot find libOpenCL.s o: dlopen() failed: libOpenCL.so: cannot open share
disabling OPENCL support.
[0.058255] (0) INFO : --> allocate <convoluti on> at src/main-hmpp.c:48
[0.058295] (0) INFO : - Acquire the device 'host#0"
[0.058362] (0) INFO: - Allocate buffer ‘filter5x5_1::heighlfilter5x5_: igh' (4 x[] =
[0.058408] (0) INFO : - Allocate buffer filter5x5_1::width|filter5x5_: dth' (4 x[] =
[0.058440] (0) INFO : - Allocate buffer ‘filter5x5_1::inRaster|filter5x5_2::outRaster' (4
memory on device ‘host#0")
[0.058473] (0) INFO : - Allocate buffer ‘filter5x5_1::outRaster|filter5x5_2::inRaster' (4
memory on device ‘host#0")
0.058505] (0) INFO : <-- allocate <convoluti on> at src/main-hmpp.c:48
[0.058526] (0) INFO : --> allocate, data <con volution> at src/main-hmpp.c:50
0.058551] (0) INFO : - Allocate mirr or 0x4040a0 "stencil1" (4 x [25] = 100 bytes of hos
0.058581] (0) INFO : - Allocate mirr or 0x404120 "stencil2" (4 x [25] = 100 bytes of hos
0.058610] (0) INFO : <-- allocate, data <con volution> at src/main-hmpp.c:50
0.058633] (0) INFO : --> advancedload, data <convolution> at src/main-hmpp.c:54
0.058654] (0) INFO : - Upload mirror 0x4040a0 "stencill" (4 x [25] = 100 bytes to devic
0.058697] (0) INFO : - Upload mirror 0x404120 "stencil2" (4 x [25] = 100 bytes to devic
0.058721] (0) INFO : <-- advancedload, data <convolution> at src/main-hmpp.c:54
0.058743] (0) INFO : --> advancedload, args <convolution> at src/main-hmpp.c:57
0.058759] (0) INFO : - Bind buffer 'fi Iter5x5_1::heighlfilter5x5_2::heigh' to address 0x7
BYTES_PER_PIXEL * heigh'
0.058775] (0) INFO : - Bind buffer ‘fi Iter5x5_1::width|filter5x5_2::width' to address 0x7
0.058790] (0) INFO : - Bind buffer 'fi Iter5x5_: Raster|filter5x5_2::outRaster' to addr
0.058811] (0) INFO : - Upload buffer * filter5x5_1::heighlfilter5x5_2::heigh' (4 x[] = 4
0.058835] (0) INFO : - Upload buffer " filter5x5_1::width[filter5x5_2::width' (4 x [= 4
0.058858] (0) INFO : - Upload buffer * filter5x5_1::inRaster|filter5x5_2::outRaster' (4 x
'host#0")
0.070573] (0) INFO : <-- advancedload, args <convolution> at src/main-hmpp.c:57
0.070656] (0) INFO : --> callsite <convoluti on> at src/main-hmpp.c:62
0.070673] (0) INFO : - Bind buffer 'fi Iter5x5_1::heighlfilter5x5_2::heigh' to address 0x7
BYTES_PER_PIXEL * heigh'

_c.hmg.fatbin

xe srcffilters5x5_c.translated.o src/main-

urelnterface.c

rs5x5_c.translated.i

mpp_c.translated.i

tion_c.hmg.o convolution_c.hmg.cc

c/mainutils.o srcffilters5x5.hmpp.o
ath,/home/user/CAPSe/CAPSMC//lib -
plog -Iphmpp -lhmppr! -lopenacci -lopenacc

t_Saint_Michel-CC_BY_SA_2.0_out.tif
d object file: No such file or directory,

4 bytes of host memory on device ‘host#0")
4 bytes of host memory on device 'host#0")
x [2793, 1920] = 21450240 bytes of host

x [2793, 1920] = 21450240 bytes of host

t memory on device 'host#0")
t memory on device 'host#0')

e 'host#0")
e 'host#0")

fff69c4afd8 'opt.m_expansion *

fffé9c4afd4 ‘width'

ess Ox2af3ac422010 rasterl’

bytes to device ‘host#0")

bytes to device 'host#0")

[2793, 1920] = 21450240 bytes to device

fff69c4afd8 'opt.m_expansion *

Deliverable numbeD7.5 — D8.3

Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD

and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 55 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

[0.070690] (0) INFO : - Bind buffer 'filter5x5_1: W|dth|f|\ter5x5 2::width' to address 0x7fff69c4afdc ‘width'
[0.070705] (0) INFO : - Bind buffer fi Iter5x5_1:filter' to address 0x4040a0 'stencill
0.070720] (0) INFO : - Bind buffer fi Iter5x5_ _2::outRaster' to addr ess 0x2af3ac422010 ‘(Raster2D_C) rasterl’
0.070735] (0) INFO : - Bind buffer 'fi Iter5x5_1:: inRaster' to addr ess 0x2af3ad897010 '(Raster2D) raster2'
0.070759] (0) INFO : - Call codelet 'f ilter5x5_: 1‘ (on device 'host#0")
0.401762] (0) INFO : <-- callsite <convoluti on> at src/main-hmpp.c:62
0.401860] (0) INFO : --> callsite <convoluti on> at src/main-hmpp.c:65
[0.401878] (0) INFO: - Bind buffer fi Iter5x5_1::heighlfilter5x5_2::heigh' to address 0x7 fff69c4afd8 ‘opt.m_expansion *
BYTES_PER_PIXEL * heigh
0.401895] (0) INFO : - Bind buffer fi Iter5x5_1::width|filter5x5_2::width' to address 0x7 fff69cdafd4 ‘width'
0.401911] (0) INFO : - Bind buffer 'fi Iter5x5_2:filter' to address 0x404120 'stencil2'
0.401926] (0) INFO : - Bind buffer 'fi Iter5x5_1::outRasterlfilter5x5_2::inRaster' to addr ess 0x2af3ad897010 '(Raster2D_C) raster2'
0.401941] (0) INFO : - Bind buffer fi Iter5x5_ Rasterlfilter5x5_2::outRaster' to addr ess 0x2af3ac422010 ‘(Raster2D) rasterl
0.401961] (0) INFO : - Call codelet 'f ilter5x5_2' (on device 'host#0")
0.730020] (0) INFO : <-- callsite <convoluti on> at src/main- hmpp.c:65
0.730122] (0) INFO : --> delegatedstore, arg s <convolution> at src/main-hmpp.c:68
0.730146] (0) INFO : - Download buffer "filter5x5_1::inRaster|filter5x5_2::outRaster' (4 x [2793, 1920] = 21450240 bytes from device
host#0")
0.735362] (0) INFO : <-- delegatedstore, arg s <convolution> at src/main-hmpp.c:68
0.839454] (0) INFO : --> free, data <convolu tion> at src/main-hmpp.c:89
0.839540] (0) INFO : - Free mirror 0 x4040a0 "stencill" (4 x [25] = 100 bytes on device 'host#0")
0.839600] (0) INFO : - Free mirror 0 x404120 "stencil2" (4 x [25] = 100 bytes on device 'host#0")
0.839626] (0) INFO : <-- free, data <convolu tion> at src/main-hmpp.c:89
0.839645] (0) INFO : --> release <convolutio n> at src/main-hmpp.c:90
0.839663] (0) INFO : - Free buffer ' filter5x5_1::outRasterlfilter5x5_2::inRaster' (4 x [2793, 1920] = 21450240 bytes on device
'host#0")
[0.841287] (0) INFO: - Free buffer ' filter5x5_1::inRaster]filter5x5_2::outRaster' (4 x [2793, 1920] = 21450240 bytes on device
'host#0')
0.842541] (0) INFO : - Free buffer ' filter5x5_1::heighlfilter5x5_2::heigh' (4 x [] = 4 bytes on device 'host#0')
0.842586] (0) INFO : - Free buffer ' filter5x5_1::width[filter5x5_2::width' (4 x[] = 4 bytes on device 'host#0')
0.842627] (0) INFO : - Release the device 'host#0'
0.842655] (0) INFO : <-- release <convolutio n> at src/main-hmpp.c:90
ernel time: 0.676843

The correct result of the COTSon simulation in gismode is showed in Fig. 25. Please note that the
warning message is normal, considering that thtéopha does not support OpenCL.

[1] AMD SimNow Main Window -- Public Release (on x

File ¥iew Special Keyboard Help

EEEEEICEIE
Numeric Display(s) ~
- Simulator Stats——— —IDE Primary Display— ~ IDE Secondary Display - Diagnostic Ports - Floppy Display
| 17.38 HostSeconds | 0 masterread | | 0 masterread | |00 00 [00 [FB 83- 50 || 0 read
| 19554 Sim Seconds I 0 master writien M 0 masterwritien |00 [00 [00 [00 87-84 || 0 writien
[2o mgrares Remml [0 slave read ‘[—u slaveread | (00 [00 |00 [00 #3-80
[a5 wes [0 slavewriten (/[T 0 slave writien
[PIOPIC mods HP\O{P\O mode

.0 src/main-hmpp
: In functio

49 #pragna hmpp
#ipragma hmpp
#pragna hnpp
ring #pragma hmpp

‘hnppsi_lookup’ defined but not used
MC/ v i de —I/home/userCAPSe/CAPSHC,/includesope
-fPIC -0 ci T = D nvolution_c.hng.cc
j++ —shared IC -o convolut _c.hng convolution_c.hng.o
—~DHMPP_VU3b -DHHWPP_OFTIN_Z -DHMPP_C -03 -o EDIIUﬂl hmpp .exe src|
picturelnterface.o sre/mainutils.o sre/filtersSxS.hnpp.o s o
c.hmg —Im —1tiff -1z -W1,-rpath, honesuse
ser/CAPSe/CAPSHC/~1ib -L/homesuser. FIPSE/CHFSHC//llb

Clock skew detected. VYour build may be incomplete.
i .sconvol-hmpp.exe —e 1 datasMichal-=.t

.sMichal.tif
1 (9) WARN :

+ 1.28571
rootBcotson:shonesuser/CAPSe/Convolution#t _

PRESS key: Qti=y:1000023 scancode=0x38

Fig. 25 — Results of a COTSon simulation on the OpenHMPP Convolution example.

8.5 Further references to more in-depths
Further details about the CAPS many-core compderhle found in deliverables D3.5 and D4.7.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 56 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

9 Research Use Case from HP

This section describes the mapping of TERAFLUX agagpions, compiled to T* ISA, and running on
the simulation platform. This work was driven by HRcollaboration with all partners.

9.1 Goal of the experiment or example

By performing simulations and analyzing the reswith a full-system simulator, one can gain a
thorough understanding of how the proposed ardhitedoehaves, how to improve it, and how to
validate the results. The focus of this sectionas the precise timing model in simulation, but the
capability to simulate interesting benchmarks asutands of cores, and multiple nodes, through the
T* ISA. While the current evaluation does not yebyide precise inter-node timing results, the
preliminary evaluation already enables scalabilityeasurements, addressing the dominant
performance bottlenecks of the applications.

Another aspect of this section is the mitigationr@dource requirements in many-node simulation.
Multiple nodes simulation of parallel programs riggsl more resources than single node simulation.
Unless precautions are taken, programs with tremengarallelism or running on a large number of
nodes will saturate memory resources, and evenadadn any host machine. In the following the

resource requirements in the host and guest maeliiinee analyzed, and a set of solutions to reduce
the memory usage both in host machine and guestineawill be also proposed. The solutions are
implemented and integrated in the COTSon simulator.

HOST MACHINE

COTSON NODE 1 |

Shared Memory

—————{ GUEST MACHINE - - -
\ Functional simulation
@ all new frd DF-Frames
worker1 workerd a ——3= thread t tcreate (}{} ‘_a Al s TID1
e TD1
rrrrou D1
s reseate DF-Frames { ldboklfor TID3 TID2
T (TLS) TCREATE . |, uint64 t* tcache t:(? i TID3
= el o %f/’/ ©/copy back
TCACHE
TID3 = al storage
T oy @ oPY|P 1o
[asks] }

TID4 resources allocation

& synchronization IPC

task1

worker2 _(COTSON NODE 2
p— task2 |

TS AT

== [e | |

—t ¥

[COTSONNODE 3 o

Cr=greres

Timing model Emﬂ' l
& 5
- _J

Fig. 26 — Multi-node simulation with COTSon

Fig. 26 shows the multiple-nodes simulation strreeton COTSon. The host machine is where the
COTSon instances are running on. COTSon supporitgpfaenodes simulation by allowing multiple

Deliverable numbed7.5 — D8.3

Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 57 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

instances of COTSon, while the communication anttissonization of the instances go through the
mediator component. Thguestmachine is the machine (both hardware and opegratstem level)
that is simulated by a COTSon instance. One wof&ereach CPU within the guest machine is
created. Each worker will poll the centralized tagleue for ready tasks. At the execution of each
task, the T* instructions will be trapped by COTSonfunctional simulation. In the figure, taskri i
worker 4 (COTSon node 1), TCREATE (i.e., TSCHEDURHED®6.3, D6.4, D7.4,) and TCACHE will
be trapped by COTSon, and call the registered fumstcreateandtload on the COTSon node where
the guest machine is simulated on, respectively. the purpose of illustrating how dataflow
applications are managed within the simulationfptat, the T* instructions’ implementation in the
COTSon simulator (for further information, the reactan refer to deliverables D7.2, D7.4 and
deliverables D6.2, and D6.3) is briefly recalled:

» TCREATE is trapped by COTSon to the functional simulatiang then the registered function
tcreatewill be called (Fig. 23, step 1 and 2). It wilytto allocate a new DF-frame for the new
DF-thread in the shared memory. If allocation isca&ssful, the new identifier for the DF-frame
(TID1 in this case) will be returned as the resilthe execution of the assemble TCREATE.
DF-frames in shared memory is shared by all COT8onesses, and protected with locks.

e TCACHE is used to cache the remote frame locally. It Wil trapped by the functional
simulation, and then the registered functtoachewill be called. The DF-frame id is passed
along with TCACHE. In step 2, it will look up forlD3 in the shared DF-Frames, if it is found,
the entire DF-frame will be copied from host to giuevore precisely, the DF-frame will be
copied from the shared memory to the local heapHiw worker thread and the local copy’s
pointer will be returned to TCACHE finally (step.5Jhen in this task, one could directly
modify/read this DF-frame. At the timidestroyis called, the modifications will be synchronized
and could be seen by other tasks/nodes.

 TLOAD is a shortcut for a specialized, current-threadiva of TCACHE. It will be trapped by
the functional simulation, and then the registdtagattiontload will be called. The current thread
id is stored within thread local storage and usedjét current DF-frame in the shared DF-
Frames, if it is found, the DF-Frame will be copiedm host to guest, and the local copy’s
pointer will be returned to TLOAD. Another differem between TLOAD and TCACHE is that
the frame loaded by TLOAD is read-only. The datrexd in the DF-frame is needed by the
computations in the current thread.

« TDECREASE makes the target thread designated by thread li¢ tdecremented by either at
the time it is called (eager tdecrease) or upamiteation of the current thread (lazy tdecrease, at
the time TDESTORY is called). It will be trapped ttye functional simulation, and the registered
functiontdecreasewill be called. In eager tdecrease, the targeffilafme id and is passed along
with TDECREASE. It will look up for the target DFame, once it is found, it decreases the
synchronization Count (SC) by Then it checks the value SC after decrement, riédaches to
zero, the corresponding thread is moved to theyrgadue. In lazy tdecrease, the TDECREASE
instruction will be cached.

» TDESTROY is trapped to the functional simulation, resultinga call to the registered function
tdestroy This function will terminate the current threaadadeallocate its DF-frame in Shared
DF-Frames. If running in lazy mode, it will aggrégand execute the cached instructions (e.g.
several TDECREASE to the same thread will be agdeshto a single TDECREASE) before
deallocation.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 58 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Note that the implementation of the T* ISA extemsi;m the COTSon simulator covers the
development of the distributed Thread Scheduling thodels (TSUF described in this section, and
TSU4 described in section 17).

With the aim of investigating the performance o tf* instruction implementation in the COTSon
simulator, a set of experiments with multiple-nsttraulations using 5 benchmarks (Fibonacci, Gauss
Seidel, Matrix Multiplication, Sparse LU and Vialanes - Thales's pedestrian detection) have been
conducted. Except for Fibonacci, all benchmarks enage of the Owner Writable Memory (OWM)
support. The benchmarks have been implemented onditferent flavors. One flavor is to write
programs with the low level T* instruction set wgilC-level “built-in”"s (Fibonacci and Matrix
Multiplication); the other flavor uses OpenStreana ahe TERAFLUX compiler support to express
dataflow parallelism, and has been used for theeraomplex benchmarks (Gauss Seidel, Sparse LU
and Viola Jones). The multi-node implementation tfoe latter benchmarks uses the OpenStream
extension for OWM. The run-time support library f@penStream (to match dependences over
streams) is integrated into the COTSon run-time.

120 Multiple Nodes Simulation on COTSon

sparse lu

guass seidel

matrix multiplication
viola jones

fibonacci

100f

IINL

80F

60

Speedup

40

4 8 16 32 64

. Number of cores (number of Nodes * 4 cores/node)

128

Fig. 27 — Speedup of five different dataflow benchmarks running on different number of cores/nodes.

A few results on 128 cores and 32 nodes are showigi 27. More details can be found in the WP2
deliverable. With the aim of enabling the readeruio one of these specific benchmarking examples,
in the following the single node simulation of MatMultiplication benchmark is described in details

9.2 Location of the involved files

All example files and instructions are providedtba TSUF branch of COTSon (we assume here that
the checkout of $COTSON-ROOT involves not onlytituek as in Sect. 1.1, but also the branches):

[$COTSON-ROOT/branches/tflux-test/tsuf |

The software stack uses the DF-proxies brancheofhenStream compiler, where we integrated our
T* backend implementation and OWM support (cf. D4The simulated architecture uses SimNow
version 4.6.2, and the most recent version of C@T8ith support for T* architecture (the TSUF
branch).

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 59 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

9.3 Detailed instructions to start

The Matrix Multiply kernel generates a moderate number of dataflogattsr (hamely DF-Threads),
but stress more the TERAFLUX architecture from tloenputational viewpoint. In order to run the
example, move on the correct folder:

$ cd $COTSON-ROOT/branches/tflux-test/tsuf |

Open theMakefile file with a text editor and check that the firistel is correctly pointing the main
COTSon folder. Then, in the same file set the WeidaESTS0 matmu) in order to run the selected
benchmark:

$ vi Makefile

COTSON_ROOT=$%(shell bash -c 'cd .../../../trunk; pwd)]
COTSON_SRC=$(COTSON_ROOT)/src

TSUSIM=tflux_tsu.so

TESTS = matmul

At this point one needs to run the build procegstlie local folder. This operation is necessary to
build the shared object libraryflux_tsu.sp that contains the code used to implement theathre
scheduling unit:

$ make |

The next step is to enter in the benchmark folael modify the locaMakefilefile (through a text
editor), setting up the proper configuration of simulated system (i.e., size of the input of the
benchmark, number of cores, etc.). In particulat, the variableCOTSONto point the main
simulation folder corresponding to the positi@@TSON-ROOT/trunkThen, set the size of the
benchmark input modifying the value associatedéovariableSZ (here the value is 35). The number
of cores used by the simulated system is exprdssétk value of th&lT variable (in this example we
run on a single node with 4 cores).

all: $(TESTS)

COTSON=$(shell bash -c 'cd ../../../../trunk; pwd") /bin/cotson
DFDIR= $(shell bash -c 'cd ..; pwd")

DFRT=$(DFDIR)/dflib.o

DFLIBS=-Ipthread

TSUSIM=$(DFDIR)/tflux_tsu.so

PWD=$(shell pwd)

RM=rm -rf

TSCRIPT=$(PWD)/tsutest

WSDIR=./libworkstream_df

WSOPTS=-g -00 -ffast-math -D_GNU_SOURCE -| . -fPIC -Wall -Wextra -Ipthread
OWMSZ=32000000

SZ=35

NT=4

TESTS = matmul

HTMTESTS = tmtest_htm

With the next step the reader has to check thecbanéiguration file. Since a single node simulatisn
running, the reader needs to opentthe single.ludile with a text editor, and comment thésplay
variable so that the whole simulation output wil displayed on the console and copied also on text
file. The use_bsd()function is set todp.bsdin order to launch a 4-cores system with SimNow.
Similarly, thesamplerobject is set tmo_timing in order to run a pure functional simulation. fio a
timing simulation, the user must change the vafu@is object tasimple

runid="tsu"
abaeterno_so=TSUSIM

wd=o0s.getenv("PWD")
tmpdir=wd
debug=true

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 60 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

-- clean_sandbox=false
TSULAT=1

options = {
--max_nanos="3G',
exit_trigger="terminate’,
sampler={type="no_timing", quantum="10M"},
-- sampler={type="interval",functional="20M",wa
-- sampler={type="simple", quantum="3M"},
heartbeat={ type="file_last", logfile=runid..".
-- interleaver_order="round_robin",
custom_asms=true,
time_feedback=true,
tsu_ignore_errors="true",
-- tsu_speculative_threads=true,
tsu_statfile="/tmp/xx.dat",
-- tsu_destroy_polls=true,
-- tsu_keep_target_frames="false",

tsu_def_lat=1*TSULAT,
tsu_rd_lat=20*TSULAT,
tsu_wr_lat=10*TSULAT,
tsu_sub_lat=100*TSULAT,
tsu_sch_lat=1000*TSULAT,

}

one_node_script="run_interactive"
-- display=o0s.getenv("DISPLAY")
copy_files_prefix=runid.."."

-- clean_sandbox=false

simnow.commands=function()
-- use_bsd('8p.bsd")
-- use_bsd('16p.bsd")
-- use_bsd('32p.bsd")
use_bsd('4p.bsd’)
use_hdd('karmic64.img")
set_journal()
execute(SCRIPT)

end

function build()

i=0

while i < disks() do
disk=get_disk(i)
disk:timer{ name="disk"..i, type="simple_di
i=i+l

end

i=0

while i < nics() do
nic=get_nic(i)

rming="100k",simulation="100k"},

log"},

sk", }

At this point is possible to launch the simulatasfollows:

$ make run_single

9.4 Expected output

The following files are involved in the output pess. The filenode.l.tsu.logontains the statistics

gathered by COTSon during the simulation:

Input values:

cpuO.bpred_perfect
cpu0.branch_mispred_penalty
cpu0.commit_cpi
cpu0.dcache.fudge
cpu0.icache.fudge
cpu0.twolev.hlength
cpuO.twolev.I1_size
cpuO.twolev.I2_size
cpu0.twolev.use_xor
cpu0.type

cpul.bpred_perfect
cpul.branch_mispred_penalty
cpul.commit_cpi
cpul.dcache.fudge
cpul.icache.fudge
cpul.twolev.hlength

false
8

1.0
1.0
1.0
14

1
16kB
1
timer0
false
8

1.0
1.0
1.0
14

Deliverable numbeD7.5 — D8.3

Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD

and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc

Page 61 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

cpul.twolev.l1_size 1
cpul.twolev.l2_size 16kB
Output values:

cpuO.cycles 1309999869
cpu0.haltcount 819583852
cpu0.hb_ATC_flush 0
cpu0.hb_CR3_different 0
cpu0.hb_CR3_equal 0
cpu0.hb_ev_Exception 0
cpu0.hb_ev_HW._interrupt 0
cpu0.hb_ev_SW._interrupt 0
cpuO.idlecount 823247239
cpu0.instcount 486752630
cpuO.invalid_translation_bytes 318860
cpu0.iocount 1946489
cpu0.metadata_bytes 23073536
cpu0.other_exceptions 896760
cpu0.plain_invalidations 1297
cpu0.range_invalidations 77
cpu0.read_mmios 650
cpuO.read_pios 603
cpu0.segv_exceptions 62303
cpuO.timer.cycles 0
cpu0.timer.instructions 0
cpu0.timer.twolev.lookup 0
cpuO.timer.twolev.misses 0
cpuO.timer.twolev.reset 0
cpuO.timer.twolev.update 0
cpu0.trace_cache_size 0
cpuO.valid_translation_bytes 36613967
cpu0.write_mmios 886
cpu0.write_pios 2063
cpul.cycles 1309999869
cpul.haltcount 859197061
cpul.hb_ATC_flush 0
cpul.hb_CR3_different 0
cpul.hb_CR3_equal 0
cpul.hb_ev_Exception 0
cpul.hb_ev_HW_interrupt 0
cpul.hb_ev_SW._interrupt 0
cpul.idlecount 860191233

The file node.1.stdout.logontains the output generated by the benchmarktandimulator during
the simulation:

kernel.randomize_va_space = 0

+ [etc/init.d/ssh stop

* Stopping OpenBSD Secure Shell server sshd
...done.

+ pkill -9 dhclient3

+ ifconfig ethO down

+ echo performance

+ cat /sys/devices/system/cpu/cpu0/cpufreg/cpuinfo_ max_freq
+ cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_ max_freq
+ echo performance

+ cat /sys/devices/system/cpu/cpul/cpufreg/cpuinfo_ max_freq
+ cat /sys/devices/system/cpu/cpul/cpufreqg/cpuinfo_ max_freq
+ echo performance

+ cat /sys/devices/system/cpu/cpu2/cpufreg/cpuinfo_ max_freq
+ cat /sys/devices/system/cpu/cpu2/cpufreq/cpuinfo_ max_freq
+ echo performance

+ cat /sys/devices/system/cpu/cpu3/cpufreg/cpuinfo_ max_freq
+ cat /sys/devices/system/cpu/cpu3/cpufreqg/cpuinfo_ max_freq

+ echo Local config done
Local config done

RUNNING matmul

DF owm 0x7ffff6179000 32000000
Creating 4 workers for 4 cores

Starting workers

Starting master node 1 nodes 1 workers 4
Deallocate OWM at 0x7ffff6179000

All workers done, goodbye

block 2 sum = 6183107
block 0 sum = 6279596
block 1 sum = 6434683
block 7 sum = 6514228
block 4 sum = 6256864
block 5 sum = 6292689
block 9 sum = 6359774

Deliverable numbed7.5 — D8.3

Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 62 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

block 8 sum = 6118062
block 11 sum = 6462022
block 6 sum = 6273600
block 3 sum = 6374453
block 13 sum = 6488416
block 10 sum = 6295426
block 12 sum = 6443866
block 14 sum = 6361545
block 15 sum = 6359904
block 17 sum = 6445377
block 19 sum = 6307741
block 20 sum = 6313001
block 16 sum = 6475514
block 23 sum = 6785729
block 18 sum = 6426926
block 25 sum = 6543575
block 21 sum = 6345925
block 26 sum = 6163990
block 29 sum = 6219195
block 22 sum = 6139551
block 31 sum = 6299559
block 30 sum = 6272789
block 24 sum = 6353918
block 33 sum = 6275531
block 34 sum = 6361807
block 27 sum = 6375751
block 35 sum = 6657941
block 36 sum = 6500855
block 37 sum = 6081004
block 32 sum = 6534934
block 39 sum = 6283410
block 38 sum = 6244325
block 28 sum = 6293559
*** SUCCESS ***

==================== DF STATS

df time: 145072751 ns (145.073 ms)
core 0: 435126644 insts 435126651 xc 91602 i c, 435218253 cycles
core 1: 435144577 insts 435144856 xc = 73397 i c, 435218253 cycles
core 2: 435166946 insts 435167225 xc 51028 i c, 435218253 cycles
core 3: 435079704 insts 435050187 xc 168066 i c, 435218253 cycles

On the screen of the console, the user should wdbgee following output:

$1 exec> keyboard.key 23 A3
il exec> keyboard.key 39 B9
il exec> keyboard.key 34 B4
il exec> keyboard.key 35 B5
§1 exec> keyboard.key 30 BO

$1 exec> keyboard.key 1C 9C
$

$1 exec> go

$+++ TRESET(START) nanos 179838554

$+++ TSchedule 83 TDestroy 82 TCache 1478582 TLoad 162 Polls 82 TDecrease 80

$+++ TFINISH nanos 328405990 (diff 148567436 ns, 14 8.567 ms)

$EXIT TRIGGER: terminate

$copying node 1 output to /home/scionti/Tools/cotso n-release/branches/tflux-$test/tsuf/test

$cleaning sandboxes

9.5 Further references to more in-depths

Resource usage optimization involves a careful nmgmmanagement technique, and a heuristic for
task creation throttling. These are described iapidr 7 of Feng Li's thesis (INRIA) — an extract of
which is presented in the next Section 10.

Deliverable numbed7.5 — D8.3

Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 63 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

10 Research Use Case from INRIA

One general criticism targeting dataflow computiaghe cumbersome/inefficient management of
complex data structures. The functional naturewé mlataflow programs implies that all operations
are side-effect free. The absence of side effe@nmehat if tokens are allowed to carry vectors,
arrays, or other complex data structures, an dperain a data structure results in a new data
structure. Which will greatly increase the commatimn overhead in practice. The problem of
efficiently representing and manipulating complestadstructures in a dataflow execution model has
remained a fundamental and practical challenge. \ldrtically integrated design and flow of
TERAFLUX addresses this challenge. In the followitige design and usage scenarios of Owner
Writable Memory (OWM, designed in WP3 and WP6) esctibed. The OWM memory model is
loosely coupled. Compared to word-based cache enber the protocol is largely simplified with the
assumption that users have to synchronize alldblkstthat access to the same OWM subregion to
preserve the ownership atomicity. There is usuallytrade-off between programmability and
flexibility, in TERAFLUX some of the complexity dhe hardware design is shifted to the user, but at
the same time, it provides a compilation tool chiaisimplify this procedure. The OWM extension to
OpenStream provides an easy to use compilationosupgpomplementary support for complex data
structures also involvéransactional Memorysee the D3.5 and D6.4 deliverables for details.

10.1Goal of the experiment or example

The Owner Writable Memory model (OWM) has been psmal in TERAFLUX to reduce the
communication overheads when complex data strigianme passed over threads. The name and idea
originates from Prof. lan Watson from the UnversifyManchester. The design and semantics of
language support for OWM is presented in the D3bvdrable. This section mainly covers the
execution model for OWM and its application to cate use cases.

The OWM protocol was first formalized by Francoism@aud during his Master's thesis. A short
overview is provided in this deliverable. The OWkbfocol is inspired from a distributed, directory-
based MSI cache coherence protocol. The global OW&hory address is mapped locally to each
node on the NoC. Before a task can access to an GMbdlegion, it has to claim ownership
beforehand through a TSUBSCRIBE. The owner willaterkeep track of the nodes that hold a valid
copy of the subregion. One important property abhgng the ownership of an OWM subregion is
handled as follows:

e The globally addressable OWM is distributed over fitatform’'s nodes. For a given OWM
region, one may tell the node it is originates fr@ira., its allocation) by the address. This
node is the region's first owner.

* When ownership changes, the first owner always kée@ information of the current owner.
When claim ownership or data requests have beaivest; it forwards the requests to its
owner and renew the ownership information. One lerabwith the MSI is the atomicity of
bus events. On the NoC, one can assume that athéissages will eventually arrive without
packet loss or duplication, in any order. So it thesensured that a task accesses a region in
W mode will invalidate all the copies of that region other nodes before the tasks depends
on being executed. Adding a memory semantic TPUBLESNn enforce this property. When
all the modifications are done within the OWM sugiom, the owner task has to execute
TPUBLISH on the region explicitly to ensure all thiner nodes depend on the new data will
be invalidated.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 64 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Each node on the NoC operates on two message quesesd queue and a receive queue. Nodes
communicate via messages. The message sendingtiacbd as removing one message from the
send queue of the source node, and add it atogntcalhe receive queue of the destination node. The
protocol could be divided into three message types:

+ DataRequest and DataAnswer messages are equivalent to a BusRd event in the MS
coherence protocol for directory caches. The redquwékbe sent to the first owner of this
region, and forwarded to the current owner. Whean dtvner node receives this request, it
replies with a DataAnswer message containing thehfdata, and add the request node to the
list of valid nodes. When the request node recdiveataAnswer, it updates the local copy
of the OWM region, sets the valid flag as true, egkts the requested flag.

» OwnerRequestandOwnerAnswer are similar to the BusM event in MSI. In snoopM&l

the bus is guaranteed that only one busM evendcoctur. In OWM memory model, the
enforced dependences are added between taskstgmtbanership change could occur if
there is another node claimed the ownership andhdidpublish the data yet. The request
message will be sent to the first owner of thisaegand will be forwarded to the current
owner. The first owner will update the ownershiformation by checking the OwnerRequest
message. When the destination node receives tlisage, it sets the valid flag to be true, and
send OwnerAnswer which packs the data and ownersbjpnse metadata information to the
new owner. When the request node receives thisagesg will update the region it requests
by the data received. The valid set informatiomlg sent in the metadata by the previous
owner, the request node will update this informatend add the previous owner to this set.

* Invalidation complements the ownership transfercess. In this case an explicitly
invalidation request is sent to other nodes thakeha local copy upon modification. The
InvalidateRequestis sent to all the nodes in the valid set. Thedvaét will be copied to
Waiting Invalidation Acknowledge Set (WIAS) befdtds reset. When the node receives an
InvalidateRequest, it sets the valid flag to faleg send back tHavalidateAck message to
acknowledge the sender. When the sender receivakdateAck, it removes the source node
from WIAS.

OWM is one single memory region, but it could beHar divided into smaller subregions for finer
granularity. Theowm_tsubscribeandowm_tpublish are introduced as an extension to the T* ISA
extension for supporting OWM. One could subscribg ¢alling owm_tsubscribepart of OWM
region to a thread, which means, before this thieadtecuted, the ownership of the subregion should
be acquired, and ready for access. One thread pollish the modifications to the OWM region it
acquired by callingpwm_tpublish Before the modifications are published, any réath another
thread is not guaranteed to see consistent dataMd®/ a weak memory model; it is the
programmer’s responsibility to take care of datastsiency and dependences.

Here is the detailed description for the OWM instians extending the T* ISA:

e void owm_tsubscribe(void *tid, int off, int offowm, int size, int mode)

Subscribes the OWM subregion described dffowm, size, modéo be cached before
executing dataflow thread with thread idl}: offowm is the initial offset to the global OWM

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 65 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

region, size is the size of the OWM subregion tcsbbscribed, mode describes the access
mode to the region, it could be read-only, writdyoor read-write. The pointer to the local
cached OWM region is stored in DF-frame describedtid, off), where tid is the thread id,
and off is the offset in the thread’s DF-frame.

* void owm_tpublish(void *regptr, int size)

Publishes the modification to the OWM region ddsedli byregptr, size If size is 0, it writes
the region starting at regptr using the size thas wegistered during the owm subscribe
operation. This way, different threads can be siibsg to different segments of the same
region using different sizes.

OWM is integrated into the OpenStream compiler adamguage extension. One could use
OpenStream to decompose programs into tasks aedpliccit the flow of data among them, thus
exposing data, task, and pipeline parallelism. Ok¢M extension of OpenStream takes the form of a
simple cache clause in the task pragma:

| #pragma omp task cache (ACCESS_MODE:MEM[OFF:SIZE]) |

The cache clause subscribes the task with the OWhvkgion described M EM|off:size] with read
(R), write (W) or read-write (RW) access modeCCESS_MODE The current syntax supports only
one dimensional arrays, but it could be easily rcktel to multiple dimension arrays. A simple
example is presented in the D3.5 deliverable.

As illustrated below with matrix multiplication, ¢hOWM extension can be easily integrated into
dataflow programs. The user may use OpenStreantraotssto synchronize between tasks. Feng Li's
PhD thesis presents other use cases. OWM supparpismented in the OpenStream compiler. The
lowered built-in functions are translated diredtbythe T* ISA, linked with part of the OpenStream
library (run-time related with streaming operatipremd part of the run-time support in the COTSon
simulator. In the implementation of benchmarks wehsvo-dimensional arrays are used, one usually
has to remap the memory regions as a single dimeresiray, which might have extra cost. An
abstract polyhedral representation could be usedisncase to represent an OWM region in multiple
dimension arrays situation.

10.2Location of the involved files
All example files and instructions are providedtba TSUF branch of COTSon.

| http://sourceforge.net/p/cotson/code/HEAD/tree/bran ches/tflux-test/tsuffREADME |

The software stack uses the DF-proxies brancheofpenStream compiler, where the T* back-end
implementation and OWM support are integrated. rim&tion regarding the OpenStream compiler
can be found at:

| http://openstream.info/download |

And for the GIT repository itself:

| git clone http://git.code.sf.net/p/open-stream/code |

The simulated architecture uses SimNow versior24dhd the most recent version of COTSon with
support for T* architecture (the TSUF branch).

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 66 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

10.3Detailed instructions to start

The sources for the compiler can be downloadecttijrérom the official repository (see previous
section), using the following command:

| $ git clone git://git.code.df.net/p/open-stream/cod e $COTSON-HOME/open-stream |

After having downloaded the sources from the dificiepository the following actions should be
done for installing the compiler:

$ cd $COTSON-HOME/open-stream/
$ make

This automatically performs the following actions:

» Download the sources of any missing libraries nddgeOpenStream;

* Build and locally install these dependences;

* Build and locally install the compiler and runtinileraries inopen-stream/install/folder;
* Build the OpenStream codes in thigen-stream/examplesfolder;

After the compilation process has finished it isgible to move on the example directory and launch
one of the available examples. For the purpos#isi®fiocument the Matrix Multiplication example is
illustrated. Matrix Multiplication is a good exaneplo show the expressiveness of OWM in concrete
use cases. This characteristic will be illustratethis example in three phases: in the first phase
task allocates and initializes all the matricethima OWM memory; in the second phase, the matrix is
partitioned to several blocks, each task will catee OWM subregion it needs and compute the
results, then store the results to the output maamd a final task will wait till the end of alhé
previously created tasks, print and verify the tes# detailed description is provided followiniget
path of the three phases.

10.4Expected output

The code fragment in Fig. 28 shows the code forrimatiocation and initialization. The input
matrices A, B and output matrix C are allocatedchiling tstar_owm_allocatewhile fill_matrix
initializes all the matrices. The cache pragma stilbss matrices A, B, C in write mode. At the time
fil_matrix is executed, all the OWM subregion itbscribes will be ready for writing. The
modification will be published at the end of thekaStreaninit is used to synchronize between phase
one and phase two, so that the computation coljdbenstarted when the initialization finishes.

int init __attribute__((stream));

DATA *A = tstar_owm_alloc (N * N * sizeof (DATA));
DATA *B = tstar_owm_alloc (N * N * sizeof (DATA));
DATA *C = tstar_owm_alloc (N * N * sizeof (DATA));

#pragma omp task cache (W: A[:N+N], B[:N#N], C[:N*N]) output (init)
fill_matrix (A, B, C, N);

Fig. 28 — Matrix product — input.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 67 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

for (j =nb = 0; j < N; j += BLOCKSZ, ++nb) {
int aoff = N * j; int boff = 0; int coff = N * j;

#pragma omp task cache (R: A[aoff:N+«BLOCKSZ], B[boff:N#N]) \
cache (W: C[coff:N+BLOCKSZ]) output (finish)
{
for (int jj = j; jj < j + BLOCKSZ; ++jj) {
for (int i = 03 i < N; i++) {
DATA t = O;
for (int k = 03 k < N; k++) {
t += A[jj *# N + k] * B[k » N + i];
i3
Cli + jj * N] = t;
}
}
¥
1

Fig. 29 — Matrix product — input.

The main computations are done in the following gghaFig. 29 shows the code for matrix
multiplication. The matrix is divided into blockeach thread caches BLOCKSZ rows of matrix A,
and the entire matrix B in read mode, and BLOCK8&gs of matrix C in write mode. Once the
thread is executed, it computes ABLOCKS8ZBN-N = CBLOCKSZN. At the end of each thread,
the modification to matrix C is published and tlawsilable for reading by other threads. Each task
created in this phase writes a single value tasttfinish. Stream finish acts as a waiting barrier in
the last task, which will wait for the terminatiohall threads created in this phase.

#pragma omp task cache (R: A[:NxN], BL:NxN], C[:N*xN]) \
input (finish >> final_wiew[N/BLOCKSZ])
i
dump_result_and_verify (A, B, C, NJ;
}

Fig. 30 — Matrix product — input.

Fig. 30 shows the final thread, which waits for themination of all the threads created in phase tw
Once all the computations are done, it will outtheé results and do the verification if necessary.
Stream finish acts as a barrier, waits for N/BLOQKBputs from stream finish. Each thread created
in phase two writes to stream finish once finished.

10.5Further references to more in-depths

The semantics, dedicated memory model and cohepmatecol for OWM will be the subject of a

joint publication of the project partners. The Maghesis of Francois Gindraud is currently thetmos
accurate information and is available on requestthér experiments are reported in the D2.4
deliverable and in Feng Li's PhD thesis. The expental validation of OWM memory model is

presented in Chapter 7 of Feng Li's PhD thesis. \&fee studied four benchmarks with OWM

support: matrix multiplication, sparse LU, Gaussd8kand Viola & Jones (pedestrian detection);
those benchmarks are validated with COTSon's TSdRdb.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 68 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

11 Research Use Case from MSFT

This section demonstrates how to run the TERAFLp¥rating system prototype that was developed
to support research and experimentation with theowa parallel, distributed and reliable execution
algorithms that are suggested in TERAFLUX. Spealilic the operating system supports execution
of a distributed application over the many-coreicdewsing dataflow threads, it was designed to
handle core soft errors with Double Execution medma and can handle node hard-failures such that
the application can transparently continue exeoud® the work that was pending on the failed node
is recovered and executed by the remaining nodes.

The system is simulated over COTSon (running a Siwhhstance for each of the nodes) with a
slightly modified version of TSUF, which implemerasshared memory mechanism with a weak
consistency model similar to acquire/release. Shared memory is the only mechanism utilized by
the operating system for inter-node communicatans shared data.

11.1Goal of the experiment or example

This experiment launches a distributed Fibonaccjusace computation over the TERAFLUX
operating system. Its goal is to demonstrate hewvotberating system executes a massively parallel
application made of dataflow threads over all &f tres in the system.

During execution, the simulation displays the opers performed by the run-time and the user code
in the virtual monitor of each SimNow instance, ifiddally, the output is logged and can be

examined after execution. Soft-errors can be iagatandomly to the results to demonstrate the
Double Execution in action, and complete node failoan be triggered by the user to watch the
recovery mechanism.

Various compile flags control some of the run-timechanisms (e.g., scheduling algorithm, Double
Execution, etc.), and what type of log messagesega.

11.2Location of the involved files

The runtime files and sample application are cowtgin the following folder:

[$COTSONHOME/branches/tflux-test/tfos/ |

Where COTSONHOME is an environmental variable identifying the pathene the COTSon
simulator was checked out with:

| $ svn co https://svn.code.sf.net/p/cotson/code/ $CO TSONHOME |

11.3Detailed instructions to start

To run this example first checkout and build COTSben go to th#fos-tsuffolder mentioned above:

[$ cd $COTSONHOME/branches/tflux-test/tfos/ |

Now start the simulation by executing:

[$ make run_multi |

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 69 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

After startup, the default simulation view will diay general information about the node and list
several commands (e.g., show logs, test node éaiktc.) that can be interactively triggered by the
user with keyboard command on the SimNow window.

Some parameters can be configured similarly toghiosI SUF, for example the number of nodes in
the system is specified os-tests/tsu_multi.lua

cluster_nodes=4 |

The number of cores in each node is specified ey#u file used:

--use_bsd('4p.bsd’)
use_hsd('16p.bsd")
--use_bsd('32p.bsd")

To test node crashes it is recommended to have thaned cores in each node. Notice that the bsd’s
with large number of cores are not created usirgy dbfault build configuration, they can be
downloaded from:

https://upload.teraflux.eu/uploads/BSDS/bsds_images _initialized_for_karmc64_1Ghz.tar.gz

Some other parameters are specifiedsfiests/Makefite

OWMSZ=67108864 # Size of the shared region.
SZ=44 # Parameter for the application (e.g. Fibonac ci number).
#NT=32 # Number of TSUF workers. Leave undefined to use the number of cores.

Several parameters are specified as compile tiags fiISome flags control the nature of the dataflow
jobs. For example:

#define DOUBLE_EXECUTION
[I#define INJECT_CORRUPTIONS

The above macro is used to determine whether teatijoenable Double Execution, and whether to
randomly corrupt some of the threads results tdrseenechanism in action.

The following macro defines whether to include #wtual job binary in the control message or only
its name:

#define SEND_JOB_NAMES |

When it's disabled, each job message is self-coathand allows immediate execution on any node
without access to shared storage (of the precochjles), at the cost of possibly sending the same
binary code many times. Although jobs are usuathals (100-200 bytes for Fibonacci) this can be
avoided by sending a small job identifier inste&the binary code, later used to load the job ftbm
common file system (subsequent requests are |daai®dcache).

Simple scheduling algorithms can be chosen withntheros:

/I Prefer to schedule on the local node until memor y usage is high, then

/I a secondary method is used. If this is not defin ed, the method chosen below is //
immediately used.

#define PREFER_LOCAL

/I Define only one of the following:

[/[#define RANDOM_SCHED_POLICY

#define UNIFORM_DISTRIBUTION_POLICY

Those are very simple but demonstrate how thenmition gathered from heartbeats can be used to
help load balancing among nodes.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 70 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

11.4Expected output

When launched, node instances will open in Si

Fi

View Special Keyboard Help

File View Special Keyboard Help

mNamdaws and display the simulation progress:

| 62.8 Avg MIPS [0 slave read

ResetAvg||[0 slave read
[

0 slave writen ||| 0 slave written

142 MIPS —
[PIOPIG mode

[BMAFIO mode

<[49 [EERE | @ [[l ERE | @ [=]e
Numetic Display(s)) [Nimeric Display(s) ~
- Simulator Stats - IDE Primary Display — - IDE Sscondary Display - Diagnostic Ports -~ Floppy Display ||~ Simulator Stats - IDE Primary Display— - IDE Secondary Display - Diagnostic Ports ~ Floppy Display|
| 1657 Host Seeonds | 282,624 master read ‘\ 0 maserread | (|00 F\'n?\’#gazrsn‘ [0 read || 3080 Host Seconds | 282,624 masterread ||[0 masterread | |00 B 83-80] || 0 read
| 2052 Sim Seconds [0 masterwriten| || 0 masterwriten| |0 | 0 witen ‘ [2111 8im Seconds) masterwiten||[0 masterwriten| |[00 [00 [00 [00 87-84/|[0 writen

|| 627 Avgmips 0 slave read | [00 [00 [00 [00 #3-0

|[|[" 548 mPs

[o
Resetavg [0 slaveread | ||
[© [

slave writlen 0 slave writen

[DMAPIG mode [PIOPIG mode

'S duler status
c the jobs state, and 'c’ to crash the node.
[Scheduler 31 Job descriptors map in shared memory has 49
[Scheduler 31 Jobs map in local memory has 49 items:
0 initializing
47 waiting for
0 ready to run
1 ruming
1 finished

e: ow the
, 'a' to

inputs

Running

itens.

4

[Node 3->31 Got he. nding jobs.
[Scheduler 31 Got ad te nessage, tloc 40030000009602, value Ox14Badd.
[Scheduler 31 Got job load message for UFI 40030000023e00, binary size 13, frane|
size 16, 0 OWN regions, sc 2

[Scheduler 31 Creating new job descriptor for UF1 40030000023¢00 @ 0x?f{ff65796¢]
o

[Scheduler 31 Adding new job from desc Ox?ffff65796e0.
riginal sc 2, current sc 2

[(Scheduler 31 Got thread wr
[Scheduler 31 Got thread wr

. tloc 4003000002301, value Oxic.
; tloc 4003000002300, value 0x40010000024)

[Job 400300000Z3e001
[Job 40030000023¢001
[Job 400300000Z3e001
[Scheduler 31 Submit
[Node 1 Mriterl Send
[Scheduler 31 Got threa

Ready .
[tid ?fffe3fff200]1 fib main for n=28 - calculating.
Ended.

., value Ox148add.

 RELEASE key: Qiieyidc scancode ~0x28

Fig. 31 — Two nodes (two SimNow instances) running on the COTSon simulator.

When the simulation completes, the output of eamdtercan be examined in tbdoutlog files, the

output of node 1 could be for

example:

[[Manager 1] Simulation parameters:
[Manager 1]
[Manager 1]
[Manager 1]
[Manager 1] Starting service thread, ip 0x4202€0.
[Scheduler 1] Dynamic allocation area rounded from
[Manager 1] Starting service thread, ip 0x40c360.
[Test] Computing fibonacci(41).

[Scheduler 1] Starting message pump.

[Scheduler 1] Submitting job fib_reporter_job with
[Node 1 Writer] Sending message type 1, 73 bytes in
[Scheduler 1] Submitting job fib_main_job with UFI
[Node 1 Writer] Sending message type 1, 77 bytes in
[Scheduler 1] Finalizing 0: Write destination updat
[Scheduler 1] Submitting write to node 1, tloc 1001
[Node 1 Writer] Sending message type 6, 24 bytes in
[Scheduler 1] Finalizing 0: Write destination updat
[Scheduler 1] Submitting write to node 1, tloc 1001
[Node 1 Writer] Sending message type 6, 24 bytes in
[Scheduler 1] Got job load message for UFI 10010000
[Scheduler 1] Creating new job descriptor for UFI 1
[Job 10010000000200] Creating job from desc Ox7ffff
[BinariesStore] Adding job binary: fib_reporter_job
[Scheduler 1] Got job load message for UFI 10010000
[Scheduler 1] Creating new job descriptor for UFI 1
[Job 10010000000400] Creating job from desc 0x7ffff
[BinariesStore] Adding job binary: fib_main_job, 61
[Scheduler 1] Got thread write message, tloc 100100
[Scheduler 1] Got thread write message, tloc 100100
[Job 10010000000400] Ready.

[Job 10010000000400] [tid 7fffe3fff700] fib main fo
[Job 10010000000400] Ended.

[Scheduler 1] Got thread write message, tloc 100100
[Job 10010000000200] Ready.

[Job 10010000000200] [tid 7fffe3fff700] report: fib
[Job 10010000000200] [tid 7fffe3fff700] Exit reques
[Job 10010000000200] Ended.

[Scheduler 1] Sending termination requests...
[Node 1 Writer] Sending message type 7, 8 bytes in
[Node 2 Writer] Sending message type 7, 8 bytes in
[Node 3 Writer] Sending message type 7, 8 bytes in
[Node 4 Writer] Sending message type 7, 8 bytes in
[Node 1->1] Got terminate message.

[Scheduler 1] Exiting.

16 cores in 4 nodes with 4 cores each.
64MB public shared memory, 16MB per no
4*1MB message queues, leaves 12MB for

de.
dynamic allocation.

0x7ffff46f4140 to Ox7ffff46f5000, size 12MB.

UFI 10010000000200.

2 frames.

10010000000400.

2 frames.

ed from VFP 200 to UFI 10010000000400.

0000000400.

1 frames.

ed from VFP 200 to UFI 10010000000400.

0000000401.

1 frames.

000200, binary size 17, frame size 8, sc 1.
0010000000200 @ Ox7ffff46f5140.

46f5140, UFI 10010000000200, original sc 1, current scl
, 142 bytes.

000400, binary size 13, frame size 16 , sc 2.

0010000000400 @ Ox7ffff46f51e0.

46f51e0, UFI 10010000000400, original sc 2, current sc 2.

8 bytes.

00000400, value 0x10010000000200.
00000401, value 0x29.

r n=41 - spawning.

00000200, value 0x9de8d6d.

result = 165580141

ted.

1 frames.
1 frames.
1 frames.
1 frames.

If a node (node 3 in the example) was killed byrusput, the recovery node (node 1 was chosen in

the example) will begin to take over and processihbrk of the failed node and display:

Deliverable numbeD7.5 — D8

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD

3

and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc

Page 71 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

[Fib Test] Press 's’ to show scheduler status (default), "1’

to see the logs, "a

' to see the jobs state or 'c’

to crash the node.

[Scheduler 11 Job descriptors map in shared memory has 36 items.
[Scheduler 11 Jobs map in local memory has 36 items:

0 initializing

35 waiting for inputs

0 ready
1 running
0 finished

132 total completed

[Recovery Scheduler for 31 Job descriptors map in shared memory has 46 items.

[Recovery Scheduler for 31 Jobs map in local memory has 46 items:
0 initializing
35 waiting for inputs

8§ ready
3 runming
0 finished

0 total completed

Fig. 32 — Output of the simulation when a node in the system fails.

The log should show:

[Watchdog] Node 3 probably died, no heart beat rece ived in the last 189 milliseconds.
[Manager 1] Starting recovery procedure for node 3.
[Manager 1] Starting service thread, ip 0x406d60.
[Recovery Scheduler for 3] Checking shared segment sanity...
[Recovery Scheduler for 3] Job descriptors map in s hared memory has 37 items.
[Recovery Scheduler for 3] Adding new job from desc 0x7ffff65793c0.
[Job 1003000000bc00] Creating job from desc 0x7ffff 65793c0, UFI 1003000000bc00, original sc 2, current sc0
[Job 1003000000bc00] Ready.
[Job 1003000000bc00] [tid 7fffe3fff700] fib main fo r n=29 - calculating.
[Recovery Scheduler for 3] Adding new job from desc 0x7ffff65791e0.
[Job 2003000000e600] Creating job from desc Ox7ffff 65791e0, UFI 2003000000e600, original sc 2, current sc 2
[Recovery Scheduler for 3] Adding new job from desc 0x7ffff6579140.
[Job 30030000000c00] Creating job from desc 0x7ffff 6579140, UFI 30030000000c00, original sc 3, current sc 2
... <More recovered jobs information> ...
[Recovery Scheduler for 3] Has 46 jobs in local mem ory:
0 initializing
35 waiting for inputs
8 ready
3 running
0 finished
0 total completed
[Recovery Scheduler for 3] Starting message pump.
[Recovery Scheduler for 3] Got job load message for UFI 1003000000¢200, binary size 13, frame size 16, sc 2
[Recovery Scheduler for 3] Creating new job descrip tor for UFI 1003000000c200 @ 0x7ffff657a860.
[Job 1003000000c200] Creating job from desc 0x7ffff 657a860, UFI 1003000000c200, original sc 2, current sc 2.
[Recovery Scheduler for 3] Got thread write message , tloc 2003000000e601, value Ox1le.
... <More recovered messages processing> ...

If Double Execution and random error injections arebled, an injected soft-error will produce
output similar to the following:

[Job 1004000000fa00]1 Ready.

[Job 1004000000fa00] [tid ?fffelffa?00] fib adder, n1=832040, nZ=514229

[Job 1004000000fa00] [tid ?fffelffh?7001 fib adder, n1=832040, nZ2=514229

Corrupting valuelsUfi in JobThreadlrite for tid 7?fffelffb?00.
1004000000fa00] Double execution results don't match, retrying.

1004000000fa00]1 Ready.
1004000000fa00] [tid ?fffe2?fc?00] fib adder, nl1=832040, n2=514229
1004000000fa00]1 [tid ?fffe2ffd?00]1 fib adder, n1=832040, n2=514229
1004000000fa00]1 Ended.

Fig. 33 — Double Execution of dataflow threads, and the corresponding verification output.
This is a simple implementation of Double Executieach job is executed twice (notice the different
tid on each execution), and the results are not caeunio the shared memory until the results of
both threads are ready and compared equal. Whenranis injected, the mechanism detects it and
launches the job again on two threads.

11.5Further references to more in-depths

For more details on the operating system structme its mechanisms that support the reliable
execution of Data-Flow threads while assuming ieceht shared memory and possibility of node
hard-failures, please refer to deliverable D5.4ti6ec4. This information is also contained in the
TFOS.pdidocument in the source folder.

Deliverable numbed7.5 — D8.3
Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 72 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

12 Research Use Case from THALES

This section shows a subset of the experiment®eed on the applications provided by Thales, to
evaluate the TERAFLUX architecture and associabetstin an industrial context. More details on
these analyses can be found in deliverable D2.4.

THALES provided the following two use-cases: thed&aapplication and the Pedestrian Detection
application. This document focuses on the later, one Radar application, providing some easy
instructions for its installation and test.

The Radar application is an airborne radar apdicatmbedded in planes to detect the position and
radial speed of another flying target despite tles@nce of jamming devices. It is based on theespac
Time Adaptive Processing (STAP) algorithm. This laggpion detailed in D2.1 and D2.3 is
characterized by:

« Real-time constraints expressed in the form ofubhput requirements;

« The pure dataflow behavior of a signal processpgieation;

« But very large data {5dimensional data) being transferred between essiffilter;

« T necessity to manipulate this data (e.g., rotea@spose, etc.) for each filter to benefits from
cache locality;

12.1Goal of the experiment or example

The goals of the experiments are: first, to evalubhe scalability of the proposed architecture and
associated dataflow execution models in the contidxtreal-time applications, selecting one
application that is very dataflow friendly (radar).

Second, to evaluate the ergonomics of the toolsaaadciated dataflow languages, and to evaluate the
cost of porting legacy single-core applications ttte TERAFLUX platform, including the
parallelization costs versus the obtained speedisirsy the available execution models.

Third, to estimate what are the best parallelizatiptions for porting classification algorithms and
signal-processing algorithms to teradevices. Incdse of the Radar application its parallelizai®n
quite straightforward alongside the dataflow pipel{more details can be found on D2.4).

12.2Location of the involved files
To start, thesufversion of TSU must be checked out with:

| $ svn co https://svn.code.sf.net/p/cotson/code/bran chesl/tflux-test/tsuf/ $STSUF_HOME |
The Radar benchmark (STAP) can be checked out with:
| $ svn co https://svn.code.sf.net/p/teraflux-stap/co de $STAP_HOME |

12.3Detailed instructions to start

Before using the Radar application the followitgps must be followed:

1. Checkout, build and install COTSON;

2. Checkout, build and install the TSUF version of thstributed Thread Scheduling Unit
(TSV);

3. Checkout, build and install the SimNow simulator;

4. Checkout, build and install the TERAFLUX-versiontbé OpenStream compiler;

5. (Optional) Checkout, build and install the OmpSmpder (not compatible with the Thread
Scheduling Unit models);

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 73 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

A Makefile is included with the application. Simply typeke to see all the available options. The
makefile ~ should be updated with the paths of the previoustyalled software (i.e., COTSon,
SimNow, OpenStream and optionally OmpSs). Belowaions that concern the OpenStream with
TSU support version of the Radar application:

$ make <stap-os-cotson|run-os-cotson-small|run-os-c otson-large|run-os-cotson-
huge|run-os-cotson-multi-small|run-os-cotson-multi- large|run-os-cotson-multi-
huge|clean-os-cotson>

$ Build OpenStream version of the application.

$ Run COTSON OpenStream version on small input.

$ Run COTSON OpenStream version on large input.

$ Run COTSON OpenStream version on huge input.

$ Run multi COTSON OpenStream version on small in put.

$ Run multi COTSON OpenStream version on large in put.

$ Run multi COTSON OpenStream version on huge inp ut.

$ Clean files created by the OpenStream applicati on.

To launch a single node TSU execution with the baethset just launctnake run-os-cotson-small
The -cotson-multi-variations will execute a multiple node TSU sintigla. Three different input sets
are provided for evaluation.

The sources provide $STAP_HOME/resourceslder with the TSU configuration files, the deltau
use machine configurations provided by COTSon, figddem to use larger/smaller configurations.

12.4 Expected output

The Radar application doesn't provide any visudpou It takes a radar signal and detects moving
objects. When running the TERAFLUX version of thpgplication with themake run-os-cotson-
<small|large|huge> command it generates as output the detected shject text file with the
name of the selected input setmall|largelhuge>.txt . The Makefile commandrun-os-
cotson-<small|large|huge> places the output file irun/<os-cotson> . The user can check
that the result is correct by comparing this ougmainst the output of the sequential single c@@ x
version that can be run with theke run-seg-<small|large|huge> command that generates its
output file inrun/seq folder.

Some speedup results for the Radar applicationreddevith different configurations (4 cores per
node) of the TERAFLUX machine compared to the satigleversion are reported in table 2.

Table 2 — Radar application speedup against sequential execution

Dataset
Cores | Small Large Huge
4 3.48 3.48 3.48
8 6.22 6.24 6.26
16 10.28 10.41 10.44
32 14.33 14.59 14.63
64 16.96 18.08 17.92

12.5 Further references to more in-depths

More details on the Radar and the Pedestrian Deteetpplications use-cases can be found in
deliverables D2.1 and D2.2. Some implementationildeare provided in deliverable D2.3, whereas
the final evaluation is part of deliverable D2.4.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 74 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

13 Research Use Case from UAU

This section shows a simplified experiment to itgede the performance overhead induced by the
fault detection mechanisms developed in TERAFLUXmMAre detailed analysis can be found in
Deliverable D5.4.

13.1Goal of the experiment

The goal of this experiment is to show the perforcgaoverhead of pessimistic and optimistic Double
Execution of Fibonacci(31) for one TERAFLUX node with 4 cores. The configimat of the
simulator is similar to the one described in Delal@e D5.4.

13.2Location of the involved files
To start, the fault-tolerant version of the Thr&atheduling Unit (TSU) must be checked out with:

| $ svn co https://svn.code.sf.net/p/cotson/code/bran ches/tflux-test/ft-tsu/ $FT_TSU_HOME |

The fault-tolerant version of the TSWgx_tsu.cpp, the used cpu timetifer_uau.cpp and the
COTSon configuration skeletorts(g_bench.lup used for the experiment can all be found in
$FT_TSU_HOME.

The benchmarks are stored in:

[$ FT_TSU_HOME/examples

13.3Detailed instructions to start
Before the experiment can be started, the reqaiepéndencies must be installed by:

| $ FT_TSU_HOME/configure —simnow_dir /path/to/simno w

The configurescript will perform the following tasks:

1. Checkout and build the COTSon simulator;
2. Build and link all required files i8FT_TSU_HOME

Afterwards the experiment can be started with:

| $ FT_TSU_HOME/run_example —res_folder /path/to/res ults_folder |

Where thaes_folderoption describes the folder where the resulthefexperiments will be stored.

13.4Expected output

After the experiment has finished the executior, thw output files of the simulator runs can be
found in theres_folder

Finally, the simulator outputs can be aggregated bgript, which creates axample_results.cdile
in theres_folder

| $ FT_TSU_HOME/build_example_table.sh —res_folder / path/to/results_folder |

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 75 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The following tables show the results extractednfriine example_results.csfor regular dataflow
execution (Table 3), pessimistic Double Executibabie 4), and optimistic Double Execution (Table
5). For a better classification of the example exien, we also present the results for TERAFLUX
nodes with 1, 2, 8, 16, and 32 cores. The resutsa@ed from theexample_results.csare
highlighted in yellow. Based on the execution tim#d® run-time overhead for pessimistic and
optimistic Double Execution (compared to the baselregular execution) can be additionally
calculated. Since the objective is to depict therbgad solely induced by Double Execution, the
overhead has been normalized to the regular exectithe using half of the cores.

Table 3 — Node Utilization and Execution Time of the Baseline Dataflow Execution

Cores Node Utilization Execution Time
[%] [ns]

1 99.9 34,762,104

2 99.9 17,769,355

4 99.7 9,209,017

8 98.4 4,864,722

16 96.7 2,550,796

Table 4 — Node Utilization and Execution Time of Pessimistic Double Execution

Cores Node Execution Runtime
Utilization[%] Time[ns] Overhead [%)]

2 99.2 35,751,164 2.8

4 99.0 18,741,358 5.4

8 99.2 9,680,112 5.1

16 98.3 5,080,112 4.4

32 94.1 2,921,200 14.5

Table 5 — Node Utilization and Execution Time of Optiristic Double Execution

Cores Node Utilization Execution Time Runtime
[%0] [ns] Overhead [%0]

2 99.7 35,611,170 2.4

4 99.5 18,358,568 3.3

8 99.7 9,500,460 3.1

16 98.4 4,996,302 2.7

32 97.0 2,723,690 6.7

13.5Further references to more in-depths

Please refer to Deliverable D5.4 for a deeper amlpf the fault tolerance mechanisms in

TERAFLUX.

Deliverable numbeD7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD

and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc

Page 76 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

14 Research Use Case from UCY

In this document the steps followed to integrate BDM-Style TSU in the COTSon/SimNow
simulation framework are described. The integratdiows using the features of the TSU from a
client code without having the TSU executing atruseel. The DDM-style TSU has been integrated
into COTSon by using as template the TSU versiateeloped in the project — namelpU2 (it
integrates also a simplified timing model), and Tt&J++ implementation for DDM-style execution.
The TSU2operates as an intermediate API to provide comaoatioin between the user application
and the simulator. A single queue has been usetbte threads that are ready for execution and a
FIFO policy for scheduling. The TSU does not opeiatbusy-wait mode but instead it is performing
event-driven execution, which seems to make sinwidaster.

14.1 Goal of the experiment or example

The goal of the experiment is to show the executiba given benchmark application (i.e., in this
case theCholesky decompositiaapplication) upon the TSU++ implementation for TERAFLUX
architecture using the DDM-style execution model.
The Data-Driven Multithreading Virtual Machine (DDWMM) is a virtual machine that supports
DDM execution on homogeneous and heterogeneougcoreltsystems. The DDM-VM is composed
of:
e Thread Scheduling Unit (TSU), which is implemenssda software module executing on one
of the cores. Such TSU model is written in C larggya
* Run-time support system that (with the help of ih®U) handles the tasks of thread
scheduling, execution instantiation and data mamagéimplicitly on the rest of the cores;

The TSU++ is a software implementation of the DDNFg TSU that is written in C++ language. It
allows a programmer to write parallel data-drivalmgoams using the object oriented styling. A
program is described as a graph of tasks and depeied between those tasks. The TSU++ also
supports distributed execution on independent roolte systems/nodes. For this functionality, a
Network Interface Unit (NIU) is implemented as dtware module that is executing on the same core
as the TSU, as well as a Shared Global AddresseSi®GAS) is supported across all the nodes in
the system to facilitate data movement.
Differences over DDM-VM's TSU

» The TSU++ it consists of C++ classes which havel-@efined purpose and are easy to test;

» Tasks are defined as functions; hence, there rerd for §oto” statements;

» The development of DDM programs is easier sinceetigeno need to program using macros.

All the programmer’s TSU communication needs acessible via a TSU object.

The TSU++ is supported also on Windows OS.

14.2 Location of the involved files

The directory containing all the involved fileddasated at:
| $COTSONHOME/code/branches/timing-unisi/tsu.ddm |

The directory containing the source code of the ¥8unplementation is located at:
| $COTSONHOME/code/branches/timing-unisi/tsu.ddm/TSU |

The directory containing the applications that bamrun on COTSon is located at:
| $COTSONHOME/code/branches/timing-unisi/tsu.ddm/App |

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 77 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

14.3Detailed instructions to start
The steps for integrating the TSU++ implementatb®DM-Style based ol SU2are the following:

» Download COTSon and SimNow
o Download COTSon from COTSon Repository by typinghia shell:

svn co https://svn.code.sf.net/p/cotson/c8@DTSONHOME
For Example:svn co https://svn.code.sf.net/p/cotson/codefocots

o Download SimNow Simulator from:

http://developer.amd.com/tools-and-sdks/cpu-devety/simnow-simulator/

0 Uncompressed the SimNow file
» Configure and Install Cotson With TSU++

(0]

(0]
(0]
0]

o

o

cd $COTSONHOME/branches/timing-unisi/trunk

sudo sysctl -w vm.max_map_count=4194304 (every timesystem restarts)

sudo apt-get install ruby1.8 ruby1.9.1

sudo ./configure --simnow_ dftthe file where the SimNow is located>

For Example: sudo ./configure --simnow_dir ../../../../sSimndiwax64-4.6.2pub/
sudo mount -o remount,size=8G /dev/shm (set tleecfigour RAM. Here it's 8GB)
cd SCOTSONHOME/branches/timing-unisi/; sudo maiidb

Download the DDM file (tsu.ddm) from this URL:

https://www8.cs.ucy.ac.cy/projects/ddmgroup/wpflesdcotson/

Extract the file. You should have a folder namedddm
Move the tsu.ddm folder into this path: $COTSONHQ®ENches/timing-unisi/
cd $COTSONHOME/branches/timing-unisi/tsu.ddm anelcexe:

= make clean; make

» Executing DDM applications
0 Go to $COTSONHOME/branches/timing-unisi/tsu.ddm
0 Modify the script.bastfile

$ xget $COTSONHOME/branches/timing-unisi/tsu.ddm/TS UClient ./TSUCIlient
$ chmod +x ./TSUClient
$./TSUClient 1 4 5 1024 32

The script.bashfile contains the appropriate script code to exedhe TSU's executable.
Below is the content of the script.bash file. Tlienaand of the first line is responsible for

transferring the executabl@ $UCIlien) in the simulator. The command of the second line
changes the permissions of the executable, i.givéls execution permissions to the current

user. Finally, the command of the third line exesuhe DDM application in the simulator. The

TSUClient takes the following arguments:

Program Id it indicates the benchmark that the user wanexazute. For example, O corresponds to matrixiphyhnd
1 corresponds to Cholesky decomposition;

Cores:represents the number of cores;

AQ Thresholdit determines how many tasks will be given to leest loaded worker before checking for the neoitker
with the minimum load. The default is 5;

Matrix Size is the size of the matrix to be used (valid dolyspecific benchmarks);

Block Sizeanother parameter considered only in specificberarks;

Iterations it represents the number of times the user wargégecute the application (this argument is ogtipn

0 make run

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 78 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

14.4Expected output

For the purpose of evaluation, tkholesky decompositioapplication (which is one of the most
complex applications available at the moment) heenkchosen. Fig. 34 shows a screenshot for the
execution of TSU++ on the COTSon simulator. Thguoutimings are shown on the right.

[1] AMD SkmMow Main Window — Public Relesse

........

Fig. 34 - Executing TSU++ on COTSon.

The output is stored in thde.1.stdout.lole. It should display a content similar to thdldaving:

Worker 0: stack 0xa2f000 16384
Worker 1: stack 0xa34000 16384
Worker 2: stack 0xa39000 16384
Worker 3: stack 0xa3e000 16384
Program: Cholesky decomposition, Cores 4, AQ threstlMatrix Size: 2048, BlockSize: 32
Deallocate worker frame at 0xa2f000
Deallocate worker frame at 0xa34000
Deallocate worker frame at 0xa39000
Deallocate worker frame at 0xa3e000
All workers done, goodbye

Speedup: 3.480233

Serial time: 24.089845

Parallel time: 6.921906

14.5Further references to more in-depths
Further information and details about the TSU++ecizdavailable in the deliverable D6.4.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 79 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

15 Research Use Case from UD

The Delaware Adaptive Run-Time SystéBARTS) is a software implementation of tiimdelet
Model proposed by Zuckerman et al. [4], and presentelddrl and D9.2. It was written with two
main objectives in mind: (1) to be a faithful implentation of the Codelet Model, and (2) to be
modular, so that further research to explore firergevent-driven program execution models could
be performed.

DARTS relies on thédwloc library [1] to map the topology of the underlying hardwtarehe Codelet
abstract machine model required to specify how nmamghronization units (similar to DF-Threads'
thread scheduling units) and compute units (or SJothere should be, and how they should be
physically grouped. It also relies on the lock-foegta structures provided by Intel Threading Buaidi
Blocks [3] if they are present on the system fdicefnt work queuing.

Further details about the implementation of DARTStloe generic X86 architecture can be found in
the Euro-Par publication [2] and in D9.3. A detdilexplanation of the port of DARTS to the
TERAFLUX simulation infrastructure, including a dission of the necessary trade-offs, is also
available in D9.3.

15.1Goal of the experiment or example

This example demonstrates how to build and run elesnthat come with the port of DARTS on
COTSon simulation infrastructure. In the followingvill be demonstrated how to first build DARTS,
then run the experiments. The focus will be on thmerge sortexample, however all the other
experiments can be built using a similar methodplog

15.2Location of the involved files
The archive for DARTS-TSUF can be found at:
| $COTSON_ROOT/branches/ud-darts/darts-tsuf |

The directory containing scripts to run the reowgsiFibonacci sequence computation, Matrix
Multiplication, and Merge Sort examples is locaa¢d

| $COTSON_ROOT/branches/ud-darts/scripts |

15.3Detailed instructions to start

The Merge Sort example can be run by typing théovdiehg commands. In the following, it is
considered that the COTSon repository is locatetiérpath pointed by the varial€OTSON. The
directory where to install and run the experiments pointed by the variable
$PATH_TO_EXPERIMENTS (note that the two variables can be defined byte).

» Building DARTS-TSUF. After having checked the CRS files out, do:

$ cd $SPATH_TO_EXPERIMENTS/

$ mkdir $PATH_TO_EXPERIMENTS/darts-build

$ cd $PATH_TO_EXPERIMENTS/darts-build

$ cmake $COTSON_ROOT/branches/ud-darts/darts-tsuf
$ make

Deliverable numbed7.5 — D8.3

Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 80 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

* Running the DARTS-TSUF merge-sort example. Firspycthe scripts from the script folder
as follows:

$ mkdir $PATH_TO_EXPERIMENTS/scripts
$ cd SPATH_TO_EXPERIMENTS/scripts
$ cp $COTSON_ROOT/branches/ud-darts/scripts/* .

Configure theconfig.lua script so that it points to the rigtftux_tsu.so library, as well as the right
script to run (in this examplejsort.sh. Then edimsort.sts variables:

$ export OUTPUT_PATH=$PATH_TO_EXPERIMENTS

$ export DARTS_PATH=$PATH_TO_EXPERIMENTS/darts-buil d
$ export COTSON_PATH=$COTSON_ROOT/trunk/bin

$.Jlaunch.sh

15.4Expected output

The output is stored in thresults.txffile. It should display a content similar to tlaléwing:

DF owm Ox7ffff7674000 10000000
Creating 1 workers for 1 cores

Starting workers

Starting master node 1 nodes 1 workers 1
mergesort(500)

Done

Time:2.39678e+08 ns

Deallocate OWM at 0x7ffff7674000

All workers done, goodbye

DF STATS ================ —=====
df time: 240736779 ns (240.737 ms)
core 0: 23360631 insts 240736779 xc Oic, 240736779 cycles

The number of elements to be sorted is displayezl dkample tries to merge 500 random numbers).
If the simulation went through, the “Done” messa&gelisplayed, followed (on the next line) by the
amount of in-simulation nanoseconds it took to thaexperiment.

15.5Further references to more in-depths

More details about the DARTS run-time and the Cedelodel can be found in the deliverables D9.1,
D9.2, and D9.3. Deliverable D9.3 also explain thecpss of porting the run-time on an x86-based
TERAFLUX architecture.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 81 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

16 Research Use Case from UNIMAN

Our main goal is the design and implementation cin$actional memory (TM) system in the
COTSon simulator. We have developed TM systemdhpports lazy and eager version management
and conflict detection mechanism. The TM modelshagen extended and a scalable TM system has
been developed. The scalable system is a purejyitaglementation but the commit process takes
advantage of a hierarchical organization of conés modes. The committed changes are broadcasted
within the node but outside the node the inval@eiare sent only to the nodes that were actually
sharing the committed data. In order to impleméet ¢calable TM system we have used directory
based cache coherence protocol as a startingfpoiotir baseline version.

In the following subsections, we will be explainiirg detail of how to run our TM models in the

COTSon simulator along with the directory basedtqmols on which our scalable TM version is
based on.

16.1Goal of the experiment or example

The main goal of the experiment is to show howuo different benchmarks on the TM system
developed in COTSon. We will show how to run apglizns on scalable directory based simulator as
well as the TM system implemented on top of thediry infrastructure. We will also be giving
detailed description of running dataflow benchmaskih transactions running on the simulator. We
will be showing how the TM model works along witet TSU to run dataflow plus transactional
memory benchmarks.

16.2Location of the involved files
The complete TM infrastructure is present in thH®Wing two locations.
| SCOTSONHOME/branches/tm-uniman |

And
| $COTSONHOME/branches/tflux-test/tsuf |
First is the cache coherent NUMA architecture. Téwde for this directory based coherent

architecture is present in:
| $COTSONHOME/branches/tm-uniman/trunk/src |

The configuration files for the scalable systempmesent in:
| $COTSONHOME/branches/tm-uniman/trunk/src/example/un iman/cc_numa_tracer |

The code for the TM system developed at unimamasegnt in
| $COTSONHOME/branches/tm-uniman/trunk/src |

And the configuration files are in
| $COTSONHOME/branches/tm-uniman/trunk/src/example/un iman/tm_tracer |

The code for the scalable TM system is present in
| $COTSONHOME/branches/tm-uniman/trunk/src ‘

And the configuration files are in
| $COTSONHOME/branches/tm-uniman/trunk/src/example/un iman/tm_tracer_scalable |

Finally the configuration files to run TM systemoafi with the TSU to run dataflow plus
transactional benchmarks are present in
| $COTSONHOME/branches/tflux-test/tsuf/test |

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 82 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

We will be looking at all these files and give exgenof running simple benchmarks on all these

configurations in order to help the user in using M infrastructure for further experimentation.

16.3Detailed instructions to start

The first step is to check out the full COTSon ®fwy (including branches) and $&tOTSONHOME

$ svn co https://svn.code.sf.net/p/cotson/code cots on
$ export COTSONHOME=<installation_dir>/cotson

Next the user has to compile the main trunk anad this ‘branches/tm-uniman/trunk’:

$cd $COTSONHOME/trunk
$./configure —simnow_dir <path_to_simnow_installat ion>

if the configure terminate successfully than jygiet

| $ make

Again for “branches/tm-uniman/trunk”:

$cd $COTSONHOME/branches/tm-uniman/trunk
$./configure —simnow_dir <path_to_simnow_installat ion>
$ make

Running benchmarks on Scalable ccNUMA architecture

In order to run scalable directory basstNUMA architecture we need to configure the COTSon

simulator:

| $ cd $COTSONHOME/branches/tm-uniman/trunk/src/examp les/uniman/cc_numa_tracer

The main file that configures the systemcistson_tracer.in Fig. 35, shows the snhapshot of that

configuration file.

totalMumOfNedas = 1--cpus()
totalNumOfCpus = cpus(]
cpusPeriods = TotalNum0TCpus/totalNum0TNodes

print (“###¢ totzlNumDfNodes .. totalnum0fNodes)
print("### totzlMumDfCpus * .. totalMumOfCpus)
print ("## cpusPzriod .. cpusPerfode)

print() print() orint()

"1

Prinl{"##
cpusPerNode=cpusPerNode, totalNoOfNodes=totalHum0fNodes}

i=8
=6

while j < totalNumOfNodes do
prirt{"### Id of the node being d o

--Memary is distributed among the nodes. If you want to change how the memory is distributed then go to main memory.cpp
print("Setting up distributec red mesor

print{"creating menory for nod . 1)

mem=Menory{ name="nain", latency=158, numDfNodes=totallum0fNodes, num0fCpus=totalNum0fCpus, node id=j}

print{"creating rectory f [t . 1}
dir=Directory{ name="direc ", size)
Line size=&4, latency=10,
wm cete=d, next=network, memory=8
write policy="Wa", write allocate e protocol t . node id=j}

e g nelwor k
netwark=5implabetwork{ name="retwork"”, latency=16, handw dth=4 6 trace file=sTRACFE OUT, generate trace="true”, totalNedfCpus=cpus(),

Fig. 35 — Configuring ccNUMA architecture in COTSon.

The configuration file sets up the number of notethe systentotalNumOfNodess well as total
number of cores in each node. It also sets up itleetdry structure and the protocol being used to

implement coherency.

Deliverable numbeD7.5 — D8.3

Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD

and TERAFLUX dataflow techniques
File name: TERAFLUX-D75-v17.doc Page 83 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

In the same directory there is the filen.sh which contains paths of all the benchmarks tlestdnto

run on the simulator (in the examples directorydhare several benchmarks, in this case the default
is Micro-Benchmarks/microtest). In order to run tremarks the user just needs to typake The
result containing all the execution statistics &vex in the log file after the simulation exits
successfully, in the same directory.

Running benchmarks on TM architecture

Configuration files for TM architecture are reachmdissuing:

| $ cd $COTSONHOME/branches/tm-uniman/trunk/src/examp les/uniman/tm_tracer |

cotson_tracein file configures the simulator to run TM benchmarkig. 36 shows the screenshot of
that configuration file.

print(- J)
bus=Bus{ name= , protocol= , latency=25, bandwidth=4, next=13, node id=j }
busT=Bus{ name= , protocol= , latency=25, bandwidth=4, next=mem, node id=j }

k=8
while k < cpusPerNode do

print T Y

cpu=get cpu(i)
cpu:timer{ name= .1, type=

12=Tm Cache{ name= , Size=
line size=64, latency=18,
num_sets=16, next=bus,
write policy= , Write allocate= , sharing= , node id=j, tm protocol=tmProtocolType }

ic=Tm Cache{ name= , S5lze=
line size=64, latency=2,
num sets=16, next=12,
write policy= , write allbtate= , sharing= , node id=j

dc=Tm_Cache{ name= , size=
line size=64, latency=2,
num sets=16, next=12,
write policy= , write allocate= , sharing= , node id=j, tm protocol=tmProtocolType }

Fig. 36 — Configuring TM architecture in COTSon.

As shown in the figure, the configuration file sefsthe TM protocol. It configures the network and
the caches used in implementing TM protocol. Thehea are modified to contain extra information
for saving and committing transactional data.

In the same directory there is the filen.sh which contains paths of all the benchmarks tlestdnto
run on the simulator (in this case, the pathigoationbinary). In order to run benchmark the user just
needs to typenake The result containing all the statistics of tlheaution is saved in the log file after
the simulation exits successfully, in the sameatioey.

Running benchmarks on Scalable TM System

Scalable TM system builds on top of directory basextocols. The configuration files to implement
the scalable TM system are reached by issuing:

| $ cd $COTSONHOME/branches/tm-uniman/trunk/src/examp les/uniman/tm_tracer_scalable |

cotson_tracer.irfile configures the simulator to run TM benchmarkig. 37 shows the screenshot of
the configuration file.

Deliverable numbed7.5 — D8.3

Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 84 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

As shown in the figure, the configuration file seis the scalable TM protocol. It configures the
network, the caches and the directories used irleimgnting TM protocol. The caches and the
directories are modified to contain extra informatfor saving and committing transactional data and
implementing the TM protocol. Directories are cgofied to implement the TM protocol rather than
conventional coherence protocol.

To run the benchmarkMicro-Benchmarks/microtesh this case) the user has to dmake The file
run.shcontains paths of all the benchmarks and theilegéntains all the stats of the execution.

dir=Tm Directory{ name= , Size=
line size=b4, latency=2e,
num_sets=32, rext=network, memory=mem, L}
write policy= , write zllocate= , protocol= . Node _id=j}

--L3 cache is expected to be inclusive therefere make sure that the size of the L3 caches is large encugh to hold the datz of
--the upper lavel of caches. 1ts the came for all the caches. Inclusien is expected te be mairtained at all levels.

--L3 is shared by all the upper level of caches therefore it is mede "shared”.

print(|

13=LL_Cache{ name= , size= ’

Line_sice=64, lalency=20,

num sets=32, rext=dir,

write policy= , Write_zllocate= , sharing= , node 16=] }
print(- 1)
bus=Bus{ name= . Frotocol= . latency=25, bandwidth=4, next=13, ncde id=j }
busT=Bus{ name= . protocel= . latency=25, bandwidth=4, next-mem, node id=j }
k=0
while kK < cpusPernkode do

cpu=get cpuli)
cpu:timer{ name
12=Tm Cache{ name , size .
line size=64, latency=18,

num_sets=32, xt=bus,

write policy= , write allocates , sharing= node id=j, tm protoccl=tnProtocolType }

Fig. 37 — Configuring TM architecture in COTSon.

Running dataflow plus TM benchmark in COTSon usingTSU and TM hardware

This section explains how to set up the simulatothat it has both the TSU and TM hardware
working together to run applications that have fliataand transaction properties.

In order to run dataflow and transaction benchmaties COTSon simulator needs to implement the
TSU hardware as well as TM hardware so that bopeas of the applications can be handled in
hardware for greater efficiency.

The configuration files to set up TM mechanism glarith TSU hardware are reached by issuing:

$ cd $SCOTSONHOME/branches/tflux-test/tsuf

$ make

$ cd $COTSONHOME/branches/tflux-test/tsuf/test
$ make run_htm_single (or make run_htm_multi)

There are two configuration fildsu_tm_single.luandtsu_tm_multi.lugo run single node and multi
node simulation respectively. The user has to dakerun_htm_single or make run_htm_multi. The
snapshot of the make file in shown in Fig. 38.

As shown in the figure, the makefile sets up TMniag on single and multi-node with the TSU
hardware. Thésu_tm_single.luandtsu_tm_multi.ludiles configure the network, the caches and the
directories used in implementing TM protocol.

To run the benchmark the user has to doake HTMTESTS variable in the makefile contains the
list of the benchmarks to run. The log file consaafl the stats after the execution exits succégsfu

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 85 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

HTMTESTS = tmtect htm

all: $(TESTS)

run_htm single: clean
echo
echo
echo
echo
echo
for n i
echy “a
echc .
eche "sl
done; A,
echo "touch te
£(COTSON) SCRIPT="'S

5" > S[TSCRIPT);
x cfg.sh® »> $(TSCRIPT);

T)* == $[TSCRIPT): ©
Z)' »» $[TSCRIPT);

< $50; echo ' ; echo "RUNNING $5 >> $(TSCRIPT); 1\
s wput LOG S{PWD)/LOG* == $({TSCRIPT);

2=£1 a
»» §(TSCRIPT);

put terminate terminzte’ >> $(TSCRIPT);
SCRIPT) " * TSUSIM=""'4(TSUSIM teu_tm single.lua

randunize va_space=6" > $[TSCRIPT); °
T)* == §[TSCRIPT); %

1° == $(TSCRIPT);

2" »>» $(TSCRIPT); \

L)' =» S(TSCRIFT);

4n; chnod +x 4$%n; echo o "RUNNING %% »>> $(TSCRIFT)
b Z)" »> S(TSCRIPT);
echo “sleep L* »> ${TSCRIPT);
done;
$(COTSON) SCRIPT="'S(TSCRIPT)'® TSUSIM="'$(TSUSIM tsu tm multi.luafy

Fig. 38 — Makefile to setup TM and TSU hardware for single and multimode simulation.

16.4Expected output

This section explains some of the output files s generated when the execution successfully
exits. We will also be showing some screen shotshtiw the execution in progress and the output
that should be expected when running the benchmarks

Running benchmark on Scalable ccNUMA architecture

Fig. 39 shows the devices when running ccNUMA CQT Sinulation. Thecotson_tracer.irsets up
the number of cores in the system as shown in £ig.In this example the number of cores is 4,
which is reflected in Fig. 39. The log file is gesmed when the execution successfully exits. Fig.
41shows the snapshot of the log file, which is gateel when the matrix multiplication example
finished execution. The log file shows the caclassdf the simulation running with 4 cores.

[1”Show Deprecated Devices]
St PIOEoR coss0r 40 Dabugger #1
Dimm B; n
i =}
XAMD 8th Ge neration Integrated Northbricge us #13
AMDIATI Integrated SouthBridge AMD-812 PORX
D Comvefor iz @)
|AMD Family 12h/14h/15h Graphics NorthB| . pe
QAN Istanbui 6-Core Socket L1 @
Winbond Wa3627HF
|AMID Komodo 10-Core Socket 2012 Proc) b M
AMD Kamod 10-Gore Socket A2 Prosss
Intel(R) Pror1 00
|AMD Komodo 20-Core Socket G2012 Proc Vi v © MT/PT Doskioy
Emerald Graphias MFgverk Adapter
&AMD Lisbon 6-Gore Socket G32 =
USB JumpDrive #18. g L il
&AMD Magny-Gours 12-Core Socket G4 g
PCA9548 Device #16AT24C Devics #17
ﬂAMD Orochi 16-Gore Socket Ga4rt
P 5140 vt o157 P ‘ i
= | — =

Fig. 39 — Device window while running COTSon simulation

-- change this to point to your bsd and hdd &
-- you can use absolute paths here or else
-- placed the bsd and hdd in the data directory
-- of this distribution
simnow.commands=function()
use bsd('4p.bsd') --Note that, if you add more procesors. Remember to update the size of L3 as compared to L2s if you want to maintain inclusion.
use_hdd('karmicé4.img")
set_journal()
-- we execute run.sh which invokes the custom tracer
-- The options.exit trigger file (when created) stops simulation
-- send_keyboard('xget /tmp/run.sh r;sh -x r;xput r '..options.exit_trigger)
send_keyboard('xget /tmp/run.sh r;sh -x r')

end

Fig. 40 — cotson_tracer.in configuration file setting up the number of cores in the simulated machine

Deliverable numbed7.5 — D8.3

Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 86 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

cpu@.timer.icache.l2cache.bus.13cache.directory.lock []

cpu@. timer.icache.12cache.bus.13cache.directory.lookup_EXCLUSIVE®

cpu@. timer.icache.12cache.bus.13cache.directory.lookup_INVALID®

cpul. timer.icache.12cache.bus.13cache.directory.lookup MODIFIED®

cpud. timer.icache.l2cache.bus.13cache.directory.lookup NOT FOUNDE

cpud. timer.icache.l2cache.bus.13cache.directory.lookup OWNER®

cpud. timer.icache.12cache.bus.l3cache.directory.lookup SHARED28649
cpu@.timer.icache.l2cache.bus.13cache.directory.network.bw ©
cpu@.timer.icache.12cache.bus.13cache.directory.network.fetch invalidation51376
cpu@.timer.icache.l2cache.bus.13cache.directory.network.invalidation48944
cpu@.timer.icache.l2cache.bus.13cache.directory.network. read106251
cpu@.timer.icache.12cache.bus.13cache.directory.network. readx117764
cpud. timer.icache.12cache.bus.13cache.directory.network.updated

cpud. timer.icache.l2cache.bus.13cache.directory.network.wait time read@
cpud. timer.icache.12cache.bus.13cache.directory.network.wait time write®
cpu@.timer.icache.l2cache.bus.l3cache.directory.network.writel5854
cpu@.timer.icache.l2cache.bus.13cache.directory.read 28649
cpu@.timer.icache.l2cache.bus.13cache.directory.readx 32052
cpu@.timer.icache.l2cache.bus.13cache.directory. remoteAccess110840

cpu@. timer.icache.l2cache.bus.13cache.directory.update_EXCLUSIVE®

cpu@. timer.icache.12cache.bus.13cache.directory.update_INVALID®

cpu®. timer.icache.12cache.bus.13cache.directory.update_MODIFIED®

cpul. timer.icache.12cache.bus.13cache.directory.update NOT FOUND3688
cpud. timer.icache.12cache.bus.13cache.directory.update OWNER®

cpu. timer.icache.12cache.bus.l3cache.directory.update SHARED28631
cpu@.timer.icache.l2cache.bus.l3cache.directory.write 3608
cpu@.timer.icache.l2cache.bus.13cache.inclusion invalidation®

cpu.timer.icache.12cache.bus.13cache. lookup EXCLUSIVE 2]
cpu@. timer.icache.l2cache.bus.13cache. lookup_INVALID Zeﬁé}
cpu@. timer.icache.12cache.bus.13cache. lookup_MODIFIED 8762
cpu@. timer.icache.12cache.bus.13cache. lookup_NOT_FOUND 65397

Fig. 41 — Log file showing icache statistics for the cpu 0.

Running benchmarks on TM architecture

Fig. 42 shows the COTSon simulation runnmiagationtransactional memory benchmark. As you can
see in the figure the number of commits and alaggrinted in the console.

chmod 7?77 Arrays3
xget slocalhomeskhanbsteraf luxsbinariess/vacation vacation
chmod 7?77 vacation

t o]

-u38 -r1024 -t512 -c4

Transactions
Clients
Transactionssclient
Queriesstransacti
Relations

Query pi

Query ran

commits
commits
commits
commits
commits
commits
commits
commits
commits
commits
commits
commits
commits
commits A
commits v

Fig. 42 — COTSon graphical main window and the console output.

The output of the benchmark is printed on the CQOT$wain graphical window. Finally the
simulation stats are written to the log file thatcreated in the same folder where the configuratio
files are present.

Running benchmarks on Scalable TM architecture

Fig. 43 shows COTSon simulation runni@gnomebenchmark. The figure shows how the scalable
TM system is configured containing many nodesyithisted memory structure and a shared L3 cache
within each node.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 87 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

creating network

Rows:= 2, Columns = 2 28 @ [1] AMD SimNow Main Window -- AMD Confidential
Id of the node being loaded is ® Bl it gpaitllgiees, i

Setting up distributed shared memory W ‘ o A8 W o] | a ‘ o
Creating memory for node 8
creating directery for node 8
Creating Shared L3 cache for node @ - Simulator Stats—— - IDE Primary Display— - IDE Secondary Display - Diagnostic Ports - Floppy Display

Creating bus and busT for node 9 0.43 Host Secords [0 maserread 0 masterread ||[00 |00 |00 [FB 83- 80 0 read
Creating cpu Id @ for node Id @ — —_— 3 — 5 — .
20,00 Sim Seconds | 0 masterwritten 0 master writien| |[00 [00 [00 |00 87- 84 0 writlen

’70,\‘,9 MIPS Resetavg| [0 slaveread 0 slave read | |[00 [00 [00 [00 e3-e0
0.00 MIPS [0 slave written 0 slave writen

|PIOPIO mods |[PIOPIS moda

Numeric Display(s)

Id of the node being loaded is 1
Setting up distributed shared memory
Creating memory for node 1
creating directory for node 1 N
Creating Shared L3 cache for node 1 s
Creating bus and busT for node 1 (4 b 0 o 0 0 [} 00 08
Creating cpu Id 1 for node Id 1 L . s 03:00:00:00,0 00: (m/ a0 Emask 0x3 C(HSM
i
s
s

6 frozen

iolation)
ataz.00: status: { DRDY ERR }
4.4363491 chp 0000:00:0b,0: Cannot reserve MMID region
= Se nug pre*mmmq keymap.
Id of the node being loaded is 2 « Sctiing up console font and keymap.
setting up distributed shared memory ting OpemBSD Secure Shell server sshd
Creating memory for node 2 buntu 9.10 cotson ttyl
creating directory for node 2
Creating Shared L3 cache for node 2
Creating bus and busT for node 2 22157 UTC zam on ttyl

Creating cpu Id 2 for node Id 2 2 312 e #thA-llhunty SHP Tue fct 26 16:50:02 ITC 2010 xff_Hd

Fig. 43 — Conflgurmg the scalable TM architecture in COTSon.
This configuration is setup in tledtson_tracer.luaonfiguration file. The structure of the system ca
be changed by making modifications in the lua fllee user can increase or decrease the number of
cores within a node. The levels of cache hierarti,directory and network structure can also be
configured. The log file is created when the sirtiataexits successfully.

1d of the node being loaded is|, ca¢ .5 stens C}.iI/LpLII scpufregscpuinfo_max_freq
Creating memory for node @ i yic y pulscpufreq/cpuinfo_max_freq
Creating Shared L3 cache for node §. echo p

Creating bus ind busT for node 8 | cat /s ysten/ ufregscpuinfo_max_freq
Creating cpu id © for node Id @ I+ cat /s y ustens ufregscpuinfo_max freq
Creating cpu Id 1 for node Id @

Creating cpu Id 2 for node Id @ a y ’CP"“ eq/ CP“I“TD LERS f!“’l
Creating cpu Id 3 for node Id @

Local config dome

RUNNING tmtest htm
'ff;s ¥:EEEESEEARI; E:ggizéggiie§4gz DF oum Ox7ffff6179000 32000000
TSU TSCHEDULE: ip 0x481548 sc 5 sz ::3::::3 3 workers Tor:4 cores
Tsu TSCHEDULEE is E:jgi::g :E 5 ;;tarting master node 1 wnodes 1 workers 4
: ip 6x4815e8 sc 2 sz
: ip ©x4015e0 sc 2 sz
Execute CPUID (begin) tag 6
Begin Transaction DevId=2 and cr3=Bxd56c000 (54636)
Nesting level := 1.
RIP: 40816aa
Execute CPUID (commit) tag 6
No. of commits := 1, and No of aborts 0.
Nesting level := B.

Commit pending writes in case of lazy version management
Commit Transaction DevId=2

Execute CPUID (begin) tag 6

Begin Transaction DevId=2 and cr3=8xd56c000 (54636)
Nesting level := 1.

RIP: 40l6aa

Execute CPUID (begin) tag 6

Fig. 44 — COTSon simulation setting up and running TM and TSU hardware.

Running dataflow plus TM benchmark in COTSon usingTSU and TM hardware

The final experiment we will show in this reporthew to run TM hardware along with the TSU
hardware for benchmarks that have transactiongddataflow properties. Fig. 44 shows the COTSon
simulation configuring and then running a simplemibenchmark using the TM and TSU hardware.
The dataflow instructions are handled by the TStdilwvare and the transactional memory instructions
are handled by the TM hardware. The log file isatad at the end, with all the simulation statistics

16.5Further references to more in-depths
Refer to previous deliverables (D7.4, D7.3, D7.d B7.1) for more details about the TM models and
their integration with the common simulation platfo

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 88 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

17 Research Use Case from UNISI

One of the main building blocks of the TERAFLUX jat is the implementation of the Thread
Scheduling Unit (TSU) model, running in the COTSomulation platform. As result of the research
activity, several versions of the TSU model hasnbiegplemented and made available to the other
partners. The two most stable versions at the sum®ment are the TSUF and the TSU4. Both of
them allow the execution of dataflow benchmark ké&srisuch as theecursive FibonacgiandMatrix
Multiplication) both on a single node simulated system, and di-nade simulated system. The
purpose of the TSU model is the scheduling of d#atathreads (namely DF-Threads) among the
available cores, as expected from the hardwaretemqart.

17.1Goal of the experiment or example

The main goal of the experiment is to show howuto & dataflow benchmark application using the
TSU model developed within the COTSon simulator thie end, the following subsections describe
how to run a simple test using the TSU4 model fier TSUF implementation, refers to the chapter 9,
sections from 9.1 to 9.5). The experiment allows tiser to understand how the scheduling unit
model has been integrated in the simulation platf@nd which information it provides to the user.

17.2Location of the involved files

The scheduling unit model is distributed in a datéd directory contained in theanchedolder:
[$COTSONROOT/branches/timing-unisiltsu4 |

17.3Detailed instructions to start

As an example, detailed instructions to run rbeursive Fibonaccbenchmark kernel on the TSU4
model of the thread scheduling unit will be prodid&his benchmark is used to stress the thread
scheduling unit since it is able to generate a hugaber of DF-Threads even for a small size of the

input. In order to run the example, move on theeadrfolder:
| $ cd $COTSONROOT/branches/timing-unisi/tsu4 |

Open theMakefilefile with a text editor and check that the firistel is correctly pointing the source
folder in the trunk COTSon folder. Then, in the sdfite set the variableESTSo fib, in order to run
the selected benchmark:

$ vim Makefile

ROOT=../../../trunk/src

DATE=$(shell date +%s)

PWD=$(shell pwd)

MCAST=$(shell expr 1 + $(DATE) % 250)
DEBUG=1

TESTS =fib

all: tsu_monitor.o tsu_manager.o tflux_tsu.so tsumo n $(TESTS)

Open therun_script.shfile with a text editor. In the opened file se¢ thariableTESTSo fib, in order

to run the selected benchmark. In order to propsetythe configuration of the simulated system,(i.e
size of the input of the benchmark, number of coeés), the following variables must be checked:
NUM_NODE defines the number of nodes composing the syst@RESdefines the number of
cores in each nod§ZandMT_SIZEdefine the input size for the used benchm&ZXrefers to the
Fibonacci kernel, whileMT_SIZErefers to theMatrix Multiplication kernel). In this example the
Fibonaccikernel with 14 as the input size is r&H_MEMvariable defines the name of the object in
the host system used to implement the shared meawogs the nodes. Final@UTPUT variable
point to the folder where the simulation outputlwié recorded (set alstSU_STATSSCRIPT and
REPORT_DIRrariables).

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 89 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

$ vim run_script.sh

I/bin/bash

number of nodes

NUM_NODE=1

benchmarks

TESTS="fib"

number of cores per node

CORES=4
TTCORES=$(($CORES*$NUM_NODE))
#for fibonacci

Sz=14

#for matrix multiply

MT_SIZE=512 # matrix size

#shared memory name (unique for each simulation)
SH_MEM="DTHREADSharedMemory"

if [$SH_MEM]]; then
export DTHREAD_OBJ=$SH_MEM"1"
export DTHREAD_READY_OBJ=$SH_MEM"2"
export DTSU_SYNC_OBJ=$SH_MEM"3"

fi

BIN_BENCH_DIR=$PWD

if [-z $OUTPUT] ; then OUTPUT=./S-LOG ; fi
SCRIPT="$OUTPUT/script"
TSU_STATS="$OUTPUT/stats"

FILE_LAST_LOG="file_last"
REPORT_DIR="$OUTPUT/report"

The Lua configuration file is set to run a timinighalation Gamplerobject is set tsimplg of the
target system:

$ vim tsu.lua

abaeterno_so="tflux_tsu.so"
wd=o0s.getenv("PWD")

tmpdir=wd
runid="tsu"
-- clean_sandbox=false

options = {
--max_nanos='3G',
exit_trigger="terminate’,
-- sampler={type="no_timing", quantum="10M" 1
sampler={type="simple", quantum="10M"},
heartbeat={ type="file_last", logfile=runid .log"},
custom_asm=true,
tsu_ignore_errors=true,
-- tsu_speculative_threads=true,
-- tsu_statfile="/tmp/xx.dat",

}

one_node_script="run_interactive"
-- display=o0s.getenv("DISPLAY")
copy_files_prefix=runid.."."

-- clean_sandbox=false

simnow.commands=function()
-- use_bsd('32p.bsd’)
use_bsd('4p.bsd’)
-- use_bsd(BSDS)
use_hdd(’karmic64.img')
--use_hdd('debian.img’)
set_journal()
send_keyboard('xget '..SCRIPT.." script’)
send_keyboard('sh -x script | tee LOG 2>&1")
end

function build()
i=0

At this point is possible to launch the simulatidio. this end, the reader needs to open two console
windows. In the first console (after moving in tf€ OTSON-ROOT/branches/timing-unisi/tstide

Deliverable numbed7.5 — D8.3

Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 90 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

reader launches the external monitor (i.e., theatlihat is used to manage the shared memory across
the nodes)

$ make run_tsumon |

Once the monitor is running, the following outphosld be presented:

$Booting TSU Monitor ...
$Start TSU Monitor
$TSU Monitor is configured with 1 nodes

$TSU Monitor is initializing shared memory (DTHREAD SharedMemoryl) $....
$TSU Monitor is initializing ready shared memory (D THREADSharedMemory?2)
$TSU Monitor is initializing sync shared memory (DT HREADSharedMemory3)

$TSU message queue m2n(DTHREADSharedMemorylmg_mon2n ode0) for node(0) is initializing....
$TSU message queue n2m(DTHREADSharedMemorylmg_node2 mon0) for node(0) is initializing....
$lInitialization for shared memory finished!

Finally, on the second console the user launchebehchmark execution as follows:

$ make run

17.4Expected output

The following files are involved in the output pess. The filenode.1.tsu.logontains the statistics
gathered by COTSon during the simulation:

Input values:

cpu0.bpred_perfect false
cpu0.branch_mispred_penalty 8
cpu0.commit_cpi 1.0
cpu0.dcache.fudge 1.0
cpuO.icache.fudge 1.0
cpuO.twolev.hlength 14
cpu0.twolev.I1_size 1
cpuO.twolev.12_size 16kB
cpuO.twolev.use_xor 1
cpuO.type timer0
cpul.bpred_perfect false
cpul.branch_mispred_penalty 8
cpul.commit_cpi 1.0
cpul.dcache.fudge 1.0
cpul.icache.fudge 1.0
cpul.twolev.hlength 14
cpul.twolev.ll_size 1
cpul.twolev.l2_size 16kB
Output values:

cpu0.cycles 149999985
cpu0.haltcount 108195301
cpu0.hb_ATC_flush 67
cpu0.hb_CR3_different 36
cpu0.hb_CR3_equal 31
cpu0.hb_ev_Exception 692
cpu0.hb_ev_HW_interrupt 219
cpu0.hb_ev_SW_interrupt 0
cpu0.idlecount 112802301
cpu0.instcount 24655697
cpuO.invalid_translation_bytes 1936557
cpuO.iocount 4069258
cpu0.metadata_bytes 10468840
cpuO.other_exceptions 210511
cpu0.plain_invalidations 2988
cpu0.range_invalidations 32
cpu0.read_mmios 368
cpuO.read_pios 1062
cpu0.segv_exceptions 0
cpuO.timer.cycles 37823009
cpuO.timer.instructions 24147071
cpu0.timer.twolev.lookup 2048709
cpu0.timer.twolev.misses 83286
cpu0.timer.twolev.reset 0
cpuO.timer.twolev.update 2048709
cpuO.trace_cache_size 0
cpuO.valid_translation_bytes 90649248
cpuO.write_mmios 564
cpu0.write_pios 4169
cpul.cycles 149999985
cpul.haltcount 121463351
cpul.hb_ATC_flush 24
cpul.hb_CR3_different 1
cpul.hb_CR3_equal 23
cpul.hb_ev_Exception 504
cpul.hb_ev_HW._interrupt 30
cpul.hb_ev_SW._interrupt 0
cpul.idlecount 121840334

Deliverable numbed7.5 — D8.3

Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 91 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The file terminal_fib_0_4(enter in the subfoldeB-LOG — see theMakefile configuration in the
previous subsection) contains the output generayethe benchmark and the simulator during the

simulation:

Loading module abaeterno.so.

Using image path: "/home/scionti/Tools/cotson-relea
Known Device: Deerhound RevB QuadCore Socket L1
Known Device: Intel(R) Pro/1000 MT/PT Desktop Netwo
Known Device: USB JumpDrive

Known Device: AMD-8111 I/O Hub

Known Device: AMD-8131 PCI-X Controller

Known Device: AMD-8132 PCI-X Controller

Known Device: AMD-8151 AGP Tunnel

Known Device: Debugger

1 exec> open /home/scionti/Tools/cotson-release/tru
Opening "/homef/scionti/Tools/cotson-release/trunk/d
created device Machine

Instructions per Microsecond: 3000

CPU Model Name: Opteron

System Bus Frequency: 100

CPU Clock Mul: 4

Turbo_Port61: 0

Turbo_Vsync: 0

Guard Memory Required: TRUE

CPU Manages Cycles: TRUE

Disk Block Cache Size: 64K

Disk Block Cache Depth: 5

Disk Block Cache Bits: 12

info: creating device #0 "AMD 8th Generation Integr
info: creating device #1 "Dimm Bank"

info: creating device #2 "AMD-8111 1/0O Hub"

ATA: Image [/home/scionti/Tools/cotson-release/trun
info: creating device #3 "Memory Device"

info: creating device #4 "Winbond W83627HF SIO"

é‘SD Load completed!
1 exec> ide:0.image master /home/scionti/Tools/cots

ATA: Image [/home/scionti/Tools/cotson-release/trun
MASTER drive Image file is now /home/scionti/Tools/

se/trunk/data”

rk Adapter

nk/data/4p.bsd
ata/4p.bsd"

ated Northbridge"

k/data/karmic64.img] does not have an ID field.

on-release/trunk/data/karmic64.img
k/data/karmic64.img] does not have an ID field.
cotson-release/trunk/data/karmic64.img

1 exec> ide:0.journal master on
Journaling was already enabled

1 exec> keyboard.key 2D AD
1 exec> keyboard.key 22 A2
1 exec> keyboard.key 12 92
1 exec> keyboard.key 14 94
1 exec> keyboard.key 39 B9
1 exec> keyboard.key 34 B4
1 exec> keyboard.key 35 B5

1 exec> go

TIME=3.33333 ms IPC (0.993879 0.7075391 1)
TIME=6.66667 ms IPC (0.991326 0.9811211)
TIME=10msIPC (1111)

TIME=13.3333 ms IPC (0.958046 0.8369 1 0.814146)
TIME=16.6667 ms IPC (0.99788 1 1 0.99697)
TIME=20 ms IPC (0.968307 0.966541 1 0.995992)
TIME=23.3333 ms IPC (0.774968 0.774076 1 0.982427
TIME=26.6667 ms IPC (0.995373 1 1 0.965398)
TIME=30msIPC(1111)

TIME=33.3333 ms IPC (0.998995 0.999206 1 1)
TIME=36.6667 ms IPC (111 0.99992)
TIME=40msIPC(1111)

TIME=43.3333 ms IPC (0.99907 0.9993251 1)
TIME=46.6667 ms IPC (11 10.999914)
TIME=50ms IPC (1111)

TIME=53.3333 ms IPC (0.999072 0.99939111)
TIME=56.6667 ms IPC (111 0.99992)
TIME=60ms IPC (1111)

TIME=63.3333 ms IPC (0.998833 0.9993231 1)
TIME=66.6667 ms IPC(1111)
TIME=70msIPC(1111)

TIME=73.3333 ms IPC (0.998844 0.998883 1 1)
TIME=76.6667 ms IPC(1111)
TIME=80msIPC(1111)

TIME=83.3333 ms IPC (0.998409 0.99937911)
TIME=86.6667 msIPC (1111)
TIME=9OmsIPC(1111)

TIME=93.3333 ms IPC (0.998437 0.999356 1 1)
TIME=96.6667 msIPC (1111)

TIME=100ms IPC (1111)

TIME=103.333 ms IPC (0.998433 0.999404 1 1)
TIME=106.667 msIPC (1111)

TIME=110ms IPC (1111)

17.5Further references to more in-depths

Refer to previous deliverables (D7.4, D7.3, D7.2 &v.1) for more details about the TSU models
and their integration with the common simulatioatfdrm.

Deliverable numbed7.5 — D8.3
Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 92 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

18 DRT - Atool for native testing of T* based pro grams

DARTS is not the only research effort for providiag efficient way to execute application on large
computing systems. Looking towards building exascaystems (e.g., next generation
supercomputers, large data-centers, etc.), the @GRct (Open Community Run-time Framework
for Exascale Systems [5]) has been set up by &mdlother academic and industrial partners. The
main objective of the OCR project is the implemé&otafrom the scratch (but reusing as much as
possible current design aspects of run-time sygtefres software level, which is able to help megtin
the requests of future exascale systems (i.e., pagtformance, low power consumption, use of
different programming models and languages, €lbis piece of software should provide a clear and
common interface for both the upper side softwaneurfes, and the hardware infrastructure.

On the same direction, but with different goalsmind, the TERAFLUX project proposed the
Dataflow Run-Time — DRT. In particulanith the aim of facilitating the development andbdgging

of dataflow-oriented applications using the T* I8Atension, within the TERAFLUX project, a run-
time library (DRT) has been devised. DRT is a pietagile software that helps in providing very
efficient environment to run programs with a dataflexecution model. It is organized as a library.
The library is intended to be linked with the apation source code, allowing the execution of the
application directly on the host system. More sjpedly, the run-time exposes the same interface of
the library used within the simulator to execut¢éaflaw applications. The library contains functions
that wrap T* instructions. Similarly, the DRT comts: functions that reproduce the same functional
behavior of their T* equivalent (cf. deliverable.d, D7.2, and D7.3 to deeply analyze the T*
Instruction Set Extension). The run-time Applicatirogramming Interface (API) has been designed
to provide a two-way mechanism in which it supptits development of an efficient compiler and on
another side, to provide for a good architectusgpsrt.

In the proposed approach, the DRT allows showing leasily can be to harness the maximum
capacity of the computing nodes in the TERAFLUXjecb using the dataflow execution model. The
main objective to provide this piece of softwaréashow users that DRT can easily provide a very
small and powerful run-time, for executing differguiece of codes that are coded in different
programming model, but how easily can be executeddataflow style.

18.1Goal of the experiment

DRT provides a simple script file for the “firstnte” whole checking. Currently, some initial
examples have been tested, from simple (like thssatal recursive Fibonacci sequence computation
and matrix multiplication). DRT contains some eowiment variables that help the user to retrieve
more information during the dataflow applicatioreention. Two of them are: DRT_DEBUG and
DRT_FSIZE. DRT_DEBUG can be used to get more dmainformation about the current
execution. DRT_FSIZE is used to set the size @il frame (allocated memory) queue.

18.2Location of the involved files
The source code is uploaded for public accesdllimwimg repository. The repository is available at:

http://sourceforge.net/projects/drt |

Deliverable numbed7.5 — D8.3

Deliverable nameFinal Report and Documentation + Final Results fron the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 93 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

18.3Detailed instructions to start

In this section, it will be shown one sample examjp@ind how to download and compile DRT in a
Linux-based system.
Step 1 the user needs to download the code from thesrgwyp. User can access the source code

from its Linux terminal executing the svn commalndthe terminal just type:
$ svn checkout svn://svn.code.sf.net/p/drt/code/ dr t-code
$ cd drt-code

Pressing the enter key will start the download essqwhich can be seen in the below snapshot).

File Edit View Search Terminal Help

Fig. 45 — A DRT snapshot showing the download process.

Step2: The user can notice the script fitegression.shwhich can be used to check whether all the
files are compiled successfully or not. After extawy this script, it will generate one referende fi
and one output file for each example. The readeratso control the debugging information level by

exporting a new variable called DRT_DEBUG.
[$ Jtregression.sh |

File Edit View Search Terminal Help

Fig. 46 — A DRT snapshot showing the result of the tregression.sh script. During the compilation process, it is
produced in output an OK message (if no error is encountered)

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 94 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

18.4Expected output

The final step will be to check a simple exampthe tecursive calculation of the Fibonacci sequence.
The program calculates the1bibonacci number implementing the dataflow exexuthodel.

File Edit View Search Terminal Help

Fig. 47 — DRT example execution: recursive Fibonacci sequence with input set to 15 and debug level set to 0.

As shown inFig. 47 the program terminates with a correct result.akeady mentioned, DRT can
also provide detailed information using the DRT_DEB variable. The level of verbosity can be
increased using the increasing numbers (i.e., B, 3, etc.). In the above example, the environaient
variable has been set to 0, by exporting ID&I DEBUG=0 It is worth noting that O corresponds to
the default debug value. To increase the verbdsitgl, just set the debug value to 1 (i.e., expost
variable as DRT_DEBUG=1Fig. 48shows the result of the program execution withrieer debug
level set.

File Edit View Search Terminal Tabs Help

n+initial
Datafl

Fig. 48 — DRT example execution: recursive Fibonacci sequence with input set to 15 and debug level set to 1.

So, by increasing this verbosity level the user catnieve more information about the current
execution.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 95 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

References

(1]

(2

(3]

(4]

(5]

(6]

(7]

8l
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Broquedis, F.; Clet-Ortega, J.; Moreaud, S.nfento, N.; Goglin, B.; Mercier, G.; Thibault, $lamyst, R.hwloc: A Generic
Framework for Managing Hardware Affinities in HP@plications Parallel, Distributed and Network-Based Proces$RDP),
2010 18th Euromicro International Conference oal., no., pp.180,186, 17-19 Feb. 2010.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&auper=5452445&isnumber=5452403

Joshua Suetterlein, Stéphane Zuckerman, ans@Ra Gao. 2013. An implementation of the codeletieh In Proceedings of
the 19th international conference on Parallel Pssiog (Euro-Par'13), Felix Wolf, Bernd Mohr, ancefer Mey (Eds.). Springer-
Verlag, Berlin, Heidelberg, 633-644. DOI=10.1008%+-642-40047-6_63.

URL: http://dx.doi.org/10.1007/978-3-642-40047-6_63

Thomas Willhalm and Nicolae Popovici. 2008. tig intel® threading building blocks to work. Irrdeeedings of the 1st
international workshop on Multicore software engineg (IWMSE '08). ACM, New York, NY, USA, 3-4.
DOI=10.1145/1370082.1370085.

URL: http://doi.acm.org/10.1145/1370082.1370085

Stéphane Zuckerman, Joshua Suetterlein, Roluéthase, and Guang R. Gao. 2011. Using a "codmlegram execution model
for exascale machines: position paper. In Procesdai the 1st International Workshop on Adaptivéf-Saning Computing
Systems for the Exaflop Era (EXADAPT '11). ACM, Nefork, NY, USA, 64-69. DOI=10.1145/2000417.2000424RL:
http://doi.acm.org/10.1145/2000417.2000424

The Open Community Runtime Framework for Exds&ystems.

URL: https://01.org/open-community-runtime

Solinas M., Badia, R.M., Bodin F., Cohen, Ayripidou, P., Faraboschi P., Fechner B., Gao GGarbade A., Girbal S.,
Goodman D., Khan B., Koliai S., Feng Li, Lujan NUprin L., Mendelson A., Navarro N., Pop A., Tranod3., Ungerer T.,
Valero M., Weis S., Watson |., Zuckermann S., Giétg"The TERAFLUX Project: Exploiting the DataFloaradigm in Next
Generation Teradevices". 16th Euromicro ConferemcBigital System Design, September 2013, doi: 1001DSD.2013.39
Aaron Landwehr, Stephane Zuckerman, Guang R.'Gaward a Self-aware System for Exascale Archites", In Proceedings
of Euro-Par 2013: Parallel Processing Workshopes;18t Workshop on Runtime and Operating SystemthéoMany-core Era
(ROME 2013), Aachen, Germany, August 2013.

Joshua Suettlerlein, Stephane Zuckerman, GianGao: "An Implementation of the Codelet Modelur&Par 2013, Aachen
(Germany), August 2013, doi: 10.1007/978-3-642-406463.

Bernhard Fechner, Arne Garbade, Sebastian Wéisp Ungerer: "Fault Detection and Tolerance Meigms for Future 1000
Core Systems". HPCS 2013, Helsinki (Finland), 20¢3, doi: 10.1109/HPCSim.2013.6641467.

George Matheou, Paraskevas Evripidou: "Verthaged simulation of hardware support for Data-ftmmcurrency on Multicore
systems". SAMOS XlII 2013, Samos (Greece), July@bi: 10.1109/SAMOS.2013.6621136.

Javier Bueno, Xavier Martorell, Rosa M. Badiajuard Ayguadé, JesUs Labarta: "Implementing Ongpport for regions of
data in architectures with multiple address spact&3C '13: Proceedings of the 27th internationalMA@onference on
International conference on supercomputing, Jui@ 2floi: 10.1145/2464996.2465017.

Fahimeh Yazdanpanah, Carlos Alvarz-Martineaniel Jimenez-Gonzalez, Yoav Etsion: "Hybrid Dataflvon-Neumann
Architectures". Parallel and Distributed SystemEEE Transactions on (Volume:PP , lIssue: 99), ARa13, doi:
10.1109/TPDS.2013.125.

A. Garbade, S. Weis, S. Schlingmann, B. Fechfie Ungerer, "Impact of Message-Based Fault Detecon a Network on
Chip," in 21th International Euromicro Conference Barallel, Distributed and Network-based ProcesgiPDP), Belfast,
February 2013, doi: 10.1109/PDP.2013.76.

Daniel Goodman, Behram Khan, Salman Khan, Mikgan, lan Watson: "Software transactional mem®iior Scala. J. Parallel
Distrib. Comput". (JPDC) 73(2):150-163, Februant20doi: 10.1016/j.jpdc.2012.09.015.

Nhat Minh L&, Antoniu Pop, Albert Cohen, Frasco Zappa Nardelli: "Correct and efficient workeading for weak memory
models". In Symp. on Principles and Practice ofali@r Programming (PPoPP), Shenzhen, China, Fepr@ad3, doi:
10.1145/2517327.2442524 and doi: 10.1145/2442528%24

Boubacar Diouf, Can HangaAlbert Cohen, Ozcan Ozturk, Jens Palsberg. "Aodgled local memory allocator’. ACM
Transactions on Architecture and Code OptimizaibACO), selected for presentation at the HIPEAC 2@onf., January
2013, doi:10.1145/2400682.2400693

Antoniu Pop and Albert Cohen. "OpenStream: iegpiveness and Data-Flow compilation of OpenMPasting programs".
ACM Transactions on Architecture and Code Optini@at(TACO), selected for presentation at the HIPEAQL3 Conf.,
January 2013, doi: 10.1145/2400682.2400712

R. Giorgi, R. M. Badia, F. Bodin, A. Cohen, Bvripidou, P. Faraboschi, B. Fechner, G. R. GaoGAarbade, R. Gayatri, S.
Girbal, D. Goodman, B. Khan, S. Koliai, J. Landwelr Minh L, F. Li, M. Lujan, A. Mendelson, L. Marj N. Navarro, T.
Patejko, A. Pop, P. Trancoso, T. Ungerer, |. Wat&nWeis, S. Zuckerman, M. Valero "TERAFLUX: Haseimg dataflow in
next generation teradevices", Journal of Micropssoes and Microsystems: Embedded Hardware Desig&@RRO), April
2014, doi: doi.org/10.1016/j.micpro.2014.04.001

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 96 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Appendix A — Lua lexical conventions

Namegalso calleddentifier§ in Lua can be any string of letters, digits, amdderscores, not
beginning with a digit. This coincides with the ittfon of names in most languages. (The definition
of letter depends on the current locale: any cheramnsidered alphabetic by the current locale can
be used in an identifier.) Identifiers are used rname variables and table fields. The
following keywordsare reserved and cannot be used as names:

and

break

do

else

elseif

end

false

for

function

if

in

local

nil

not

or

repeat

return

then

true

until

while

Lua is a case-sensitive language: and is a resewveed, but And and AND are two different, valid
names. As a convention, hames starting with an rsndee followed by uppercase letters (such
as VERSION) are reserved for internal global vdeahised by Lua. The following strings denote
other tokens:

>
HH*
1
1
B T III ~
N
|

Literal stringscan be delimited by matching single or double gsioand can contain the following C-
like escape sequences: \a' (bell), \b' (backgpatdgform feed), \n' (newline), \r' (carriageturn),

\t' (horizontal tab), W' (vertical tab), "\\'dbkslash), " (quotation mark [double quote])d ax
(apostrophe [single quote]). Moreover, a backsfalbwed by a real newline results in a newline in
the string. A character in a string can also becifipd by its numerical value using the escape
sequenceddd wheredddis a sequence of up to three decimal digits. (e if a numerical escape
is to be followed by a digit, it must be expresasiohg exactly three digits.) Strings in Lua cantaon
any 8-bit value, including embedded zeros, whiahloa specified as "\0O'.

Literal strings can also be defined using a longnfit enclosed blpng brackets We define
anopening long bracket of levelas an opening square bracket followed®gual signs followed by
another opening square bracket. So, an opening bomcket of level O is written as [[, an opening
long bracket of level 1 is written as[=[, and sa énclosing long brackeis defined similarly; for
instance, a closing long bracket of level 4 is w@ritas]====]. A long string starts with an opening
long bracket of any level and ends at the firssiclg long bracket of the same level. Literals iis th
bracketed form can run for several lines, do ntgrpret any escape sequences, and ignore long
brackets of any other level. They can contain d@ngtkexcept a closing bracket of the proper level.

For convenience, when the opening long brackehimeadiately followed by a newline, the newline is
not included in the string. As an example, in ataysusing ASCII (in which 'a' is coded as 97,
newline is coded as 10, and '1' is coded as 48¥j\h literal strings below denote the same string

a = 'alo\n123" |

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 97 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

a ="alo\n123\""

a ="9710\10\04923"
a =[[alo

123"

a= [::[

alo

123")==

A numerical constantan be written with an optional decimal part ancbational decimal exponent.
Lua also accepts integer hexadecimal constantsprbfixing them with Ox. Examples of valid
numerical constants are:

[3 3.0 31416 314.16e-2 0.31416E1 Oxff 0 x56 |

A commenstarts with a double hyphes)(anywhere outside a string. If the text immediatdter--

is not an opening long bracket, the commentsbat commentwhich runs until the end of the line.
Otherwise, it is lbng commentwhich runs until the corresponding closing longdiket. Long
comments are frequently used to disable code teampor

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 98 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Appendix B — Lua language features

Lua is commonly described as a “multi-paradigm’glaage, providing a small set of general features
that can be extended to fit different problem typasher than providing a more complex and rigid
specification to match a single paradigm. Lua, ifstance, does not contain explicit support for
inheritance, but allows it to be implemented witbtatables. Similarly, Lua allows programmers to
implement namespaces, classes, and other relaeods using its single table implementation; first
class functions allow the employment of many teghas from functional programming; and full
lexical scoping allows fine-grained information img to enforce the principle of least privilege. In
general, Lua strives to provide flexible meta-feasuthat can be extended as needed, rather than
supply a feature-set specific to one programmingdtigm. As a result, the base language is light —
the full reference interpreter is only about 180ddnpiled — and easily adaptable to a broad rahge o
applications. Lua is a dynamically typed languageended for use as an extension or scripting
language, and is compact enough to fit on a vadéhost platforms. It supports only a small number
of atomic data structures such as boolean valussbers (double-precision floating point by default)
and strings. Typical data structures such as ars®ts, lists, and records can be represented using
Lua's single native data structure, the table, wiiécessentially a heterogeneous associative array.
Lua implements a small set of advanced featureb ascfirst-class functions, garbage collection,
closures, proper tail calls, coercion (automatiovession between string and number values at run
time), coroutines (cooperative multitasking) andhawyic module loading. By including only a
minimum set of data types, Lua attempts to strikalance between power and size.

Loops

Lua has four types of loops: the while loop, theee loop (similar to a do while loop), the for oo
and the generic for loop.

--condition = true

while condition do
--statenents

end

repeat
--statenents
until condition

--delta may be negative, allowing the for |oop to count down or up
for i =first,last,delta do

--statenents

--exanple: print(i)
end

The generidor loop, would iterate over the tablé using the standard iterator function pairs, uttil
returnsnil:

for key, value in pairs(_GQ do
print(key, value)
end

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 99 of 100

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Functions

Lua's treatment of functions as first-class valiseshown in the following example, where the print
function's behavior is modified:

do
| ocal oldprint = print
- Store current print function as ol dprint
function print(s)

--[[Redefine print function, the usual print function can still be used
t hrough ol dprint. The new one has only one argunent.]]
oldprint(s == "foo" and "bar" or s)
end
end

Any future calls to print will now be routed thrdughe new function, and because of Lua's lexical
scoping, the old print function will only be acabés by the new, modified print.

Tables

Tables are the most important data structure (ayndesign, the only built-in composite data type) i
Lua, and are the foundation of all user-creategsyhey are conceptually similar to associative
arrays in PHP, dictionaries in Python and Hashéuiny or Perl.

A table is a collection of key and data pairs, vehitre data is referenced by key; in other worsait
hashed heterogeneous associative array. A keyxjirde be any value but nil and NaN. A numeric
key of 1 is considered distinct from a string kdy'D'. Tables are created using the {} constructor
syntax:

[a_table = {} -- Creates a new, enpty table |

Tables are always passed by reference.

Record

A table is often used as structure (or record) bingi strings as keys. Because such use is very
common, Lua features a special syntax for accessioly fields. Example:

point ={ x =10, y = 20 } -- Create new table

print(point["x"]) -- Prints 10

print (point. x) -- Has exactly the same neaning as |ine above
Array

By using a numerical key, the table resembles eayatata type. Lua arrays are 1-based: the first
index is 1 rather than O as it is for many othe@gpamming languages (though an explicit index of 0
is allowed). A simple array of strings:

array = { "a", "b", "c", "d" } -- Indices are assigned autonatically.
print(array[2] -- Prints "b". Automatic indexing in starts at 1.
print (#array) -- Prints 4.

-- #is length operator for tables and strings.
array[0] = "z" -- Zero is a legal index.
print (#array) -- Still prints 4, as Lua arrays are 1-based.

Deliverable numbed7.5 — D8.3

Deliverable namefFinal Report and Documentation + Final Results fra the combination of UD
and TERAFLUX dataflow techniques

File name: TERAFLUX-D75-v17.doc Page 100 of 100

