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Glossary 
Auxiliary Core A core typically used to help the computation (any other core than service cores) also referred 

as “TERAFLUX core” 

BSD BroadSword Document – In this context, a file that contains the SimNow machine description 
for a given Virtual Machine 

CDG Codelet Graph 

CLUSTER Group of cores (synonymous of NODE) 

Codelet Set of instructions 

COTSon Software framework provided under the MIT license by HP-Labs 

DDM Data-Driven Multithreading 

DF-Thread A TERAFLUX Data-Flow Thread 

DF-Frame the Frame memory associated to a Data-Flow thread 

DVFS Dynamic Voltage and Frequency Scaling 

DTA Decoupled Threaded Architecture 

DTS Distributed Thread Scheduler (the whole set of D-TSUs and L-TSUs) 

D-FDU Distributed Fault Detection Unit (per-node FDU, also L2-FDU) 

D-TSU Distributed Thread Scheduling Unit (per-node TSU, also L2-TSU) 

Emulator Tool capable of reproducing the functional behavior; synonymous in this context of Instruction 
Set Simulator (ISS) 

ISA Instruction Set (Architecture) 

ISE Instruction Set Extension 

L-Thread Legacy Thread: a thread consisting of legacy code 

L-FDU Local Fault Detection Unit (per-core FDU, also L1-FDU) 

L-TSU Local Thread Scheduling Unit (per-core TSU, also L1-TSU, or LSU) 

MMS Memory Model Support 

NoC Network on Chip 

Non-DF-Thread An L-Thread or S-Thread 

NODE Group of cores (synonymous of CLUSTER) 

OWM Owner Writeable Memory 

OS Operating System 

Per-Node-Manager A hardware unit including the DTS and the FDU 

PK    Pico Kernel 

Sharable-Memory Memory that respects the FM, OWM, TM semantics of the TERAFLUX Memory Model 

S-Thread System Thread: a thread dealing with OS services or I/O 

StarSs A programming model introduced by Barcelona Supercomputing Center 

Service Core A core typically used for running the OS, or services, or dedicated I/O or legacy code 

Simulator Emulator that includes timing information; synonymous in this context of “Timing Simulator” 

TAAL TERAFLUX Architecture Abstraction Layer (later renamed T*) 

TBM TERAFLUX Baseline Machine (the initial instance of the TERAFLUX machine) 

TLPS Thread-Level-Parallelism Support 

TLS Thread Local Storage 

TM Transactional Memory 

TMS Transactional Memory Support 

TP Threaded Procedure 

Virtualizer Synonymous with “Emulator” 

VCPU Virtual CPU or Virtual Core 
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Executive Summary 
This deliverable reports on the research carried out in the context of DoW - Tasks T7.1, T8.2, and 
T8.3. The goal is to provide documentation on the TERAFLUX simulation infrastructure (based on 
HP COTSon) in order to provide a unique reference for the first time and advanced users of the 
COTSon simulator.  

To this purpose, the document provides a short “getting started” section and continues with an 
overview of the main features, such as the architecture, the virtualization layer (i.e., the SimNow 
component), timers, samplers, and interleavers. All the steps are detailed with the precise command 
and the expected outputs. In particular, all the metrics that can be gathered from the simulator and the 
storage structures (e.g., the database integrated in the simulator, log files) are presented. 

With the aim of helping the user to run simulations quickly, in the document a set of simple examples 
are presented. These examples cover all the different characteristics of the simulator, such as the 
capability of running only functional simulation, the use of samplers, and the simulation of multi-node 
architectures. Starting from this base of knowledge, an advanced user can easily start to extend the 
simulation platform, in order to simulate and analyze the behavior of user-defined hardware and 
software components. Following this direction, this manual also presents a full set of “TERAFLUX 
examples”, one from each partner, where different advanced aspects related to TERAFLUX research 
(e.g., definition of new images, integration of hardware component, etc.) are reported. These 
examples represent also a description of the integration activity, through the COTSon simulation 
platform, of the research of the TERAFLUX partners, as progressed during the project. The research 
example provided by UD also serves as the content of deliverable D8.3. The example illustrates the 
main progresses obtained from the integration of the UD run-time and the TERAFLUX platform. 

From this premise, we can conclude that this document completes the series of deliverables for WP7 
and WP8, and it’s written at this time as the experience on using the tool has matured enough. As 
previously mentioned, we included also several advanced examples (see sections 7 – 17) to show 
possible usage in research projects aiming at evaluating future platforms with 1000+ cores. Hence, all 
goals of WP7 and WP8 for the fourth year were achieved. In the future, this document could 
constitute a basis for tutorials and will be released freely for further extensions and improvements. 

Document Organization 
The purpose of this document is to provide all the information needed by a new user to start using the 
common simulation platform (COTSon). The document is organized into two main parts: from page 5 
to page 48 there is a general introduction and description of the simulation platform and its main 
components, while the rest of the document presents a set of examples demonstrating the use of the 
simulator for research activities within the TERAFLUX project (essentially, one example for each 
partner). Given this document organization, we decide to use sections from 15.1 to 15.4, devoted to 
the research example from UD, to integrate the content of Deliverable D8.3 - Final Results from 
the combination of UD and TERAFLUX dataflow techniques. Thus, example from UD describes 
the use of its DARTS run-time ported on the TERAFLUX platform. For the purpose of 
completeness, we added sections from 18.1 to 18.4, in which we describe the DRT (Dataflow 
Run-Time), essentially a simple run-time library that allows to test T* compliant applications 
directly on the host system. Also this section can be considered part of the Deliverable D8.3 
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Relation to other deliverables 
Since the work described in this deliverable refers to the activity of all the partners in using the 
common simulation platform for their specific research activities, this document shows relations to 
several other deliverables. In particular, as the reader will see by reading the rest of the document, the 
main relations are with: 

• D2.1, D2.2, D2.3, D2.4: analysis and identification of dataflow potential target applications. 
Within the WP2, Thales has ported two main applications to the TERAFLUX execution 
model, as demonstrated in this document; 

• D3.5: transactional memory and OWM memory support; 
• D4.7: compiler technologies targeting dataflow applications; 
• D5.4: resiliency techniques (e.g., fault detection mechanisms, etc.) and the OS support for 

reliable execution have been developed within the WP5; 
• D6.3, D6.4: since the work carried out in WP6 refers to the development of the TERAFLUX 

architecture, several examples presented in this document clearly use the results coming from 
the WP6 (i.e., the TSUF, TSU4, and TSU++ models for the hardware TERAFLUX thread 
scheduler); 

• D7.1, D7.2, D7.3, D7.4: this document is the result of the activity carried out within WP7 
during the all project time-frame; 

• D8.1, D8.2: this document presents the main results of the activity carried out in the context 
of WP8. In particular, UNISI and UD continued to exchange information regarding their 
respective execution models. The result of this cooperation (WP8) is the porting of UD run-
time on the TERAFLUX system, as also demonstrated by the work in WP9;  

• D9.1, D9.2, D9.3: this document presents an example showing the results obtained in the 
context of WP9. 

Activities referred by this deliverable 
This deliverable refers to the research carried out in Task 7.1 (m1-m51), Task 8.2 (m28-m51), and 
Task 8.3 (m28-m51). In particular, Task 7.1 covers an ongoing activity for the entire duration of the 
project that ensures the tools are appropriately disseminated and supported within the consortium. 

As a summary of the previous work carried out in the context of WP7 (deliverables D7.1, D7.2, D7.3, 
and D7.4), during the first two years, the TERAFLUX partners started using COTSon, and modified it 
in order to implement (test and validate) new features, to meet their research needs. As a result of this 
activity, we are able to boot a 1000+ cores machine, based on the baseline architectural template 
described in D7.1. The target architecture can exploit all the features added by the various partners to 
the common platform: this is very important for the integration of the research efforts carried out in 
the various TERAFLUX WPs. In particular, an initial FDU interface with the TSU (both DTS style 
and DDM style), has been described in D7.2, and further detailed in D7.3. Similarly, in D7.3 a first 
model for the development to monitor power consumption and temperature was reported. Finally, the 
D7.4, reports the result of an initial knowledge transfer activity. In particular, the document provides a 
description of the integration research activity through the COTSon simulation platform, as 
progressed during the third year of the project, such as the development of the T* and TSU. Thanks to 
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an internal dissemination, partners have been also able to transfer their respective research knowledge 
to the other partners. 

Task 8.2 and task 8.3 cover the joint activity of UNISI and UD. The activity is mainly devoted to 
interacting each other towards the completion of porting the UD run-time in the TERAFLUX 
platform. As reported in the Annex-I these tasks refer to ongoing activities covering the period of 
entering the Consortium by UD till the end of the project. As a summary of the initial work carried 
out in the context of WP8 (deliverables D8.1 and D8.2), UD and UNISI exchanged information on 
their respective execution models (UNISI shared information regarding activities of all the partners, 
acting as the representative of the previous TERAFLUX consortium). After this initial period, UD and 
UNISI started to identify the best way to integrate UD run-time and the TERAFLUX platform 
(essentially by analyzing the features of both the execution models). 

The effectiveness of the Dataflow approach has been verified on both platforms (Cyclops-64 and 
TERFLUX) with a close match on scalability for same benchmarks. Transitioning tools from 
TERAFLUX to Cyclops-64 was also considered, but we finally chose the TERAFLUX platform as it 
was a better fit as an open-source based research platform  

We started with existing tools on each platform and an extensive evaluation was carried out, 
achieving an overall improvement of those tools. As a result, we decided to use the UD Runtime 
(DARTS) which faithfully implements the dataflow-codelet model to show the potentiality of 
Cyclops-64 program execution model on the TERAFLUX platforms (experiments for integrations are 
included in this document, while the actual results were detailed in D9.3). 

Conclusions 
The first purpose of this document is to provide all the necessary information to start using the 
common simulation platform (i.e., COTSon), with a specific focus on the first installation and 
configuration phase. The document has also other two important purposes: presenting in a detailed 
form, all the components that characterize the simulation platform, so that the final user is enabled to 
start designing and developing new hardware and software components; second (but not less 
important) presenting a full list of research examples, that serve as a reference for the user in its 
research and developing activity for a teradevice system as described in TERAFLUX (cf. D6.2, D7.1).  

This document represents also the culmination of all the work carried out by all the partners during 
the project time frame. By inserting examples specific of each work package, all the partners 
demonstrated to have achieved their research objectives through the usage of the common simulation 
platform. All examples have been tested by several partners and by the WP leader (UNISI). 
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1 Getting Started 
The goal of this initial part is to enable the user to run a first initial example, starting from scratch in 
two simple steps. 

1.1 Step1: installation 
To use COTSon, you need to install also additional software components, such as AMD SimNow™, 
on your Linux system (we refer to Ubuntu 10.04, but similar steps can be done, e.g. on Fedora or 
other distributions). 

The simplest way to get SimNow is through your internet browser (such as Mozilla Firefox, Google 
Chrome); you can just click on the following URL and download the Linux version of SimNow (at 
the time of writing this document, the latest version of SimNow is 4.6.2): 

http://developer.amd.com/tools-and-sdks/cpu-develop ment/simnow-simulator/  

The installation process starts by creating the installation folder: 

$ mkdir installation_dir 

The following command will copy the downloaded package in that folder: 

$ mv simnow-linux64-4.6.2pub.tar.gz installation_di r/ 
$ cd installation_dir 

Another prerequisite is the availability of the ‘subversion’ package. At the same time you can install 
‘md5sum’. To install them, for Ubuntu or Debian issue:  

Alternatively, for Fedora issue: 

It’s warmly recommended that you verify the correct download of the package with the following 
command: 

Check that the produced string is the same as on AMD website. Then unpack the module as follows: 

$ tar xvzf simnow-linux64-4.6.2pub.tar.gz  

At this point, in order to download COTSon, the following command can be issued.  

$ svn co https://svn.code.sf.net/p/cotson/code/trun k cotson  

1.2.1 Configuring COTSon Simulator 

Once the two components have been correctly downloaded, it is possible to run the configuration and 
installation process. The installation process consists of source file compilation, and installation in the 
host system. To run the compilation, the following command must be issued (administrative 
permission may be required to complete the process): 

$ sudo apt-get –y install subversion coreutils 

$ sudo yum –y install subversion coreutils 

$ md5sum simnow-linux64-4.6.2pub.tar.gz 



Project: TERAFLUX  - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.5 – D8.3 
Deliverable name: Final Report and Documentation + Final Results from the combination of UD 
and TERAFLUX dataflow techniques 
File name: TERAFLUX-D75-v17.doc Page 15 of 100 

$ cd cotson  
$ ./configure --simnow_dir ../simnow-linux64-4.6.2p ub/  

It is important to note that during the installation process an error message could be showed to notify 
the user about host system configuration. For the simulator installation it is required to set the virtual 
mapping to a minimum value of 4194304. The error message is: 

… 
SIMNOW_DIR: '../simnow-linux64-4.6.2pub/' 
ERROR: vm.max_map_count = 2048757 is too small 
    Increase it to at least 4194304 by running 
        sudo sysctl -w vm.max_map_count=4194304 
 
    To make it permanent, add the following line to  /etc/sysctl.conf 
        vm.max_map_count = 4194304 
… 

To continue without generating errors, you can issue: 

$ sudo sysctl -w vm.max_map_count=4194304 

Later you can make it permanent as suggested above. The installation process ends by issuing the 
following command (this may require 10 to 15 minutes depending on the speed of your machine): 

$ make release  

During the compilation phase some windows could be popped up. These windows are part of the 
installation process and are closed at the end of the installation. 

1.2 Step 2: running a first example 
In order to verify the correctness of the installation process (it is worthy to observe that during the 
simulation framework installation, several tests are automatically run to check the process), it is 
possible to run a simple example as follows. Move under the example folder: 

$ cd src/examples  

Start the functional simulation of a simple target architecture through the following command: 

$ ../../bin/cotson functional.in  

If everything is correct, the user should be prompted to press enter (or ctrl-c to abort). Pressing enter 
causes the following window to be displayed (Fig. 1):  
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Fig. 1 – Graphical control window of the COTSon simulator 

At this point, you can click inside the “black” window (enlarge it to see the last lines, the icon before 
the last one in the command bar), press the “play” button (seventh icon of the command bar in this 
picture) and issue, e.g., an ‘ls’ command. Once done, you can close this window a return to the shell 
of the host system. 

1.3 COTSon simulator: look at a glance 

COTSon is a simulation framework, whose aim is to provide an evaluation platform for real systems 
like current multi-core Personal Computers consisting of x86_64 processors and all classical 
peripherals, and running available operating systems such as Linux (or, not shown here, Windows™). 

It was originally developed by HP Labs and AMD, and it targets cluster-level systems composed of 
hundreds or thousands of commodity multi-core nodes and their associated devices connected through 
a standard communication network like, e.g., a datacenter.  

An accurate evaluation may require to model not only the functional behavior (like in common 
“virtualizers” like VMWare™, Virtualbox™ and similar) but also the timing behavior of the 
architectural components. With COTSon the evaluation can range from high-simulation speed (and an 
“idealistic timing model” of 1 instruction per cycle) through an accurate timing model (up to desired 
level of accuracy). Moreover, COTSon can trade simulation speed with accuracy by offering about 
seven built-in sampling policies that can enhance greatly the simulation speed (and the user can 
provide his/her own sampling policies). 
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1.4 Supported platforms 
In order to run COTSon the user needs a computer equipped with a 64 bit processor. This is required 
in order to correctly run the AMD SimNow (TM) virtualization layer (this component is available only 
for Linux AMD64 and Windows XP 64-bit version, however the entire simulation framework is 
available only under the Linux environment. Hereafter we refer to the virtualization layer simply as 
SimNow). Currently, COTSon (v680) requires the 4.6.2pub version of SimNow, while it supports the 
following Linux distributions: 

Supported Linux Distributions 

Debian Fedora Ubuntu 

Lenny Werewolf Intrepid 

Squeeze Leonidas Jaunty 

 Goddard Karmic 

 Laughlin Lucid 

 Lovelock Maverick 

 Verne Natty 

 Beefy Miracle Oneiric 

 Spherical Cow Precise 

 Schrödinger's Cat Quantal 

  Raring 

Table 1 – COTSon installation: supported Linux distributions. 

The minimum hardware configuration required for the installation is as follows:  

• Processor:  AMD Athlon(TM) 64 X2 Dual Core Processor 4600+ or equivalent;  

• Memory: 2 GB of main memory (8GB or more recommended); 

Please also note that for licensing issues the simulator should be run on AMD machines, even though 
Intel processors are also reported to function). 

 

1.4.1 Running COTSon in a virtualized environment 

Installation under Windows environment is supported, through the use of virtualization software (e.g., 
VirtualBox, VMware, etc.), by allocating enough resources to the guest machine. This kind of 
installation is also suited for shared environments, where a single server can host several virtualized 
machines. In this case virtualized machine can be remotely accessed. For further information on 
virtualization software, please refer to the specific manual of AMD SimNow. 



Project: TERAFLUX  - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.5 – D8.3 
Deliverable name: Final Report and Documentation + Final Results from the combination of UD 
and TERAFLUX dataflow techniques 
File name: TERAFLUX-D75-v17.doc Page 18 of 100 

1.5 Document structure 

The rest of the document is organized as follows. Section 2 and section 3, are devoted to the 
description of the main characteristics of the simulator. In particular, the guide focuses on the general 
architecture, the mechanism implemented to collect timing information, and the description of the 
main internal components (such as the virtualization layer, the interleavers, the samplers, etc.). An 
entire section is devoted to the user interface used to configure and interact with the simulator. 
COTSon adopts the LUA language (see Appendix-1) to provide a flexible way to describe the 
configuration of the target system (i.e., the architecture of the system to be simulated), and the 
parameters for the experiment setup (e.g., functional simulation vs. timing simulation, structure for 
storing collected measures, commands for the virtualization layer, etc.). Structures for collecting data 
during simulation are deeply described in section 5, while section 6 presents to the user a set of simple 
examples that illustrate all the features previously described. Following these examples the user 
should be able to set-up the simulation environment, and to run architectural simulations of interest. 
Finally, sections from 7 to 17 illustrate advanced examples that reflect research activity carried out in 
the TERAFLUX project at the scale of 1000+ cores [6][18]. They can be used as a reference for 
setting-up advanced simulation experiments. In particular, they can be used to understand how to 
extend the simulation infrastructure. 
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2 Understanding COTSon: Design and Architecture 

Simulation, combining some architectural structures, permits to create virtual systems in which 
hardware components are shaped, in order to make new functional units, or entire microprocessor 
systems. The aim of a simulator is to show, record and analyze the performances and the behavior of 
applications, and select the best architecture for each of them. Simulators can be also used to develop 
new software and hardware components that can be thus verified in their behavior. The increasing 
complexity of computing systems has made simulators the first choice for their design and analysis. In 
fact, a good simulator infrastructure can help researchers, designers and developers in verifying if 
their decisions are correct or not, possibly finding some optimal solutions. Speed, accuracy, full-
system capability and ability to extract specific metrics are the main characteristics of a simulator and 
also what makes one simulator different from another. 

COTSon is a simulation framework targeting many-core architectures, initially developed by HP 
Labs. The key feature of COTSon is the adoption of a functional-directed simulation approach, where 
fast functional emulators and timing models cooperate to improve the simulation accuracy at a speed 
sufficient to simulate the full stack of applications, middleware and OS. Functional simulation 
emulates the behavior of the hardware components (e.g., common devices such as disks, video, and 
network interfaces) of the target system, without considering latency information. On the contrary, 
timing simulation is used to assess the performance of the system. It models the operation latency of 
devices simulated by the functional simulator and assures that events generated by these devices are 
simulated in a correct time ordering. 

2.1 Major Design Characteristics and comparison with other 
simulators 

Depending on how the functional and the timing parts of the simulator are controlled and on their 
relationship, it is possible to define different types of simulations: 

• Timing-directed or execution-driven: here the timing model of the simulator is in charge of 
driving the functional simulation. In this case the functional and timing parts are programmed 
tightly coupled to let the two parts cooperate easily; 

• Functional-first or trace-driven: in this case the functional simulation produces an open-loop 
trace of the instructions that have been executed. Then, these instructions will be passed to the 
timing simulator. This type of simulator is usually built using particular libraries such as 
Atom or Pin; 

• Timing-first: timing and functional models are decoupled and timing drives the simulation. In 
this approach the timing simulator precedes the functional simulator, and uses the latter to 
periodically check and correct the simulation state (eventually functional execution may have 
to be undone); 

• Functional-directed: timing and functional models are decoupled and functional drives the 
simulation. In this approach was proposed to treat better complex benchmarks and to afford 
greater speed scalability; the timing feedback corrects the timing so that it becomes visible to 
the application running on the simulated machine. 
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COTSon uses the later approach (functional directed simulation: the functional and timing simulation 
are clearly separated using two interfaces. This approach allows reusing existing functional simulators 
(very difficult to implement and maintain). COTSon's functional simulator is SimNow that 
functionally models most of the existing hardware that can be found on a modern AMD system (in 
this sense it supports generic X86_64 architectures). SimNow contains also the internal capability of 
timing simulation but such information is completely discarded when used in conjunction with 
COTSon: only the CPU capability is used in this case. COTSon is highly modular, and this 
characteristic enables users to select different timing models, depending on the particular experiment 
they want to perform. It is also possible to program new timing models (e.g., a new coherence 
protocol) or to adapt the existing ones (e.g., cache timing with MESI protocol), and incorporate them 
into COTSon. Another very important aspect of COTSon is the speed. In fact even if it is not 
significant in terms of simulation results, a full system model simulator can be five or six orders of 
magnitude slower than the real system, and this may become unsustainable, as it limits the coverage 
of experiments. To speed up the simulations COTSon uses virtual machine techniques for its 
functional simulation (that comprehends just in time compiling and code caching) and also 
sophisticated techniques such as “dynamic sampling”. 

2.2 Timing Feedback 

As discussed in the previous section, the aim of COTSon is to achieve the best possible trade-off 
between simulation speed and accuracy for many-cores systems (e.g., systems equipped with 
hundreds or even thousands cores). To this end the design choice made was to use a functional-
directed approach, where the functional simulation of the target architecture (fast) is periodically 
updated and its timing is integrated with information coming from timing models of the architecture 
components.  
In a pure trace-driven systems in fact, there is no influence on the functional part coming from the 
timing part. This does not represent a big limitation in case of single core systems, but can be a 
problem in multicore systems. In fact the latter usually change their functional behavior depending on 
their performance. For example, threads in a multi-threaded application exhibit different interleaving 
patterns, depending on the performance of each thread (possibly running on different cores). On 
another level, many networking libraries such as Message Passing Interface (MPI) change their 
policies and algorithms depending on the particular performance of the network  

 

Fig. 2 - Interaction between functional simulation components and timing components in COTSon simulator. 
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Having timing feedback, i.e., a communication path from the timing to the functional simulator 
becomes fundamental for analyzing this kind of situations. From this viewpoint, COTSon makes its 
functional simulator run for a time interval ∆t that is dynamically set. The produced stream of 
references (i.e., instructions and data memory accesses, but in general “events”) is sent to the 
respective CPU timing models. At the end of such interval using the metrics coming from the CPU 
models, the actual time interval to process such stream of reference is known (say ∆t’) and it is given 
back to the functional simulator. The user can select different interval sizes to choose the accuracy-
speed trade-off. Therefore, COTSon (realizing this trade-off between accuracy and speed) enables 
users to avoid uninteresting parts of the code (such as initial loading of the system) simulating them at 
lower accuracy. 

2.3 Architecture 
The COTSon architecture has been developed having in mind the simulation of clusters. From this 
viewpoint COTSon uses a SimNow instance to represent each node of the cluster. SimNow has been 
augmented, by HP-Labs and AMD, with a double communication layer to allow any device to export 
functional events and obtain timing information. All the events are directed by COTSon to the timing 
models.  
There are two types of communication mechanisms exhibited by devices: synchronous and 
asynchronous. Synchronous communication is used for devices that immediately respond with timing 
information for each event received (and the event does not occur very frequently). An example of 
synchronous communication is the simulation of a disk read by the functional simulator: a read event 
(instead of an interrupt) is issued to COTSon, which delivers this event to a disk model that 
determines the operation's latency, which is used by SimNow to schedule the functional interrupt, 
which signals the end of the read.  
Synchronous communication is not usable when there is a high frequency of events of this type (e.g., 
main memory accesses, CPU simulation, etc.). In these cases asynchronous communication is needed. 
Differently from the synchronous case, the SimNow simulator does not do a call per event, but 
produces “tokens” describing dynamic events, that will be parsed by COTSon and delivered to the 
appropriate timing modules. These modules will be asked by COTSon at specific moments to 
aggregate timing information (in term of number of instructions and cycles) and give them back to 
each functional core.  

 

Fig. 3 – Example of timing feedback with asynchronous communication for estimating the IPC in COTSon. 

For example, in Fig. 3 we show the situation when a timing module is used for a processor pipeline 
with the purpose of estimating the number of Cycles Per Instruction (CPI). The resulting CPI, given 
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back to the functional module, is used by SimNow to schedule the progress of instructions in each 
core and in this way the timing feedback is used for the functional simulations. However in many 
situations the timing feedback has to be filtered and modified, in order to obtain an increase in 
simulation accuracy. For example if a particular core is mostly idle it doesn't give an accurate estimate 
of the CPI. To solve this problem, COTSon offers a timing feedback interface that handles these 
modifications transparently. This interface is able to correct and predict future CPI by using 
mathematical models, such as Auto-Regressive-Moving-Average (ARMA) model, that is used, e.g., in 
forecasting time series. A simple example of the timing feedback mechanism is shown in Fig. 3. 

2.4 COTSon installation structure 
Once COTSon is installed the user will get a directory structure as follows: 

• bin: contains binaries of the simulator; 
• data: contains the bsd images and the disk images used to run simulations; 
• share contains some common scripting files; 
• src: contains all the files related to the development of the simulator; 
• sandbox: it’s the template of a ‘sandbox’ on the host used to control a node during the 

simulation 
• etc: COTSon general configuration files 
• sbin: COTSon general system binaries 
• daemon: contains files for running the simulator in a distributed environment (not described in 

this document); 
• web: COTSon web control (not described in this document) 

The src directory has the following structure: 

• src/abaeterno/ it is the core COTSon infrastructure. This directory contains timers, samplers 
and the simnow interface;  

• src/common/ common utilities (metrics, options, etc.) for abaeterno and network; 
• src/disksim/ disksim distribution for COTSon; 
• src/distorm/ distorm (x86 disassembler) for COTSon; 
• src/examples/ simple simulation examples (we will analyze them after ); 
• src/libluabind/ C++ binding for LUA (used for COTSon scripting); 
• src/network/ COTSon (HP) network mediator (for distributed synchronization); 
• src/mcpat  used for power and area estimation through the  HP McPAT tool 
• src/slirp/ slirp library (NAT access from guest) for COTSon; 
• src/test.regression/ simple regression tests; 

• src/tools/ tools to support simulation experiments; 
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3 COTSon components: SimNOW, Samplers, Interleaver,  
Timers 

The main parts of a COTSon node, are the functional simulator SimNow, the timing models (timers), 
the sampler, the interleaver, and the time predictor. Moreover, the network Mediator and the Control 
are two components of COTSon that allow the simulation of cluster configurations (Fig. 4). The 
dynamically loaded library (DLL) abaeterno, is also a fundamental part of COTSon, because, when 
loaded by SimNow, it determines the time the simulation is taking, and it contains the implementation 
of all types of timers, samplers, etc., that can be used by COTSon. 

 

Fig. 4 – COTSon components overview 

3.1 Virtualizer: short introduction to SimNow 
It implements the x86 and x86_64 instruction sets, including system devices. It allows the user to 
configure a full-system architecture by changing the various components (i.e., CPU type, number of 
CPUs, organization, main memory size, etc.).  

SimNow provides several CPU models, dynamic translation of instructions (the instruction input 
stream is translated into C-like language and then is compiled for the native machine) and 
deterministic execution; it can simulate the majority of existing hardware uniprocessor and 
multiprocessor that are available on a modern AMD system. It also uses caching techniques and 
supports the booting of an unmodified Operating System (such as Windows and Linux) over which 
some complex applications can be executed. In full-speed mode SimNow performance is around 100-
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200 MIPS (i.e., it has a 10x slowdown with respect to the native execution). It comes with several 
Broad-Sword Document (BSD) configurations, i.e., files containing setup parameters of a simulated 
target machine. The host machine, in which the simulator runs, and the guest machine, i.e. the 
simulated machine, can communicate through a toolbox called Xtools, mainly constituted of two 
commands: i) xput, which is run on the guest to copy a file from the guest to the host and ii) xget, 
which is run in th guest to copy a file from the host to the guest SimNow can be controlled from the 
shell (command line mode) or through a User Interface Window (graphical mode – see Fig. 5). When 
using the graphical mode, users see and modify the target system configuration (i.e., the configuration 
of simulated devices such as disk images, BIOS, DRAM and CPU) from the main windows, and they 
can access to the results of the simulation as well. The main window is divided in two main parts: one 
shows time results of the simulation, while in the other a console provides a textual interface for status 
information and a command-line control for the guest OS running in the host. 

The part showing time results is called SimStats and it is composed of 4 components: 

• Host Seconds (1): showing the number of seconds spent (both in user and system mode) by 
the host CPU, since the simulation has started; 

• Sim Seconds (2): showing the time spent in the simulation since it has started; 
• Avg MIPS (3): showing the instantaneous values of the simulator performances, that is 

measured in millions of executed (simulated) instructions per host. 
• MIPS (4): showing the number of simulated instructions from the start of the simulation, 

divided by host seconds; 
 

Below there is the Console Window (5): providing the guest output and control for the guest OS; 

 

Fig. 5 – Graphical interface of the COTSon simulator. The window contains a toolbar from which interact 

with the simulator, a panel displaying statistical information, and a control panel from which interact with 

the guest system. 
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3.2 Samplers 
COTSon can be configured to use a full-speed functional modality or a sampled modality. The 
samplers are one of the most important parts of COTSon infrastructure, as they represent the way 
functional and timing simulations are integrated together. This can be seen also in Fig. 4, where the 
sampler is placed between the front-end (functional simulator) and the back-end (timing models of the 
architectural components) of the COTSon node. Sampling is crucial for asynchronous devices and it is 
the process through which the timing simulation (or simply simulation) is turned off or on. A good 
sampler is required to select a simulation interval such that the simulation metrics taken in that 
interval well approximates the statistics of the whole execution. So the timing simulation will be 
performed only in appropriate moments and for an appropriate duration, thus avoiding the slow-down 
of timing simulation. 
The type of sampler required for a certain experiment and the lengths and the type of the samples can 
be configured by writing proper values in the COTSon configuration file (see Section 4). With this 
information, the sampler gives a command to enter one of the following phases: 

• Functional: during this phase only functional simulation is performed and so no events are 
produced by the simulated devices, that so are simulated at full speed; 

• Warming (simple/detailed): this phase is necessary to pass from functional to timing 
simulation; during it the timing models are warmed up to prepare them to the timing 
simulation. If only the high-hysteresis elements (such as caches and branch target buffers) are 
warmed up, the warming is said to be simple, otherwise, if also the low-hysteresis elements 
(such as reorder buffers and renaming tables) are warmed up, the warming is called detailed; 

• Simulation: this phase is the opposite of the functional phase. Here the devices must produce 
events that are sent to the timing models, so that timing simulation can be performed; 

In order to determine sampling intervals, it is necessary to find out what are the most representative 
and relevant parts of the application's execution. This selection is based on the phase analysis, which 
determines the phases of a program, i.e., the parts of the execution that have a similar behavior, 
independently of temporal adjacency. Depending on how the phases of a program are detected 
different samplers can be implemented. The most important samplers are SMARTS, SimPoint, 
dynamic samplers, and interval-based samplers. The first two require an a priori profiling or a 
preprocessing of the code and don't allow timing feedback.  

 

Fig. 6 – Correlation of the performance information acquired by the simulator with the running application 

phases. 
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Because of these two characteristics, they result to be less flexible than dynamic samplers and may be 
subject to errors due to the absence of timing feedback. In the interval-based sampler the duration of 
each phase (state) of the sampling (functional, warming, simulation) is fixed. Dynamic Sampling is 
based on the consideration that all functional simulators (such as fast emulators, like SimNow, or 
virtual machines, like VMware) keep track of internal statistics of two types: 

• Those related to their internal structures (translation cache, software TLB), such as code cache 
invalidations, code exceptions, and I/O operations; 

• Those related to the emulated code, such as number of executed instructions, memory 
accesses, exceptions, and bytes read or written to or from a device; 

Both types of metrics are strictly related to the behavior and the performance of the emulated software 
and can be used to detect phase changes in an application's execution. Fig. 6 shows an example of 
how an internal statistic (number of code Exceptions) is correlated to the application's performance 
(IPC) and thus to the application's phases. The dynamic sampler lets a timing simulation start 
whenever the first-derivative of the chosen internal statistic overcomes a threshold. After a certain 
number of instructions, the simulation returns to be functional, until the next phase change is detected, 
and so on. Fig. 7 shows a schematic view of how Dynamic Sampling works. 

 

Fig. 7 - A schematic representation of how dynamic sampling works. 

Different types of samplers can be selected by the user, writing appropriate values in the COTSon 
(LUA) configuration file.  

3.3 Interleavers 

The interleaver is a component that is used during the simulation of SMP (Symmetric Multi-
Processor), i.e., multi-core systems. In fact, it supervises the buffering and the reordering of the events 
coming from the functional simulation. These operations are fundamental when multiple cores are 
simulated. To this end, SimNow simulates multi-cores with an interleaved sequence. After a certain 
interval of time, called synchronization quantum, during which the cores operate independently, all 
the cores arrive to the same point in time. After the synchronization quantum, all the events are stored 
in a queue and then they are interleaved. Only at this moment they are ready to be carried to the 
timing models of the CPUs. 
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3.4 Timers 
There is a timer for each architectural component that can be simulated, and its role is to collect 
events coming from the functional simulation, and use them to update the timing model of the 
component. In other words a timer is software that simulates the timing behavior of each component. 
There are timers for the CPU, for the Memory, for the disks, and for the NIC (Network Interface). The 
type of timer (e.g., timer0 – for an in-order superscalar processor, timer1 – for an out-of-order 
superscalar processor, bandwidth – for measuring the memory bandwidth, etc.) can be set in the 
COTSon configuration file. The feedback information is governed by the time predictor: based on the 
metrics collected by the timing simulation, it decides how to feedback information to the functional 
simulator. 
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4 COTSon configuration 

A simple COTSon configuration file (written in lua file ‘functional.in’) to run a functional simulation 
is shown in Fig. 8. It uses the ‘functional template (first line), shows a graphical display for Simnow 
(second line), where (‘simnow.commands’) the architectural configuration of the SimNow uses the 
‘1p.bsd’ (fourth line, that also stores the snapshots and modifications of the running simulation), an 
off-the-shelf hard disk image with the Operating System (this remains unmodified during the 
simulation, fifth line), and we enable the journaling of the file system (sixth line) 

 
Fig. 8 – A simple COTSon configuration file (written in lua file ‘functional.in’ 

4.1 Lua Scripting 
The COTSon simulation infrastructure is controlled by setting all the relevant information about 
simulation and the target system configuration in an input configuration file. COTSon uses Lua 
scripting language to manage this configuration file. The Lua scripting language is powerful, fast, 
lightweight, and embeddable. It combines simple procedural syntax with powerful data description 
constructs based on associative arrays and extensible semantics. Lua is dynamically typed, runs by 
interpreting bytecode for a register-based virtual machine, and has automatic memory management 
with incremental garbage collection, making it ideal for configuration, scripting, and rapid 
prototyping. For further information about Lua language syntax, see Appendix A – Lua lexical 
conventions, and Appendix B – Lua language features. 

Suppose the user wants to run the functional example (functional.in) present in the directory 
cotson/src/examples : 

$ cd cotson/src/examples  

Then simply issue the command: 

$ ../../bin/cotson functional.in 

This will launch the SimNow window as explained in Section 1.2 (Step 2: running a first example). 

One of the nice features of the Lua scripts is that they accept Lua parameters either in files or in the 
command line. Anything that is not strictly an existing object, is considered part of the Lua syntax 
(see Appendix A – Lua lexical conventions). The Lua script is the concatenation of the contents of all 
the files and the Lua syntax, and it is passed to any part of COTSon that would need it (like the 
COTSon Control script – named ‘cotson’, the ‘abaeterno’ library). Even if not every part of the 
elements written in the Lua file is needed by these components, each of them can select the parts that 
are needed. 
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4.2 Changing the configuration 
The Lua configuration file used in COTSon is divided into 3 main sections: 

• LUA-SECTION-1: describes general simulation options. This part is called options table; 
• LUA-SECTION-2: describes options/commands for SimNow. This part is called SimNow 

table, and is used by the control scripts to determine how to set up the SimNow execution; 
• LUA-SECTION-3: describes the target system configuration in details. This part is called 

build function. Anything inside it or in the options table is used by the abaeterno library. 
(Anything that follows may be by the COTSon control and web interface to determine what 
kind of execution to make); 

4.2.1 Lua-Section-1 –options table 

This first section in the Lua file is delimited by: 

options={} 
 

Here several options can be specified, in particular, the following variables can be set: 

• max_nanos: is the variable where we specify how long we want the simulation to last in terms 
of nanoseconds (e.g. “10M”, see Fig. 9); 

• sampler: where the type and the various options of the sampler chosen can be specified (e.g. 
type=”simple” indicates a detailed timing simulation (the opposite of the pure functional 
simulation) and quantum=”100k” indicates how often the functional part has to synchronize 
with the timing part – see Fig. 9); also note how we can nest multiple lua commands. 

• heartbeat: this is used to specify how to log statistics (e.g., type=”file_last” indicates to dump 
all statistics in a file at the end of the simulation and in such case 
logfile=”on_cpu_simple.log” indicates the name of the file – see Fig. 9). There can be 
instantiated up to eight heartbeat options (“heartbeat=”, “heartbeat1=”, …,” heartbeat7=”). 

 
Other general options can be: 

• max_samples: here the maximum number of samples is specified; 
• fastforward: here it can be specified an amount of time that will be skipped by the simulation; 

There are also several other types of sampler available like dynamic, interval (see Section 6.3 
“Samplers: timing simulation”). Similarly for the heartbeat, it is possible to use the sqlite database (or 
files) and the statistics can be dumped at intervals during the simulation – see Section 5.2 Database 
structure for more details). Whenever the results are stored in the database, the user has to specify also 
two particular fields that are experiment_id and experiment_ description, needed to store the data in 
the correct field inside the database tables for storing more experiments. Below (Fig. 9) an example of 
COTSon configuration file – section 1, taken from the file one_cpu_simple.in is shown. 
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Fig. 9 - An example of lua-section-1 of the COTSon configuration file (see also the example 

src/example/one_simple_cpu.in). 

4.2.2 Lua-Section-2 – SimNow options/commands 

This section is opened by the line: 

simnow.commands=function() 

This part is where the SimNow commands are grouped. Then the following options must be set 
(depending on the type of example the user is running, it can use a subset of the options listed below): 

• use_bsd( ): here the bsd location is set. Possible types of bsd are available in the folder 
cotson/data. 

• use_hdd( ): here we set the position of where the hard disk image is located, for example 
karmic64.img is available in the folder cotson/data. 

• set_journal( ): this function is needed to enable the journaling of the file system. 
• send_keyboard( ): this function allows the user to run a command inside the OS of the 

simulated machine. 

In Fig. 10 the reader can see an example of lua-section-2, taken from one_cpu_simple.in. Other option 
(not show in Fig. 10 - An example of lua-section-2 of the COTSon configuration file (see also 
one_simple_cpu.in)) can be: 

• execute( ): here the user can select the name of a (guest) file to be executed during the 
simulation (e.g., a bash script file). This file is copied from the host to the guest at the 
beginning of the simulation and has to be in the same folder where the lua script is stored. 

• subscribe_result( ): serves to automatically copy the listed files from the guest to the host at 
the end of the simulation. 
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Fig. 10 - An example of lua-section-2 of the COTSon configuration file (see also one_simple_cpu.in) 

4.2.3 Lua-Section-3 – configuration options 

This section begins with the command (see Fig. 11): 
function build() 

After that, there is a part where the number of disks in the system is specified and for each disk the 
appropriate timer is set. Then, in the same way, it is found the number of the various Network 
Interfaces attached to the system and to each one a timer is assigned. Then we can specify the number 
of CPUs that are in the system. If the number is zero, the simulation is stopped. The numbering of the 
disks, NICs, CPUs will begin from zero (i.e., in a multi-core system CPUs are named as cpu0, cpu1, 
etc.). Similarly to disks and NICs, to each CPU a particular timer is assigned (e.g. “timer0” means a 
simple superscalar in-order processor). For the memory and caches, it is possible to decide the values 
of their main features, such as the latency. The memory is set following a hierarchical approach, in 
other words, usually the setting starts from the main memory, then the cache with its levels. For each 
cache level, we can set the values of some important variables, such as: 

• name: determines the name of the considered cache level; 
• size: determines the total size of the considered cache level; 
• latency: determines the hit latency to access the considered cache level; 
• num_sets: determines the number of sets that are present in the considered cache level; 
• write_policy: determines the write policy of the considered cache level (“WB” means Write 

Back, “WT” means Write Through); 
• write_allocate: if it is set to true, it means that the considered cache level is of type “write 

allocate”, otherwise, the cache is of type “write-no-allocate”; 
 

Once all the memory components are set, we can connect them to the CPU using some particular 
commands such as: 

cpu:instruction_cache(ic) 
cpu:data_cache(dc) 
cpu:instruction_tlb(it) 
cpu:data_tlb(dt).  
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All the various parts previously described, can be seen in Fig. 11, which is an example of lua-
sections3, again taken from one_cpu_simple.in. 

 

Fig. 11 - An example of lua-section-3 of the COTSon configuration file (see also the example 

src/example/one_simple_cpu.in) 
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5 Collecting Metrics 
All the collected simulation measures can be permanently stored in a specific data structure. The user 
can chose which structure to use for storing information. The simulator provides two types of storing 
structures: the simplest is a log file, while the more advanced is represented by a database. Log file is 
generally enough to store data collected during a simulation. However, for keeping track of measures 
collected over several simulations, the database is the best choice. It allows maintaining information 
structured and it allows easily finding specific data by simply querying it. COTSon uses a flexible 
data storage resorting to a SQL server. By doing so, COTSon allows to search through simulation 
results in a more consistent way using a familiar declarative language like SQL. 

5.1 Log structure 
A log file is a simple text file, where all the information gathered by the simulator during a simulation 
is written. Since it is a text file, it can be automatically parsed at the end of the simulation. The main 
drawback of this structure is that it grows rapidly with the increase of simulation complexity.  

5.2 Database structure 
The simplest way to use a SQL server to store simulation heartbeats (i.e., periodic information 
collected by the simulator, such as instruction count, memory read misses, etc.) is to use SQLite 
server (currently at version 3). It should be installed by default with the Linux distribution. However, 
it is possible to check for its presence by using the following command: 

$ sqlite3 

One example that uses the database is governed by the “sqlite.in” lua script in the src/examples  
directory. To run it: 

You can check the content of the database by issuing: 

$ sqlite3 /tmp/test.db 

The tables in the database (hereafter DB for simplicity) can be analyzed by typing the following 

command (the SQLite server prompt is presented to the user): 

sqlite> .tables 

This should be the output the list of tables where results of the experiment are stored: 

 

These are the tables where the SQLite module stores the data if we select sqlite as output for the 
simulation heartbeats and the data related to the experiment. In general, to enable the use of SQLite 
storage, the user has to change the configuration file adding the “heartbeat” line in the options section, 
as in the following example (see file ‘sqlite.in’ in the src/examples  directory): 

$ cd src/examples; make run_sqlite 
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options = { 
       heartbeat={  
                     type="sqlite",  
                     dbfile="/tmp/test.db",  
                     experiment_id=1,  
                     experiment_description="T1"  
                  }, 
     } 
}  

In order to get same the data from this DB the user should first look for the needed metric id: 

sqlite> select * from metric_names where name like '%dcache.write_miss%'; 

The user should get the following output: 

 

And then look for the associated data in the metrics table using the “metric_id” values. 

sqlite> select * from metrics where metric_id = 76;  

And obtain a long list (here we show only the last three elements): 

 

This is where things may not seem clear at first. The table is organized so that the first n-1 records 
contain the value for every sample in the value field. The last one contains the actual result (in this 
case the sum of all of the previous records). So the user can get the actual result with: 

sqlite> select value from metrics where metric_id=7 6 and heartbeat_id is 
(select max(heartbeat_id) from metrics); 

The user should be the one showed below, which should also be the same obtained from the flat file: 

 

As far as the write miss rate is concerned things, again, change a bit. This time we are not looking for 
the sum but for a rate so we can only get the value directly: 

sqlite> select value from metrics where metric_id=2 81 and heartbeat_id is 
(select max(heartbeat_id) from metrics); 

This time the expected values is: 

 

You get more digits from this than from the flat file because the value field is a “float8”. You can see 
this by looking at the table schema: 

sqlite> .schema metrics  

which outputs: 

 



Project: TERAFLUX  - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.5 – D8.3 
Deliverable name: Final Report and Documentation + Final Results from the combination of UD 
and TERAFLUX dataflow techniques 
File name: TERAFLUX-D75-v17.doc Page 35 of 100 

5.2.1 Using a PostgreSQL server: 

While using SQLite can be very convenient as it gives you the ability to store your heartbeats in a 
SQL server without the hassle of configuring a real SQL server it may not be the best solution if the 
user wants to store a very big amount of data and if it wants to offload the burden of saving data to 
another machine. In this case the best solution, albeit more demanding from the administrator 
viewpoint, might be setting up a second computer with PostgreSQL and using it to store the heartbeats 
produced by the simulations. 

As an example in the following the PostgreSQL server is supposed to run on the same machine 
running COTSon (note that the process to run it in a classical client-server configuration is the same 
as explained here). 

As PostgreSQL is not usually installed by default it is necessary to install it. Type: 

$ sudo apt-get –y install postgresql postgresql-cli ent 

Now the user should have its instance of PostgreSQL up and running on the specified machine. To 
verify it, the user can issue this command: 

$ netstat -atp | grep post 

This should be the output the user obtains: 

 

If so then you can start configuring PostgreSQL to make it talk to COSTon. 

5.2.2 Creating the COTSon PostgreSQL database: 

In order to configure PostgreSQL the user has to create the “cotson” user in the database: 

$ sudo –i 
$ su - postgres 
$ cd 
$ createuser cotson  

  

Answer “NO” (n) to the three questions following this command and then issue: 

$ createdb cotson -O cotson 

The user can verify that everything is ok by querying PostgreSQL and asking for the databases list: 

$ psql -l 

The output should be similar to the following 

: 
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5.2.3 Configuring PostgreSQL for COTSon connection: 

Once the database is ready, the user needs to configure it, in order to allow incoming connections 
from COTSon. To do so the user (still as ‘postgres’ user is ok) has to modify the following file:  

/etc/postgresql/*/main/pg_hba.conf 

Becoming root, then the user can change the file adding the lines highlighted below: 

# TYPE  DATABASE    USER        CIDR- ADDRESS          METHOD                                                                                               

 

# "local" is for Unix domain socket connections onl y                                                                         

local   all         all                               ident 

# IPv4 local connections:                                                                                                    

host    cotson      cotson              127.0.0.1/3 2     trust # add this line in this place                                                                                 

host    all         all         127.0.0.1/32          md5 

# IPv6 local connections:                                                                                                                                                         

host    cotson      cotson         ::1/128               trust # add this line in this place                                                                                

host    all         all         ::1/128               md5  

Then the last thing to do is to restart the PostgreSQL server. Still as a root issue the command: 

Finally: 

At this point the user can press two times the “Ctrl-D” to exit the postgres user shell and the root shell. 

 

5.2.4 Creating the PostgreSQL COTSon db schema: 

Then, there is need for creating the database structure using the file “experiment_definition ” in 
the ‘src/tools/ ’directory.  

We modify for example add the following line at the end of the file, instead of: 

 

We can write:  

INSERT INTO experiments(experiment_id, description)  VALUES(1,'T1'); 

Then we can enter again the DB with: 

At the prompt, provide the password ‘cotson’ 

To setup the database schema: 

$ /etc/init.d/postgresql restart 

$ psql -d cotson -U postgres -c "GRANT ALL PRIVILEG ES ON DATABASE cotson 
TO cotson;" 
$ psql -d cotson -U postgres -c "ALTER USER cotson WITH PASSWORD 
‘cotson’;” 

$ cd src/tools 

$ psql -h localhost -d cotson -U cotson 

Postgres=# \i experiments_definition 
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This should output: 

 

Then we return to the shell with “Ctrl-D”. 

5.2.5 Modifying the “.in” file to save our heartbeats in PostgreSQL: 

At this point the configuration phase is completed. To check that this works, we can modify the 
sqlite.in example as follows: 

Then we can modify the file “pgsql.in”, by changing the heartbeat type from “sqlite” to “pgsql” and 
setup the “dbconn=…” line as shown below: 

5.2.6 Running COTSon with PostgreSQL 

Now, the user is ready to run a complete experiment on COTSon and stores the collected statistics in 
the PostgreSQL database server.  

The user should be aware that using PostgreSQL server on the same machine can be painful slow. As 
a rule of thumb, the user should expect that flat files are the fastest way to save your data, there is 
SQLite server as a middle speed solution, while PostgreSQL server (on the same machine) is the 
slowest option. 

$ cd src/examples 
$ cp sqlite.in pgsql.in 

        heartbeat = { 
                type="pgsql", 
                dbconn="host=localhost dbname=cotso n user=cotson password=cotson", 
                experiment_id=EXP, 
                experiment_description="T1” 
        },}  

$  ../../bin/cotson pgsql.in 
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6 Simple Examples 
All the examples that will be refer to, can be found in the following path:  
cotson/src/examples 

A more complete verification test can be launched by typing the following command: 
$ make run  

In this case, several examples contained in the example folder are sequentially executed. Following 
this verification procedure, the reader can see different examples executing, each of them targeting a 
specific feature of the simulator. 

From this folder, the user can also run a specific example that have been setup through the Makefile, 
by typing the following command: 
$ make run_ name_of_the_example 

Where the string name_of_the_example identifies the file name associated to the example (type 
“ls *.in” to see names of possible examples. E.g., for running the “functional.in” example type: 

6.1 Functional Simulation example (functional.in) 
As said in the first part of the guide, a functional simulation doesn't use timing at all. For this reason it 
is very fast but assuming an ideal (“CPI=1” timing model). Here, the Lua file functional.in (see Fig. 
12 below) that will be used. 

 

Fig. 12 – Lua configuration file for running a pure functional simulation with COTSon. 

6.1.1 Goal of the experiment or example 

As can be seen in the previous figure, in the script there is the option “one_node_script=…” that tells 
COTSon to refer to a template “functional”, which contains default options for running a functional 
simulation. The second line of the code is needed to display the SimNow Graphical User Interface. 
Then, there are the SimNow commands that allow the user to choose the bsd and hdd by inserting 
their absolute paths or otherwise by placing the desired bsd and hdd in the directory cotson/data. 

6.1.2 Location of the involved files 

All the files needed to run the example are contained in the following folder: 
$COTSONHOME/src/examples  

Where $COTSONHOME is an environment variable identifying the installation path of the COTSon 
simulator. 

$ make run_ functional 
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6.1.3 Detailed instructions to start 

 To run one example, move on the following folder and launch the simulator: 

$ cd src/examples 
$ make run_functional  

To start the simulation it is necessary to press the start button (circled in red in Fig. 13 – see 
subsection 6.1.4). At this point the simulation has started and the prompt of the guest (emulated) 
machine can be used.  

6.1.4 Expected output 

After launching the application the graphical user interface should appear as follows: 

 

Fig. 13 – Expected output for the “functional.in” example 

6.2 Memory tracing example (mem_tracer.in) 
To analyze in detail the performance of a system, it is often useful to record a trace of the references 
that are flowing through the system. This is supported in COTSon through the “tracers”. In the 
“mem_tracer.in” example we can see how to setup a tracer. 

 

Fig. 14 – Relevant lines of the Lua configuration file for the memory tracer example. In this case the lua 

script contains another variable (not shown here) that sets TRACE_FILE=”/tmp/mem_tracer.txt.gz” 
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6.2.1 Goal of the experiment or example 

Memory tracing is achieved by placing a transparent object that intercepts every memory request and 
dumps this information to a file for further analysis. This is how it is specified in the example 
mem_tracer.in. The “trace=”  option inside the build function specifies to intercept every access to 
the main memory. The tracer is not only limited to the main memory, it is also possible to intercept a 
request to any memory unit in the memory hierarchy. Simply placing the tracer before L2 or L1 
cache, it is possible to intercept every access to the respective cache. A memory tracer is added to the 
memory hierarchy through the line (see also Fig. 14): 

trace=Tracer{ name=”…”, trace_file=”…”, next=”…”} 

The tracer is defined inside the build function of the Lua configuration script. Its parameters must be 
defined in a Lua table called Tracer. This table has three fields: (i) the field name specifies the name 
of the “tracer object”, (ii) the field trace_file specifies the file where the trace output is dumped, and 
(iii) the field next specifies the name of the memory unit whose access is intercepted by the tracer. As 
mentioned above, this type of objects can be placed in any position of the memory hierarchy to trace 
different hardware blocks. In the example mem_tracer.in it is placed just before the main memory 
(setting next=mem), so it will record each memory access in a file, specified by writing: 

trace_file=' path_of_the_file' 

The output of the tracer is a gzip compressed text file. A line in the output corresponds to a single 
memory access where each line is composed of five fields. The first field is a time-stamp of the 
access, the second field indicates the access type, i.e., 'r' for read and 'w' for write, the third and fourth 
fields indicate the physical and virtual addresses, respectively; finally, the fifth field specifies from the 
cpu where the access is originated and the type of transactions generated at each level of the memory 
hierarchy (see Fig. 15). 

6.2.2 Location of the involved files 

All the files needed to run the example are contained in the following folder: 

$COTSONHOME/src/examples  

Where $COTSONHOME is an environment variable identifying the installation path of the COTSon 
simulator. 

6.2.3 Detailed instructions to start 

 To run the example, move on the example folder and then run the example as follows: 

$ cd src/examples 
$ make run_mem_tracer  

6.2.4 Expected output 

After launching the application the following trace is produced by the program, and displayed on the 
host shell: 
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Fig. 15 – Expected output for the memory trace simulation with COTSon simulator. 

The same result can be found in the host file: 

/tmp/mem_tracer.txt.gz 

As can be seen in the Lua configuration file mem_tracer.in, the chosen sampler is of type interval, 
meaning that a timing simulation is done after fixed intervals of time, and has a fixed duration (more 
details on samplers are in Section 6.3). During the simulation, for each sample the time elapsed from 
the beginning of the simulation and the calculated IPC are printed on the shell screen (see below). 

 

Modification to the sampling policy is available in the examples trace_stats.in and mem_tracer2.in. 
Here, the traces are obtained by changing the type of the CPU's timer (see Fig. 16) and setting 
TRACE_OUT='/tmp/mem_tracer.txt.gz'. 

 

Fig. 16 – Lua configuration file for setting the timer to trace_stats.in example 
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The trace_stats is in this case a “fake” CPU timer (see ‘./abaeterno/timer_cpu/trace_stats.cpp’ for 
more details) that prints some trace statistics in the specified file. The output on the host screen in this 
case is: 

 

While the trace file shows a detailed disassembly of the instructions: 

 

In the case of mem_tracer2.in example (see Fig. 17 below) the “fake” timer is “memtracer (see 
‘./abaeterno/timer_cpu/memory_tracer.cpp for more details).  

 

Fig. 17 - Lua configuration file for setting the timer to mem_tracer2.in example. 

The output on the screen is: 
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And the content of trace file is: 

 

The values in this case represent in order: i) the number of nanoseconds (timestamp), ii) he type of 
operation (r for read, w for write), iii) the address involved, iv) the content of the x86 CR3 register, 
and v) the cpu identifier. 

6.2.5 Defining the Region Of Interest (ROI) 

Although the discussion of how to setup a the Region Of Interest is presented as part of a tracer 
example, the technique is general and serves to measure metrics related to the portion of the code that 
is marked by the user. 

COTSon comes with the capability of timing simulation of a specific part of a benchmark, hereafter 
referred to as Region Of Interest (ROI). Currently this is achieved in two ways, the first one is to 
enable the timing just before the benchmark starts and to disable it right after the benchmark finishes. 
This approach considers the whole benchmark as the ROI. The second approach is to mark a portion 
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of the benchmark for which a timing simulation is required. A practical example of the first approach 
is provided inside src/examples/tracer/ (see Fig. 18). 

 
Fig. 18 – The definition of the ROI in the example cotson_tracer.in 

To achieve this, the sampler to be used must be of type “selective_tracing”, which in essence is a 
collection of other samplers, each of which is used when a certain condition is met during the entire 
simulation. For the specific scenario, the selective sampler is composed of two samplers: no_timing 
and simple. In this case, the simulation runs in a timing mode or in functional mode until a certain 
trigger is given by the application (see below), then another trigger stops the timing simulation, 
therefore freezing the timing statistics update.  

The configuration file cotson_tracer.in (Fig. 18) is an example, which shows how these parameters 
are specified. run.sh is the script that executes inside SimNow (since it is specified by the 
“execute(‘run.sh’)” simnow.commands function) and it contains specific commands (or “triggers”) to 
mark the start and the end of the timing simulation. This requires that the selected hard-disk image 
(hdd) provides the ‘cotson_tracer’ executable (this is the case for the “karmic64,img” hdd that comes 
by default with COTSon)  essentially, the cotson_tracer is an helper program that takes three 
arguments and is supposed to be used inside the execution script as in the following format: 
cotson_tracer 10 1 0 
./benchmark 
cotson_tracer 10 1 1  

The first argument specifies the type of the sampler used, number 10 is reserved for selective_tracing. 
The second argument is an integer value used as an identification of the simulation zone for which 
timing simulation is enable/disabled (in this case this indicates “Zone 1”). Finally, the third argument 
is a switch to enable/disable the timing simulation. Hence, cotson_tracer 10 1 0 implies that timing is 
enabled for zone 1 and cotson_tracer 10 1 1 implies that timing is disabled for zone 1. 

A finer grain control is possible too. In this case, the steps are the following: 

i) The user as to include the “cotson_tracer.h” header provided in the src/example/tracer 
directory; 

ii)  The user can then mark the portion of code of interest (ROI) with a 
COTSON_INTERNAL(10,1,0) to start the timing simulation for “Zone 1” and 
COTSON_INTERNAL(10,1,0) to stop the timing simulation for “Zone 1”; 

Note that, in this case, it is not necessary to have the “cotson_tracer” helper program in the hdd image. 
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6.3 Samplers: timing simulation 
There are several types of samplers available (check their implementations in the folder 
cotson/src/abaeterno/sampler). Here we discuss more details about the following four samplers: 

• simple: timing simulation is always on. For example this type of sampler is used in the 
example configuration one_cpu_simple.in; 

• interval : the duration of each phase (state) of the sampling (functional, warming, simulation) 
is fixed. This type of sampler is used in the example configuration in 
multiple_cpu_interval.in; 

• dynamic: the sample intervals are determined dynamically by the sampler according to the 
variation of a monitored variable This type of sampler is used in the example configuration in 
dynamic.in; 

• SMARTS: the duration of each phase (state) of the sampling (functional, warming, 
simulation) is fixed, but the sampling instants are determined by a previous profiling phase. 
This type of sampler is used in the example configuration in smarts.in; 

To specify the full timing simulation the lua file contains the following (see file one_cpu_simple.in): 

To specify the interval based simulation, where the execution takes systematically a given amount of 
time for the functional, warming and timing simulation, the lua file contains the following (see file 
multiple_cpu_interval.in): 

To specify the interval based simulation, where the execution takes systematically a given amount of 
time for the functional, warming and timing simulation, the lua file contains the following (see file 
smarts.in); this is similar to the “interval sampling” but in this case a profiling phase is also required”: 

To specify the dynamic based simulation, where the execution is switched to full timing according to 
phases that are detected through an “non-timing” variable (in this case the variable is the number of 
exceptions on any cpu simulated), the lua file contains the following (see file dynamic.in): 

The length of the intervals, where functional, warming, full-timing simulation is performed, is 
specified in a way similar to the interval simulation. If the first-derivative of this variable goes beyond 
the sensitivity (set by the line sensitivity=”90”) there is a phase change in the program and so a 
timing simulation can start. The variable maxfunctional=”10” is needed to set the maximum number 
of time intervals passed in the functional state before a new timing simulation starts. This type of 
sampler is used in dynamic.in. As you can see from Fig. 20 the intervals between the printed values of 
time are not regular but they are variable. 

sampler={ type="simple", quantum="100k" }, -- quant um is in cycles  

sampler={ type="interval", functional="1M", warming ="100k", simulation="100k", }, 
                -- the sampler will execute warming , simulation and then functional for 
                -- their respective interval length s. After the first simulation sample, 
                -- though it will finish (due to ma x_samples being 1)  

sampler={ type="smarts", functional="100k", warming ="100k", simulation="100k", }, 
                -- the sampler will execute warming , simulation and then functional for 
                -- their respective interval length s until reaching 1M nanos  

sampler={ type="dynamic", functional="100k", warmin g="100k", simulation="100k", 
                  maxfunctional=10, sensitivity="90 ", 
                  variable={"cpu.*.other_exceptions "}, }, 
                -- the sampler will execute warming , simulation and then functional for 
                -- their respective interval length s until reaching 1M nanos  
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6.3.1 Goal of the experiment or example 

The main purpose of the example is the illustration of the use of different sampler. 

6.3.2 Location of the involved files 

All the files needed to run the example are contained in the following folder: 
$COTSONHOME/src/examples  

where $COTSONHOME is an environment variable identifying the installation path of the COTSon 
simulator. 

6.3.3 Detailed instructions to start for NO Sampling (“simple”) 

 To run the example, move on the example folder and then run the example as follows: 
$ cd src/examples 
$ make run_one_cpu_simple.in  

6.3.4 Expected output for NO Sampling (“simple”) 

After launching the application the following output should be obtained (see Fig. 21). In this case, the 
timing simulation is always on: 

 

Fig. 19 – Expected output for “simple” sampler example. The example is based on the one_cpu_simple.in 

Lua configuration file. 

6.3.5 Detailed instructions to start for Dynamic Sampling 

 To run the example, move on the example folder and then run the example as follows: 
$ cd src/examples 
$ make run_dynamic  
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6.3.6 Expected output for Dynamic Sampling 

After launching the application the following output should be obtained (see Fig. 20): 

 
Fig. 20 – Expected output for dynamic sampler example. The example is based on the dynamic.in Lua 

configuration file. 

6.3.7 Detailed instructions to start for Interval Sampling 

 To run the example, move on the example folder and then run the example as follows: 
$ cd src/examples 
$ make run_multiple_cpu_interval  

6.3.8 Expected output for Interval Sampling 

After launching the application the following output should be obtained (see Fig. 21). As a variant, in 
this case 4 CPUs are simulated, the simulation is fast-forwarded for 2 second and then the next 50 ms 
are simulated with full timing but up to 5 samples that are taken at successive regular instants: 

 
Fig. 21 – Expected output for interval based sampler example. The example is based on the 

multiple_cpu_interval.in Lua configuration file. 
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6.3.9 Detailed instructions to start for SMARTS Sampling 

 To run the example, move on the example folder and then run the example as follows: 

$ cd src/examples 
$ make run_smarts  

6.3.10 Expected output for SMARTS Sampling 

After launching the application the following output should be obtained (see Fig. 21). In this case, 
similarly to the dynamic sampling, the sampling instant are not uniformly distributed with the time: 

 

Fig. 22 – Expected output for SMARTS sampler example. The example is based on the smarts.in Lua 

configuration file. 

6.4 Simulation of Ethernet connected clusters 
A cluster is a set of loosely coupled computers that work together as if they were a single computer. 
COTSon has the capability of simulating clusters that are interconnected through an Ethernet based 
network card and through a simulated switch (called “mediator”) by using an individual full-system 
instance of SimNow for each node. It is worth of notice that the SimNow instance run in parallel if the 
simulation host has enough cores. 

6.4.1 Goal of the experiment or example 

When simulating a cluster with COTSon there is a software component that is needed to connect all 
the SimNow instances of the different COTSon nodes, called Mediator (i.e., a component in the 



Project: TERAFLUX  - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.5 – D8.3 
Deliverable name: Final Report and Documentation + Final Results from the combination of UD 
and TERAFLUX dataflow techniques 
File name: TERAFLUX-D75-v17.doc Page 49 of 100 

simulator architecture that is responsible to manage the network communication among different 
nodes of the simulated system – see also Fig. 4). This application, together with other external tools 
such as Slirp, allows more than one COTSon node (i.e., an instance of SimNow plus abaeterno) to 
communicate with the rest of the network. COTSon is responsible for coordinating the activity of the 
nodes, which are possibly running in different machines. The simplest example about clusters is 
twonodes.in that implements a cluster of two nodes pinging each other. 

6.4.2 Location of the involved files 

All the files needed to run the example are contained in the following folder: 

$COTSONHOME/src/examples  

Where $COTSONHOME is an environment variable identifying the installation path of the COTSon 
simulator. 

6.4.3 Detailed instructions to start 

 To run the example, move on the example folder and then run the example as follows: 

$ cd src/examples 
$ make run_twonodes  

6.4.4 Expected output 

After launching the application the following output should be obtained (see Fig. 23): 

 

Fig. 23 expected output for the example where mediator component is used. The example is based on the 

twonodes.in Lua configuration file. 
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While the simulation is running, the following windows (see Fig. 24) should appear on the screen 
indicating that the two nodes have been booted up and they are communicating each other: 

 

Fig. 24– Two simulator windows are used to manage the two communicating nodes of the simulated system. 
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7 Research Use Case from BSC 
This section shows how to use the TERAFLUX system image and benchmark repository that has been 
put in place to ensure partners use a common development platform and can reproduce each other's 
results. 

7.1  Goal of the experiment or example 
The goal is two-fold: to show how the system image can be used for development, and show how 
experiments from the benchmark repository can be run. 

7.2 Location of the involved files 
First of all, one must download the system image and verify its integrity by downloading files 

wget http://www.teraflux.eu/sites/teraflux.eu/files /teraflux-v5.img.bz2  

Then: 

wget http://www.teraflux.eu/sites/teraflux.eu/files /teraflux-v5.img.bz2.md5  

Then executing: 

$ md5sum -c teraflux-v5.img.bz2.md5 
teraflux-v5.img.bz2: OK 
$ bzip2 -d teraflux-v5.img.bz2  

Next, one must download the Teraflux Simulation Manager (tfsm), a simple script to help using the 
image: 

$ svn co https://teraflux.eu/svn/tfx/tfsm  

This script requires installing a few packages, as well as support for hardware virtualization in order 
to provide maximum performance during development and native testing: 

$ sudo apt-get –y install qemu-kvm libvirt-bin vina gre qemu-system virt-manager gcc-4.4 
… 
$ sudo adduser `whoami` kvm 
$ sudo addgroup libvirt 
$ sudo adduser `whoami` libvirt 
$ sudo modprobe kvm-amd  

The benchmark repository is included in the image file, but it can also be independently downloaded: 

$ svn co https://teraflux.eu/svn/tfx/ems  

7.3 Detailed instructions to start 
 To start developing with the image, one must start tfsm with the following command: 

$ ./tfsm/tfsm edit teraflux-v5.img 512 2  

This will start a virtual machine with 2 cores and 512 MB of memory, ready to use for development 
and benchmark testing. Once the virtual machine is running, one can start installing programs and 
developing. Both the login and password are user. 
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After the changes are ready, one can launch multiple nodes to test the benchmarks natively. First of 
all, the maximum number of nodes must be established (2 in this case), and the editable virtual 
machine must be stopped. The following commands have to be issued at the virtual machine prompt: 

$ sudo ./guest/nodes 2 
$ sudo halt  

One can then start two identical nodes to run distributed benchmarks natively with tfsm: 

$ ./tfsm/tfsm qemu teraflux-v5.img 2 512 2 
Creating inter-node network... 
Creating VMs... 
You can now connect to the VMs (e.g., 'virt-manager ' or 'vinagre :5900') 
[Press enter to destroy all Vms]  

The benchmarks are run with the Experiment Management System (ems) that is included in the image 
(this command again can be issued inside the virtual machine): 

$ cd ems 
$ ./ems run kernels/cholesky small  

7.4 Expected output 
Running 'kernels/cholesky/smpss' small into kernels /cholesky/smpss//run/1 
$ cat kernels/cholesky/smpss/run/1/ems_output 
+ cholesky_simple 64 64 
25003147;       907  

Since the experiment is natively run in “qemu” mode (using hardware virtualization), the actual 
contents of the ems_output file will change. 

7.5 Further references to more in-depths 
The tfsm script also includes commands to start SimNOW and COTSon nodes. Please refer to the 
README file in the tfsm repository, and the environment-specific details of other partners for more 
information on the necessary arguments. 

The ems script also handles benchmark compilation, even though the TERAFLUX disk image comes 
with pre-compiled benchmarks. Please run ems without arguments and read the README file in the 
ems repository for more details. To update the benchmark repository in the TERAFLUX disk image 
run: 

$ cd ems 
$ svn https://teraflux.eu/svn/tfx/ems  update  

 



Project: TERAFLUX  - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.5 – D8.3 
Deliverable name: Final Report and Documentation + Final Results from the combination of UD 
and TERAFLUX dataflow techniques 
File name: TERAFLUX-D75-v17.doc Page 53 of 100 

8 Research Use Case from CAPS 
This section describe the experimental platform used to evaluate, first, the new CAPS compiler back-
end developed during the project, and second the OpenACC dataflow extension, on the common 
TERAFLUX architecture using the SimNOW virtualization system and the COTSon simulation 
platform. The experimentation has been performed on a Convolution benchmark programmed in 
OpenHMPP and offloading the parallel computation on the CPU using a C back-end. 

8.1 Goal of the experiment or example 
The goal of the experiment is to validate the execution of the OpenHMPP Convolution benchmark on 
the COTSon system. This experiment will perform a functional validation of a code pre-compiled by 
the CAPS compiler by the execution of the binary together with the CAPS compiler runtime. 

8.2 Location of the involved files 
To run the experiment, one has to use the tools implemented by the collaborative effort from UNISI & 
BSC: the COTSon simulation platform with the associated SimNow virtualization system, and the 
Teraflux Simulation Manager (tfsm). The COTSon system is taken from the trunk: 

$ svn co https://svn.code.sf.net/p/cotson/code/trun k cotson  

The tfsm is fetched from the original source: 

$ svn co https://teraflux.eu/svn/tfx/tfsm  

The other files have been developed at CAPS entreprise using a branch of the CAPS many-core 
compiler and the access is subject to a formal request to CAPS entreprise: 

• karmic64-capse.img: the image containing the CAPS compilation framework and the 
Convolution example, it contains pre-compiled files from the CAPS compiler, and requires 
only a minimal SDK; 

• CAPSCompilersRuntimes-3.3.4-TF.tar.bz2: the CAPS compiler run-times for compiling the 
OpenHMPP applications; 

• CAPSCompilersSDK-3.3.4-TF.tar.bz2: the CAPS compiler SDK (partial, without the compiler 
binaries, does not need a license token generator); 

• CAPSCompilersRuntimes-install.sh: the automatic deployment script; 

• capse.in: the Lua configuration script running the experiment with timing enabled; 

• capse-interactive.in: the Lua configuration script running the functional simulator in 
interactive mode; 

8.3 Detailed instructions to start 
Deployment 

This experiment requires the deployment of the CAPS-compiler run-time, and the recompilation of 
the Convolution application on a virtual machine image. For that purpose one has to use the “edit” 
mode of the tfsm (see previous section): 
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$ ./tfsm edit karmic64-capse.img 512 2 

Then, one has to perform a standard installation of the prototype CAPS-compiler run-time and simply 
builds the Convolution application. Note that these operations are easier to perform when tfsm is 
modified to run QEMU with a tunnel for SSH in port 2222: 

$ cp tfsm tfsm-capse 
<REPLACE the corresponding lines below in tfsm-caps e> 
cmd_edit () {  
    which $QEMU >/dev/null || error "cannot find QEMU: $QEMU" 
    sys $QEMU -enable-kvm -hda $IMAGE -m $MEM -smp $NCO RES -redir tcp:2222::22 
}  

Doing so, the update process can be automatize using rsync  and ssh  commands from the host: 

$ ./tfsm-capse edit karmic64-capse.img 2048 8 &  
$ scp -P 2222 CAPSCompilersRuntimes-install.sh root @localhost:/home/user/CAPSe/  
$ scp -P 2222 CAPSCompilersRuntimes-3.3.4-TF.tar.bz 2 root@localhost:/home/user/CAPSe/ 
$ scp -P 2222 CAPSCompilersSDK-3.3.4-TF.tar.bz2 roo t@localhost:/home/user/CAPSe/  
$ ssh -p 2222 root@localhos7 /home/user/CAPSe/CAPSC ompilersRuntimes-install.sh  
$ ssh -p 2222 root@localhost 'shutdown -h now'  

On Ubuntu/Debian Linux distributions, the usage of the QEMU virtual machine requires the user to 
belong to the “kvm” group (as in the previous example of Section 7). Note that in this example, the 
host machine is called “localhost” and executes the COTSon system. Once the deployment of the 
CAPS-compiler performed on the COTSon system has been done, the experimental snapshot is 
prepared using the SimNOW:  

$ export PATH=”$PATH:.”; ln –s ../simnow-linux64-4. 6.2pub/simnow 
$ ./tfsm-capse simnow karmic64-capse.img 4 4p-reset .bsd 

Note also that the tfsm script needs to know the installation location of the SimNow virtualization 
system (it can be set through the SIMNOW environmental variable). At the end of the boot process, 
the snapshot is prepared with the appropriate environment (in the console after the login root/root): 

$ cd /home/user/CAPSe 
$ source CAPSMC/bin/capsrt-env.sh 
$ cd Convolution 
$ make clean && make  

After the initialization is completed, the user should stop the simulation and save the snapshot under 
the name “4p-capse.bsd” in the COTSon data directory. 

COTSon Simulation 

The functional validation is performed using a snapshot containing the CAPS-compiler run-time and 
the Convolution example ready to run. A very simple Lua configuration script (capse.in) is called 
using the following command: 

$ ../cotson/bin/cotson capse.in  

The lua configuration script activates the standard timing of the simulation using the abaeterno library 
and the “build” function. It also uses the “fastforward” keyword to delay the simulation up to the 
OpenHMPP kernel execution. The simulation can be switched in visual mode if the appropriate line 
comments are removed from the Lua configuration script. The core command of the script is the 
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following: 

simnow.commands=function() 
   use_bsd('4p-capse.bsd') 
   use_hdd('karmic64-capse.img') 
   set_journal() 
  send_keyboard('./convol-hmpp.exe -e 1 data/Michal -*.tif -o ./Michal.tif') 
end  

The functional validation of the computation is done by the comparison of the picture generated by 
the Convolution execution with a valid reference. The timing result of the simulation is stored in the 
file “node.1.hmpp_simple.log”. 

An interactive mode is available with the script “capse-interactive.in”, a variant of the previous one 
activating the functional simulator with the SimNow window enabled. The user has to run the 
simulator, and then it can interact with the application. An overview of the simulator window is given 
in Fig. 25. 

8.4 Expected output 

The deployment and installation output is the following. It must contain a correct compilation of the 
Convolution example and a proper execution. 

[laorans@nova18 ~]$ ssh - p 2222 root@ localhost  /home/use r/CAPSe/CAPSCompilersRuntimes - install.sh  
root@localhost's password: 
Uncompress package 
------ Clean Convolution ----- 
rm -rf    *convolution*_c.hmg    *convolution*_c.hm g.o       *convolution*_c.hmg.rc.o    *convolution* _c.hmg.fatbin 
rm -rf 
rm -rf src/pictureInterface.o src/mainutils.o src/f ilters5x5.hmpp.o src/main-hmpp.hmpp.o convol-hmpp.e xe src/filters5x5_c.translated.o src/main-
hmpp_c.translated.o 
rm -rf src/*.hmpp.o src/*.translated.o 
rm -rf properties_tune_*.psc 
rm -rf *_out.tif out*.tif 
rm -rf core.* 
rm -rf *.translated.i *.extracted.* *.halt.* *.hdpp .* *.inline.* *.preproc.* *.capstune.i 
rm -rf *__hmpp_acc_region__*.o *__hmpp_acc_region__ *.fatbin *__hmpp_acc_region__*.hmf 
------ Build Convolution ----- 
gcc -Wall -fopenmp -DHMPP_V3b -DHMPP_OPTIM_2 -DHMPP _C -c -O3 -Isrc/ -o src/pictureInterface.o src/pict ureInterface.c 
gcc -Wall -fopenmp -DHMPP_V3b -DHMPP_OPTIM_2 -DHMPP _C -c -O3 -Isrc/ -o src/mainutils.o src/mainutils.c  
gcc -Wall -fopenmp -DHMPP_V3b -DHMPP_OPTIM_2 -DHMPP _C -c -O3 -Isrc/ -o src/filters5x5.hmpp.o src/filte rs5x5_c.translated.i 
src/filters5x5.c:48: warning: ▒hmppsi_lookup ▒ defined but not used 
src/filters5x5.c:54: warning: ▒hmppsi_g_convolution_lookup ▒ defined but not used 
gcc -Wall -fopenmp -DHMPP_V3b -DHMPP_OPTIM_2 -DHMPP _C -c -O3 -Isrc/ -o src/main-hmpp.hmpp.o src/main-h mpp_c.translated.i 
src/main-hmpp.c: In function ▒main ▒: 
src/main-hmpp.c:49: warning: ignoring #pragma hmpp 
src/main-hmpp.c:58: warning: ignoring #pragma hmpp 
src/main-hmpp.c:59: warning: ignoring #pragma hmpp 
src/main-hmpp.c:60: warning: ignoring #pragma hmpp 
src/main-hmpp.c: At top level: 
src/main-hmpp.c:108: warning: ▒hmppsi_lookup ▒ defined but not used 
g++ -c -I/home/user/CAPSe/CAPSMC//include -I/home/u ser/CAPSe/CAPSMC//include/openacc  -fPIC -o convolu tion_c.hmg.o convolution_c.hmg.cc 
g++ -shared  -fPIC -o convolution_c.hmg convolution _c.hmg.o 
gcc -Wall -fopenmp -DHMPP_V3b -DHMPP_OPTIM_2 -DHMPP _C -O3 -o convol-hmpp.exe src/pictureInterface.o sr c/mainutils.o src/filters5x5.hmpp.o 
src/main-hmpp.hmpp.o convolution_c.hmg -lm -ltiff - lz -Wl,-rpath,/home/user/CAPSe/CAPSMC//slib -Wl,-rp ath,/home/user/CAPSe/CAPSMC//lib -
L/home/user/CAPSe/CAPSMC//lib -lhmpprti -lhmpprt -l hmpperr -lhmppstr -lhmppos -lhmppabi -lhmppos -lhmp plog -lphmpp -lhmpprl -lopenacci -lopenacc 
------ Run Convolution ----- 
./convol-hmpp.exe -e 1 data/Michal-Osmenda-Mont_Sai nt_Michel-CC_BY_SA_2.0.tif -o  ./Michal-Osmenda-Mon t_Saint_Michel-CC_BY_SA_2.0_out.tif 
[     0.056758] ( 0) WARN : Cannot find libOpenCL.s o: dlopen() failed: libOpenCL.so: cannot open share d object file: No such file or directory, 
disabling OPENCL support. 
[     0.058255] ( 0) INFO : --> allocate <convoluti on> at src/main-hmpp.c:48 
[     0.058295] ( 0) INFO :               - Acquire  the device 'host#0' 
[     0.058362] ( 0) INFO :       - Allocate buffer  'filter5x5_1::heigh|filter5x5_2::heigh' (4 x [] = 4 bytes of host memory on device 'host#0') 
[     0.058408] ( 0) INFO :       - Allocate buffer  'filter5x5_1::width|filter5x5_2::width' (4 x [] = 4 bytes of host memory on device 'host#0') 
[     0.058440] ( 0) INFO :       - Allocate buffer  'filter5x5_1::inRaster|filter5x5_2::outRaster' (4 x [2793, 1920] = 21450240 bytes of host 
memory on device 'host#0') 
[     0.058473] ( 0) INFO :       - Allocate buffer  'filter5x5_1::outRaster|filter5x5_2::inRaster' (4 x [2793, 1920] = 21450240 bytes of host 
memory on device 'host#0') 
[     0.058505] ( 0) INFO : <-- allocate <convoluti on> at src/main-hmpp.c:48 
[     0.058526] ( 0) INFO : --> allocate, data <con volution> at src/main-hmpp.c:50 
[     0.058551] ( 0) INFO :         - Allocate mirr or 0x4040a0 "stencil1" (4 x [25] = 100 bytes of hos t memory on device 'host#0') 
[     0.058581] ( 0) INFO :         - Allocate mirr or 0x404120 "stencil2" (4 x [25] = 100 bytes of hos t memory on device 'host#0') 
[     0.058610] ( 0) INFO : <-- allocate, data <con volution> at src/main-hmpp.c:50 
[     0.058633] ( 0) INFO : --> advancedload, data <convolution> at src/main-hmpp.c:54 
[     0.058654] ( 0) INFO :         - Upload mirror  0x4040a0 "stencil1" (4 x [25] = 100 bytes to devic e 'host#0') 
[     0.058697] ( 0) INFO :         - Upload mirror  0x404120 "stencil2" (4 x [25] = 100 bytes to devic e 'host#0') 
[     0.058721] ( 0) INFO : <-- advancedload, data <convolution> at src/main-hmpp.c:54 
[     0.058743] ( 0) INFO : --> advancedload, args <convolution> at src/main-hmpp.c:57 
[     0.058759] ( 0) INFO :       - Bind buffer 'fi lter5x5_1::heigh|filter5x5_2::heigh' to address 0x7 fff69c4afd8 'opt.m_expansion * 
BYTES_PER_PIXEL * heigh' 
[     0.058775] ( 0) INFO :       - Bind buffer 'fi lter5x5_1::width|filter5x5_2::width' to address 0x7 fff69c4afd4 'width' 
[     0.058790] ( 0) INFO :       - Bind buffer 'fi lter5x5_1::inRaster|filter5x5_2::outRaster' to addr ess 0x2af3ac422010 'raster1' 
[     0.058811] ( 0) INFO :       - Upload buffer ' filter5x5_1::heigh|filter5x5_2::heigh' (4 x [] = 4 bytes to device 'host#0') 
[     0.058835] ( 0) INFO :       - Upload buffer ' filter5x5_1::width|filter5x5_2::width' (4 x [] = 4 bytes to device 'host#0') 
[     0.058858] ( 0) INFO :       - Upload buffer ' filter5x5_1::inRaster|filter5x5_2::outRaster' (4 x [2793, 1920] = 21450240 bytes to device 
'host#0') 
[     0.070573] ( 0) INFO : <-- advancedload, args <convolution> at src/main-hmpp.c:57 
[     0.070656] ( 0) INFO : --> callsite <convoluti on> at src/main-hmpp.c:62 
[     0.070673] ( 0) INFO :       - Bind buffer 'fi lter5x5_1::heigh|filter5x5_2::heigh' to address 0x7 fff69c4afd8 'opt.m_expansion * 
BYTES_PER_PIXEL * heigh' 
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[     0.070690] ( 0) INFO :       -  Bind buffer 'filter5x5_1::width|filter5x5_2::width'  to address 0x7fff69c4afdc 'width'  
[     0.070705] ( 0) INFO :       - Bind buffer 'fi lter5x5_1::filter' to address 0x4040a0 'stencil1' 
[     0.070720] ( 0) INFO :       - Bind buffer 'fi lter5x5_1::inRaster|filter5x5_2::outRaster' to addr ess 0x2af3ac422010 '(Raster2D_C ) raster1' 
[     0.070735] ( 0) INFO :       - Bind buffer 'fi lter5x5_1::outRaster|filter5x5_2::inRaster' to addr ess 0x2af3ad897010 '(Raster2D ) raster2' 
[     0.070759] ( 0) INFO :       - Call codelet 'f ilter5x5_1' (on device 'host#0') 
[     0.401762] ( 0) INFO : <-- callsite <convoluti on> at src/main-hmpp.c:62 
[     0.401860] ( 0) INFO : --> callsite <convoluti on> at src/main-hmpp.c:65 
[     0.401878] ( 0) INFO :       - Bind buffer 'fi lter5x5_1::heigh|filter5x5_2::heigh' to address 0x7 fff69c4afd8 'opt.m_expansion * 
BYTES_PER_PIXEL * heigh' 
[     0.401895] ( 0) INFO :       - Bind buffer 'fi lter5x5_1::width|filter5x5_2::width' to address 0x7 fff69c4afd4 'width' 
[     0.401911] ( 0) INFO :       - Bind buffer 'fi lter5x5_2::filter' to address 0x404120 'stencil2' 
[     0.401926] ( 0) INFO :       - Bind buffer 'fi lter5x5_1::outRaster|filter5x5_2::inRaster' to addr ess 0x2af3ad897010 '(Raster2D_C ) raster2' 
[     0.401941] ( 0) INFO :       - Bind buffer 'fi lter5x5_1::inRaster|filter5x5_2::outRaster' to addr ess 0x2af3ac422010 '(Raster2D ) raster1' 
[     0.401961] ( 0) INFO :       - Call codelet 'f ilter5x5_2' (on device 'host#0') 
[     0.730020] ( 0) INFO : <-- callsite <convoluti on> at src/main-hmpp.c:65 
[     0.730122] ( 0) INFO : --> delegatedstore, arg s <convolution> at src/main-hmpp.c:68 
[     0.730146] ( 0) INFO :       - Download buffer  'filter5x5_1::inRaster|filter5x5_2::outRaster' (4 x [2793, 1920] = 21450240 bytes from device 
'host#0') 
[     0.735362] ( 0) INFO : <-- delegatedstore, arg s <convolution> at src/main-hmpp.c:68 
[     0.839454] ( 0) INFO : --> free, data <convolu tion> at src/main-hmpp.c:89 
[     0.839540] ( 0) INFO :         - Free mirror 0 x4040a0 "stencil1" (4 x [25] = 100 bytes on device 'host#0') 
[     0.839600] ( 0) INFO :         - Free mirror 0 x404120 "stencil2" (4 x [25] = 100 bytes on device 'host#0') 
[     0.839626] ( 0) INFO : <-- free, data <convolu tion> at src/main-hmpp.c:89 
[     0.839645] ( 0) INFO : --> release <convolutio n> at src/main-hmpp.c:90 
[     0.839663] ( 0) INFO :         - Free buffer ' filter5x5_1::outRaster|filter5x5_2::inRaster' (4 x [2793, 1920] = 21450240 bytes on device 
'host#0') 
[     0.841287] ( 0) INFO :         - Free buffer ' filter5x5_1::inRaster|filter5x5_2::outRaster' (4 x [2793, 1920] = 21450240 bytes on device 
'host#0') 
[     0.842541] ( 0) INFO :         - Free buffer ' filter5x5_1::heigh|filter5x5_2::heigh' (4 x [] = 4 bytes on device 'host#0') 
[     0.842586] ( 0) INFO :         - Free buffer ' filter5x5_1::width|filter5x5_2::width' (4 x [] = 4 bytes on device 'host#0') 
[     0.842627] ( 0) INFO :           - Release the  device 'host#0' 
[     0.842655] ( 0) INFO : <-- release <convolutio n> at src/main-hmpp.c:90 
Kernel time: 0.676843   

The correct result of the COTSon simulation in visual mode is showed in Fig. 25. Please note that the 
warning message is normal, considering that the platform does not support OpenCL. 

 

Fig. 25 – Results of a COTSon simulation on the OpenHMPP Convolution example. 

8.5 Further references to more in-depths 
Further details about the CAPS many-core compiler can be found in deliverables D3.5 and D4.7. 
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9 Research Use Case from HP 
This section describes the mapping of TERAFLUX applications, compiled to T* ISA, and running on 
the simulation platform. This work was driven by HP in collaboration with all partners. 

9.1 Goal of the experiment or example 
By performing simulations and analyzing the results with a full-system simulator, one can gain a 
thorough understanding of how the proposed architecture behaves, how to improve it, and how to 
validate the results. The focus of this section is not the precise timing model in simulation, but the 
capability to simulate interesting benchmarks on thousands of cores, and multiple nodes, through the 
T* ISA. While the current evaluation does not yet provide precise inter-node timing results, the 
preliminary evaluation already enables scalability measurements, addressing the dominant 
performance bottlenecks of the applications. 

Another aspect of this section is the mitigation of resource requirements in many-node simulation. 
Multiple nodes simulation of parallel programs requires more resources than single node simulation. 
Unless precautions are taken, programs with tremendous parallelism or running on a large number of 
nodes will saturate memory resources, and even deadlock, on any host machine. In the following the 
resource requirements in the host and guest machine will be analyzed, and a set of solutions to reduce 
the memory usage both in host machine and guest machine will be also proposed. The solutions are 
implemented and integrated in the COTSon simulator. 

Fig. 26 shows the multiple-nodes simulation structure on COTSon. The host machine is where the 
COTSon instances are running on. COTSon supports multiple-nodes simulation by allowing multiple 

Fig. 26 – Multi-node simulation with COTSon 
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instances of COTSon, while the communication and synchronization of the instances go through the 
mediator component. The guest machine is the machine (both hardware and operating system level) 
that is simulated by a COTSon instance. One worker for each CPU within the guest machine is 
created. Each worker will poll the centralized task queue for ready tasks. At the execution of each 
task, the T* instructions will be trapped by COTSon for functional simulation. In the figure, task 1 in 
worker 4 (COTSon node 1), TCREATE (i.e., TSCHEDULE in D6.3, D6.4, D7.4,) and TCACHE will 
be trapped by COTSon, and call the registered functions tcreate and tload on the COTSon node where 
the guest machine is simulated on, respectively. For the purpose of illustrating how dataflow 
applications are managed within the simulation platform, the T* instructions’ implementation in the 
COTSon simulator (for further information, the reader can refer to deliverables D7.2, D7.4 and 
deliverables D6.2, and D6.3) is briefly recalled: 

• TCREATE is trapped by COTSon to the functional simulation, and then the registered function 
tcreate will be called (Fig. 23, step 1 and 2). It will try to allocate a new DF-frame for the new 
DF-thread in the shared memory. If allocation is successful, the new identifier for the DF-frame 
(TID1 in this case) will be returned as the result of the execution of the assemble TCREATE. 
DF-frames in shared memory is shared by all COTSon processes, and protected with locks. 

• TCACHE is used to cache the remote frame locally. It will be trapped by the functional 
simulation, and then the registered function tcache will be called. The DF-frame id is passed 
along with TCACHE. In step 2, it will look up for TID3 in the shared DF-Frames, if it is found, 
the entire DF-frame will be copied from host to guest. More precisely, the DF-frame will be 
copied from the shared memory to the local heap for this worker thread and the local copy’s 
pointer will be returned to TCACHE finally (step 5). Then in this task, one could directly 
modify/read this DF-frame. At the time tdestroy is called, the modifications will be synchronized 
and could be seen by other tasks/nodes. 

• TLOAD is a shortcut for a specialized, current-thread version of TCACHE. It will be trapped by 
the functional simulation, and then the registered function tload will be called. The current thread 
id is stored within thread local storage and used to get current DF-frame in the shared DF-
Frames, if it is found, the DF-Frame will be copied from host to guest, and the local copy’s 
pointer will be returned to TLOAD. Another difference between TLOAD and TCACHE is that 
the frame loaded by TLOAD is read-only. The data stored in the DF-frame is needed by the 
computations in the current thread. 

• TDECREASE makes the target thread designated by thread id to be decremented by n either at 
the time it is called (eager tdecrease) or upon termination of the current thread (lazy tdecrease, at 
the time TDESTORY is called). It will be trapped by the functional simulation, and the registered 
function tdecrease will be called. In eager tdecrease, the target DF-frame id and is passed along 
with TDECREASE. It will look up for the target DF-frame, once it is found, it decreases the 
synchronization Count (SC) by n. Then it checks the value SC after decrement, if it reaches to 
zero, the corresponding thread is moved to the ready queue. In lazy tdecrease, the TDECREASE 
instruction will be cached. 

• TDESTROY is trapped to the functional simulation, resulting in a call to the registered function 
tdestroy. This function will terminate the current thread and deallocate its DF-frame in Shared 
DF-Frames. If running in lazy mode, it will aggregate and execute the cached instructions (e.g. 
several TDECREASE to the same thread will be aggregated to a single TDECREASE) before 
deallocation. 
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Note that the implementation of the T* ISA extension in the COTSon simulator covers the 
development of the distributed Thread Scheduling Unit models (TSUF described in this section, and 
TSU4 described in section 17). 

With the aim of investigating the performance of the T* instruction implementation in the COTSon 
simulator, a set of experiments with multiple-node simulations using 5 benchmarks (Fibonacci, Gauss 
Seidel, Matrix Multiplication, Sparse LU and Viola Jones - Thales's pedestrian detection) have been 
conducted. Except for Fibonacci, all benchmarks make use of the Owner Writable Memory (OWM) 
support. The benchmarks have been implemented in two different flavors. One flavor is to write 
programs with the low level T* instruction set using C-level “built-in”s (Fibonacci and Matrix 
Multiplication); the other flavor uses OpenStream and the TERAFLUX compiler support to express 
dataflow parallelism, and has been used for the more complex benchmarks (Gauss Seidel, Sparse LU 
and Viola Jones). The multi-node implementation for the latter benchmarks uses the OpenStream 
extension for OWM. The run-time support library for OpenStream (to match dependences over 
streams) is integrated into the COTSon run-time.  

•  

Fig. 27 – Speedup of five different dataflow benchmarks running on different number of cores/nodes. 

A few results on 128 cores and 32 nodes are shown in Fig. 27. More details can be found in the WP2 
deliverable. With the aim of enabling the reader to run one of these specific benchmarking examples, 
in the following the single node simulation of Matrix Multiplication benchmark is described in details. 

9.2 Location of the involved files 
All example files and instructions are provided on the TSUF branch of COTSon (we assume here that 
the checkout of $COTSON-ROOT involves not only the trunk as in Sect. 1.1, but also the branches): 

$COTSON-ROOT/branches/tflux-test/tsuf  

The software stack uses the DF-proxies branch of the OpenStream compiler, where we integrated our 
T* backend implementation and OWM support (cf. D4.7). The simulated architecture uses SimNow 
version 4.6.2, and the most recent version of COTSon with support for T* architecture (the TSUF 
branch).  
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9.3 Detailed instructions to start 
The Matrix Multiply kernel generates a moderate number of dataflow threads (namely DF-Threads), 
but stress more the TERAFLUX architecture from the computational viewpoint. In order to run the 
example, move on the correct folder: 
$ cd $COTSON-ROOT/branches/tflux-test/tsuf  

Open the Makefile file with a text editor and check that the first line is correctly pointing the main 
COTSon folder. Then, in the same file set the variable TESTS to matmul, in order to run the selected 
benchmark: 

$ vi Makefile  
COTSON_ROOT=$(shell bash -c 'cd ../../../trunk; pwd ') 
COTSON_SRC=$(COTSON_ROOT)/src 
TSUSIM=tflux_tsu.so 
TESTS = matmul 
...  

At this point one needs to run the build process for the local folder. This operation is necessary to 
build the shared object library (tflux_tsu.so) that contains the code used to implement the thread 
scheduling unit: 
$ make  

The next step is to enter in the benchmark folder and modify the local Makefile file (through a text 
editor), setting up the proper configuration of the simulated system (i.e., size of the input of the 
benchmark, number of cores, etc.). In particular, set the variable COTSON to point the main 
simulation folder corresponding to the position COTSON-ROOT/trunk. Then, set the size of the 
benchmark input modifying the value associated to the variable SZ (here the value is 35). The number 
of cores used by the simulated system is expressed by the value of the NT variable (in this example we 
run on a single node with 4 cores). 
all: $(TESTS) 
COTSON=$(shell bash -c 'cd ../../../../trunk; pwd') /bin/cotson 
DFDIR= $(shell bash -c 'cd ..; pwd') 
DFRT=$(DFDIR)/dflib.o 
DFLIBS=-lpthread 
TSUSIM=$(DFDIR)/tflux_tsu.so 
PWD=$(shell pwd) 
RM=rm -rf 
TSCRIPT=$(PWD)/tsutest 
WSDIR=./libworkstream_df 
WSOPTS=-g -O0 -ffast-math -D_GNU_SOURCE -I . -fPIC -Wall -Wextra -lpthread 
OWMSZ=32000000 
SZ=35 
NT=4 
TESTS = matmul 
HTMTESTS = tmtest_htm 
...  

With the next step the reader has to check the Lua configuration file. Since a single node simulation is 
running, the reader needs to open the tsu_single.lua file with a text editor, and comment the display 
variable so that the whole simulation output will be displayed on the console and copied also on text 
file. The use_bsd() function is set to 4p.bsd in order to launch a 4-cores system with SimNow. 
Similarly, the sampler object is set to no_timing, in order to run a pure functional simulation. To run a 
timing simulation, the user must change the value of this object to simple. 

runid="tsu" 
abaeterno_so=TSUSIM 
 
wd=os.getenv("PWD") 
tmpdir=wd 
debug=true 
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-- clean_sandbox=false 
TSULAT=1 
 
options = { 
    --max_nanos='3G', 
    exit_trigger='terminate', 
    sampler={type="no_timing", quantum="10M"}, 
    -- sampler={type="interval",functional="20M",wa rming="100k",simulation="100k"}, 
    -- sampler={type="simple", quantum="3M"}, 
    heartbeat={ type="file_last", logfile=runid..". log" }, 
    -- interleaver_order="round_robin", 
    custom_asm=true, 
    time_feedback=true, 
    tsu_ignore_errors="true", 
    -- tsu_speculative_threads=true, 
    tsu_statfile="/tmp/xx.dat", 
    -- tsu_destroy_polls=true, 
    -- tsu_keep_target_frames="false", 
 
    tsu_def_lat=1*TSULAT, 
    tsu_rd_lat=20*TSULAT, 
    tsu_wr_lat=10*TSULAT, 
    tsu_sub_lat=100*TSULAT, 
    tsu_sch_lat=1000*TSULAT, 
} 
 
one_node_script="run_interactive" 
-- display=os.getenv("DISPLAY") 
copy_files_prefix=runid.."." 
-- clean_sandbox=false 
 
simnow.commands=function() 
    -- use_bsd('8p.bsd') 
    -- use_bsd('16p.bsd') 
    -- use_bsd('32p.bsd') 
    use_bsd('4p.bsd') 
    use_hdd('karmic64.img') 
    set_journal() 
    execute(SCRIPT) 
end 
 
function build() 
    i=0 
    while i < disks() do 
        disk=get_disk(i) 
        disk:timer{ name='disk'..i, type="simple_di sk", } 
        i=i+1 
    end 
    i=0 
    while i < nics() do 
        nic=get_nic(i) 
...  

At this point is possible to launch the simulation as follows: 

$ make run_single  

9.4 Expected output 
The following files are involved in the output process. The file node.1.tsu.log contains the statistics 
gathered by COTSon during the simulation: 

Input values: 
 
cpu0.bpred_perfect                                          false 
cpu0.branch_mispred_penalty                                 8 
cpu0.commit_cpi                                             1.0 
cpu0.dcache.fudge                                           1.0 
cpu0.icache.fudge                                           1.0 
cpu0.twolev.hlength                                         14 
cpu0.twolev.l1_size                                         1 
cpu0.twolev.l2_size                                         16kB 
cpu0.twolev.use_xor                                         1 
cpu0.type                                                   timer0 
cpu1.bpred_perfect                                          false 
cpu1.branch_mispred_penalty                                 8 
cpu1.commit_cpi                                             1.0 
cpu1.dcache.fudge                                           1.0 
cpu1.icache.fudge                                           1.0 
cpu1.twolev.hlength                                         14 
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cpu1.twolev.l1_size                                         1 
cpu1.twolev.l2_size                                         16kB 
... 
... 
 
Output values: 

 
cpu0.cycles                                                 1309999869 
cpu0.haltcount                                              819583852 
cpu0.hb_ATC_flush                                           0 
cpu0.hb_CR3_different                                       0 
cpu0.hb_CR3_equal                                           0 
cpu0.hb_ev_Exception                                        0 

cpu0.hb_ev_HW_interrupt                                     0 
cpu0.hb_ev_SW_interrupt                                     0 
cpu0.idlecount                                              823247239 
cpu0.instcount                                              486752630 
cpu0.invalid_translation_bytes                              318860 
cpu0.iocount                                                1946489 
cpu0.metadata_bytes                                         23073536 

cpu0.other_exceptions                                       896760 
cpu0.plain_invalidations                                    1297 
cpu0.range_invalidations                                    77 
cpu0.read_mmios                                             650 
cpu0.read_pios                                              603 
cpu0.segv_exceptions                                        62303 
cpu0.timer.cycles                                           0 
cpu0.timer.instructions                                     0 

cpu0.timer.twolev.lookup                                    0 
cpu0.timer.twolev.misses                                    0 
cpu0.timer.twolev.reset                                     0 
cpu0.timer.twolev.update                                    0 
cpu0.trace_cache_size                                       0 
cpu0.valid_translation_bytes                                36613967 
cpu0.write_mmios                                            886 

cpu0.write_pios                                             2063 
cpu1.cycles                                                 1309999869 
cpu1.haltcount                                              859197061 
cpu1.hb_ATC_flush                                           0 
cpu1.hb_CR3_different                                       0 
cpu1.hb_CR3_equal                                           0 
cpu1.hb_ev_Exception                                        0 

cpu1.hb_ev_HW_interrupt                                     0 
cpu1.hb_ev_SW_interrupt                                     0 
cpu1.idlecount                                              860191233 
... 
...  

The file node.1.stdout.log contains the output generated by the benchmark and the simulator during 
the simulation: 

kernel.randomize_va_space = 0 
+ /etc/init.d/ssh stop 
 * Stopping OpenBSD Secure Shell server sshd 
   ...done. 
+ pkill -9 dhclient3 
+ ifconfig eth0 down 
+ echo performance 
+ cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_ max_freq 
+ cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_ max_freq 
+ echo performance 
+ cat /sys/devices/system/cpu/cpu1/cpufreq/cpuinfo_ max_freq 
+ cat /sys/devices/system/cpu/cpu1/cpufreq/cpuinfo_ max_freq 
+ echo performance 
+ cat /sys/devices/system/cpu/cpu2/cpufreq/cpuinfo_ max_freq 
+ cat /sys/devices/system/cpu/cpu2/cpufreq/cpuinfo_ max_freq 
+ echo performance 
+ cat /sys/devices/system/cpu/cpu3/cpufreq/cpuinfo_ max_freq 
+ cat /sys/devices/system/cpu/cpu3/cpufreq/cpuinfo_ max_freq 
+ echo Local config done 
Local config done 
 
RUNNING matmul 
DF owm 0x7ffff6179000 32000000 
Creating 4 workers for 4 cores 
Starting workers 
Starting master node 1 nodes 1 workers 4 
Deallocate OWM at 0x7ffff6179000 
All workers done, goodbye 
=============================================== 
block 2 sum = 6183107 
block 0 sum = 6279596 
block 1 sum = 6434683 
block 7 sum = 6514228 
block 4 sum = 6256864 
block 5 sum = 6292689 
block 9 sum = 6359774 
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block 8 sum = 6118062 
block 11 sum = 6462022 
block 6 sum = 6273600 
block 3 sum = 6374453 
block 13 sum = 6488416 
block 10 sum = 6295426 
block 12 sum = 6443866 
block 14 sum = 6361545 
block 15 sum = 6359904 
block 17 sum = 6445377 
block 19 sum = 6307741 
block 20 sum = 6313001 
block 16 sum = 6475514 
block 23 sum = 6785729 
block 18 sum = 6426926 
block 25 sum = 6543575 
block 21 sum = 6345925 
block 26 sum = 6163990 
block 29 sum = 6219195 
block 22 sum = 6139551 
block 31 sum = 6299559 
block 30 sum = 6272789 
block 24 sum = 6353918 

block 33 sum = 6275531 
block 34 sum = 6361807 
block 27 sum = 6375751 
block 35 sum = 6657941 
block 36 sum = 6500855 
block 37 sum = 6081004 
block 32 sum = 6534934 
block 39 sum = 6283410 

block 38 sum = 6244325 
block 28 sum = 6293559 
*** SUCCESS *** 
====================    DF STATS   ================ ====== 
df time:  145072751 ns (145.073 ms) 
  core  0: 435126644 insts 435126651 xc     91602 i c, 435218253 cycles 
  core  1: 435144577 insts 435144856 xc     73397 i c, 435218253 cycles 

  core  2: 435166946 insts 435167225 xc     51028 i c, 435218253 cycles 
  core  3: 435079704 insts 435050187 xc    168066 i c, 435218253 cycles  

On the screen of the console, the user should observe the following output: 

... 
$1 exec> keyboard.key 23 A3 
$ 
$1 exec> keyboard.key 39 B9 
$ 
$1 exec> keyboard.key 34 B4 
$ 
$1 exec> keyboard.key 35 B5 
$ 
$1 exec> keyboard.key 30 B0 
$ 
$1 exec> keyboard.key 1C 9C 
$ 
$1 exec> go 
$+++ TRESET(START) nanos 179838554 
$+++ TSchedule 83 TDestroy 82 TCache 1478582 TLoad 162 Polls 82 TDecrease 80 
$+++ TFINISH nanos 328405990 (diff 148567436 ns, 14 8.567 ms) 
$EXIT TRIGGER: terminate 
$copying node 1 output to /home/scionti/Tools/cotso n-release/branches/tflux-$test/tsuf/test 
$cleaning sandboxes 

9.5 Further references to more in-depths 
Resource usage optimization involves a careful memory management technique, and a heuristic for 
task creation throttling. These are described in Chapter 7 of Feng Li's thesis (INRIA) – an extract of 
which is presented in the next Section 10.  
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10 Research Use Case from INRIA 
One general criticism targeting dataflow computing is the cumbersome/inefficient management of 
complex data structures. The functional nature of pure dataflow programs implies that all operations 
are side-effect free. The absence of side effect means that if tokens are allowed to carry vectors, 
arrays, or other complex data structures, an operation on a data structure results in a new data 
structure. Which will greatly increase the communication overhead in practice. The problem of 
efficiently representing and manipulating complex data structures in a dataflow execution model has 
remained a fundamental and practical challenge. The vertically integrated design and flow of 
TERAFLUX addresses this challenge. In the following, the design and usage scenarios of Owner 
Writable Memory (OWM, designed in WP3 and WP6) is described. The OWM memory model is 
loosely coupled. Compared to word-based cache coherence, the protocol is largely simplified with the 
assumption that users have to synchronize all the tasks that access to the same OWM subregion to 
preserve the ownership atomicity. There is usually a trade-off between programmability and 
flexibility, in TERAFLUX some of the complexity of the hardware design is shifted to the user, but at 
the same time, it provides a compilation tool chain to simplify this procedure. The OWM extension to 
OpenStream provides an easy to use compilation support. Complementary support for complex data 
structures also involve Transactional Memory, see the D3.5 and D6.4 deliverables for details. 

10.1 Goal of the experiment or example 
The Owner Writable Memory model (OWM) has been proposed in TERAFLUX to reduce the 
communication overheads when complex data structures are passed over threads. The name and idea 
originates from Prof. Ian Watson from the Unversity of Manchester. The design and semantics of 
language support for OWM is presented in the D3.5 deliverable. This section mainly covers the 
execution model for OWM and its application to concrete use cases. 
The OWM protocol was first formalized by François Gindraud during his Master's thesis. A short 
overview is provided in this deliverable. The OWM protocol is inspired from a distributed, directory-
based MSI cache coherence protocol. The global OWM memory address is mapped locally to each 
node on the NoC. Before a task can access to an OWM subregion, it has to claim ownership 
beforehand through a TSUBSCRIBE. The owner will always keep track of the nodes that hold a valid 
copy of the subregion. One important property of resolving the ownership of an OWM subregion is 
handled as follows: 

• The globally addressable OWM is distributed over the platform's nodes. For a given OWM 
region, one may tell the node it is originates from (i.e., its allocation) by the address. This 
node is the region's first owner. 

• When ownership changes, the first owner always keeps the information of the current owner. 
When claim ownership or data requests have been received, it forwards the requests to its 
owner and renew the ownership information. One problem with the MSI is the atomicity of 
bus events. On the NoC, one can assume that all the messages will eventually arrive without 
packet loss or duplication, in any order. So it must be ensured that a task accesses a region in 
W mode will invalidate all the copies of that region on other nodes before the tasks depends 
on being executed. Adding a memory semantic TPUBLISH can enforce this property. When 
all the modifications are done within the OWM subregion, the owner task has to execute 
TPUBLISH on the region explicitly to ensure all the other nodes depend on the new data will 
be invalidated. 
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Each node on the NoC operates on two message queues, a send queue and a receive queue. Nodes 
communicate via messages. The message sending is abstracted as removing one message from the 
send queue of the source node, and add it atomically to the receive queue of the destination node. The 
protocol could be divided into three message types:  

• DataRequest and DataAnswer messages are equivalent to a BusRd event in the MSI 
coherence protocol for directory caches. The request will be sent to the first owner of this 
region, and forwarded to the current owner. When the owner node receives this request, it 
replies with a DataAnswer message containing the fresh data, and add the request node to the 
list of valid nodes. When the request node receives the DataAnswer, it updates the local copy 
of the OWM region, sets the valid flag as true, and resets the requested flag. 

• OwnerRequest and OwnerAnswer are similar to the BusM event in MSI. In snooping MSI 
the bus is guaranteed that only one busM event could occur. In OWM memory model, the 
enforced dependences are added between tasks so that no ownership change could occur if 
there is another node claimed the ownership and did not publish the data yet. The request 
message will be sent to the first owner of this region, and will be forwarded to the current 
owner. The first owner will update the ownership information by checking the OwnerRequest 
message. When the destination node receives this message, it sets the valid flag to be true, and 
send OwnerAnswer which packs the data and ownership response metadata information to the 
new owner. When the request node receives this message, it will update the region it requests 
by the data received. The valid set information is also sent in the metadata by the previous 
owner, the request node will update this information, and add the previous owner to this set. 

• Invalidation complements the ownership transfer process. In this case an explicitly 
invalidation request is sent to other nodes that have a local copy upon modification. The 
InvalidateRequest is sent to all the nodes in the valid set. The valid set will be copied to 
Waiting Invalidation Acknowledge Set (WIAS) before it is reset. When the node receives an 
InvalidateRequest, it sets the valid flag to false, and send back the InvalidateAck  message to 
acknowledge the sender. When the sender receives InvalidateAck, it removes the source node 
from WIAS. 

OWM is one single memory region, but it could be further divided into smaller subregions for finer 
granularity. The owm_tsubscribe and owm_tpublish are introduced as an extension to the T* ISA 
extension for supporting OWM. One could subscribe (by calling owm_tsubscribe) part of OWM 
region to a thread, which means, before this thread is executed, the ownership of the subregion should 
be acquired, and ready for access. One thread could publish the modifications to the OWM region it 
acquired by calling owm_tpublish. Before the modifications are published, any read from another 
thread is not guaranteed to see consistent data. OWM is a weak memory model; it is the 
programmer’s responsibility to take care of data consistency and dependences. 

Here is the detailed description for the OWM instructions extending the T* ISA: 

• void owm_tsubscribe(void *tid, int off, int offowm, int size, int mode) 

Subscribes the OWM subregion described by offowm, size, mode to be cached before 
executing dataflow thread with thread id (tid): offowm is the initial offset to the global OWM 
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region, size is the size of the OWM subregion to be subscribed, mode describes the access 
mode to the region, it could be read-only, write-only or read-write. The pointer to the local 
cached OWM region is stored in DF-frame described by (tid, off), where tid is the thread id, 
and off is the offset in the thread’s DF-frame. 

• void owm_tpublish(void *regptr, int size) 

Publishes the modification to the OWM region described by regptr, size. If size is 0, it writes 
the region starting at regptr using the size that was registered during the owm subscribe 
operation. This way, different threads can be subscribed to different segments of the same 
region using different sizes. 

OWM is integrated into the OpenStream compiler as a language extension. One could use 
OpenStream to decompose programs into tasks and to explicit the flow of data among them, thus 
exposing data, task, and pipeline parallelism. The OWM extension of OpenStream takes the form of a 
simple cache clause in the task pragma: 

#pragma omp task cache (ACCESS_MODE:MEM[OFF:SIZE]) 

The cache clause subscribes the task with the OWM subregion described by MEM[off:size] with read 
(R), write (W) or read-write (RW) access mode (ACCESS_MODE). The current syntax supports only 
one dimensional arrays, but it could be easily extended to multiple dimension arrays. A simple 
example is presented in the D3.5 deliverable. 

As illustrated below with matrix multiplication, the OWM extension can be easily integrated into 
dataflow programs. The user may use OpenStream constructs to synchronize between tasks. Feng Li's 
PhD thesis presents other use cases. OWM support is implemented in the OpenStream compiler. The 
lowered built-in functions are translated directly to the T* ISA, linked with part of the OpenStream 
library (run-time related with streaming operations), and part of the run-time support in the COTSon 
simulator. In the implementation of benchmarks where two-dimensional arrays are used, one usually 
has to remap the memory regions as a single dimension array, which might have extra cost. An 
abstract polyhedral representation could be used in this case to represent an OWM region in multiple 
dimension arrays situation. 

10.2 Location of the involved files 
All example files and instructions are provided on the TSUF branch of COTSon. 

http://sourceforge.net/p/cotson/code/HEAD/tree/bran ches/tflux-test/tsuf/README  

The software stack uses the DF-proxies branch of the OpenStream compiler, where the T* back-end 
implementation and OWM support are integrated. Information regarding the OpenStream compiler 
can be found at: 

http://openstream.info/download  

And for the GIT repository itself: 

git clone http://git.code.sf.net/p/open-stream/code  

The simulated architecture uses SimNow version 4.6.2, and the most recent version of COTSon with 
support for T* architecture (the TSUF branch). 
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10.3 Detailed instructions to start 
The sources for the compiler can be downloaded directly from the official repository (see previous 
section), using the following command: 

$ git clone git://git.code.df.net/p/open-stream/cod e $COTSON-HOME/open-stream 

After having downloaded the sources from the official repository the following actions should be 
done for installing the compiler: 

$ cd $COTSON-HOME/open-stream/ 
$ make   

This automatically performs the following actions: 

• Download the sources of any missing libraries needed by OpenStream; 
• Build and locally install these dependences; 
• Build and locally install the compiler and runtime libraries in open-stream/install/ folder; 
• Build the OpenStream codes in the open-stream/examples/ folder; 

After the compilation process has finished it is possible to move on the example directory and launch 
one of the available examples. For the purposes of this document the Matrix Multiplication example is 
illustrated. Matrix Multiplication is a good example to show the expressiveness of OWM in concrete 
use cases. This characteristic will be illustrated in this example in three phases: in the first phase, one 
task allocates and initializes all the matrices in the OWM memory; in the second phase, the matrix is 
partitioned to several blocks, each task will cache the OWM subregion it needs and compute the 
results, then store the results to the output matrix; and a final task will wait till the end of all the 
previously created tasks, print and verify the results. A detailed description is provided following the 
path of the three phases. 

10.4 Expected output 
The code fragment in Fig. 28 shows the code for matrix allocation and initialization. The input 
matrices A, B and output matrix C are allocated by calling tstar_owm_allocate, while fill_matrix 
initializes all the matrices. The cache pragma subscribes matrices A, B, C in write mode. At the time 
fill_matrix is executed, all the OWM subregion it subscribes will be ready for writing. The 
modification will be published at the end of the task. Stream init is used to synchronize between phase 
one and phase two, so that the computation could only be started when the initialization finishes.  

 

Fig. 28 – Matrix product – input. 
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Fig. 29 – Matrix product – input. 

The main computations are done in the following phase. Fig. 29 shows the code for matrix 
multiplication. The matrix is divided into blocks, each thread caches BLOCKSZ rows of matrix A, 
and the entire matrix B in read mode, and BLOCKSZ rows of matrix C in write mode. Once the 
thread is executed, it computes ABLOCKSZ•N•BN•N = CBLOCKSZ•N. At the end of each thread, 
the modification to matrix C is published and thus available for reading by other threads. Each task 
created in this phase writes a single value to stream finish. Stream finish acts as a waiting barrier in 
the last task, which will wait for the termination of all threads created in this phase. 

 

Fig. 30 – Matrix product – input. 

Fig. 30 shows the final thread, which waits for the termination of all the threads created in phase two. 
Once all the computations are done, it will output the results and do the verification if necessary. 
Stream finish acts as a barrier, waits for N/BLOCKSZ inputs from stream finish. Each thread created 
in phase two writes to stream finish once finished. 

10.5 Further references to more in-depths 
The semantics, dedicated memory model and coherence protocol for OWM will be the subject of a 
joint publication of the project partners. The Master thesis of François Gindraud is currently the most 
accurate information and is available on request. Further experiments are reported in the D2.4 
deliverable and in Feng Li's PhD thesis. The experimental validation of OWM memory model is 
presented in Chapter 7 of Feng Li's PhD thesis. We have studied four benchmarks with OWM 
support: matrix multiplication, sparse LU, Gauss Seidel and Viola & Jones (pedestrian detection); 
those benchmarks are validated with COTSon's TSUF branch. 
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11 Research Use Case from MSFT 
This section demonstrates how to run the TERAFLUX operating system prototype that was developed 
to support research and experimentation with the various parallel, distributed and reliable execution 
algorithms that are suggested in TERAFLUX. Specifically, the operating system supports execution 
of a distributed application over the many-core device using dataflow threads, it was designed to 
handle core soft errors with Double Execution mechanism and can handle node hard-failures such that 
the application can transparently continue execution as the work that was pending on the failed node 
is recovered and executed by the remaining nodes. 

The system is simulated over COTSon (running a SimNow instance for each of the nodes) with a 
slightly modified version of TSUF, which implements a shared memory mechanism with a weak 
consistency model similar to acquire/release. This shared memory is the only mechanism utilized by 
the operating system for inter-node communications and shared data. 

11.1 Goal of the experiment or example 
This experiment launches a distributed Fibonacci sequence computation over the TERAFLUX 
operating system. Its goal is to demonstrate how the operating system executes a massively parallel 
application made of dataflow threads over all of the cores in the system. 

During execution, the simulation displays the operations performed by the run-time and the user code 
in the virtual monitor of each SimNow instance, additionally, the output is logged and can be 
examined after execution. Soft-errors can be injected randomly to the results to demonstrate the 
Double Execution in action, and complete node failure can be triggered by the user to watch the 
recovery mechanism. 

Various compile flags control some of the run-time mechanisms (e.g., scheduling algorithm, Double 
Execution, etc.), and what type of log messages are seen. 

11.2 Location of the involved files 
The runtime files and sample application are contained in the following folder: 

$COTSONHOME/branches/tflux-test/tfos/  

Where COTSONHOME is an environmental variable identifying the path where the COTSon 
simulator was checked out with:  

$ svn co https://svn.code.sf.net/p/cotson/code/ $CO TSONHOME 

11.3 Detailed instructions to start 
To run this example first checkout and build COTSon, then go to the tfos-tsuf folder mentioned above: 

$ cd $COTSONHOME/branches/tflux-test/tfos/ 

Now start the simulation by executing: 

$ make run_multi 



Project: TERAFLUX  - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.5 – D8.3 
Deliverable name: Final Report and Documentation + Final Results from the combination of UD 
and TERAFLUX dataflow techniques 
File name: TERAFLUX-D75-v17.doc Page 70 of 100 

After startup, the default simulation view will display general information about the node and list 
several commands (e.g., show logs, test node failure, etc.) that can be interactively triggered by the 
user with keyboard command on the SimNow window. 

Some parameters can be configured similarly to those in TSUF, for example the number of nodes in 
the system is specified in os-tests/tsu_multi.lua: 
cluster_nodes=4 

The number of cores in each node is specified by the bsd file used: 

--use_bsd('4p.bsd') 
use_bsd('16p.bsd') 
--use_bsd('32p.bsd') 

To test node crashes it is recommended to have more than 4 cores in each node. Notice that the bsd’s 
with large number of cores are not created using the default build configuration, they can be 
downloaded from: 

https://upload.teraflux.eu/uploads/BSDS/bsds_images _initialized_for_karmc64_1Ghz.tar.gz 

Some other parameters are specified in os-tests/Makefile: 

OWMSZ=67108864 # Size of the shared region. 
SZ=44 # Parameter for the application (e.g. Fibonac ci number). 
#NT=32 # Number of TSUF workers. Leave undefined to  use the number of cores. 

Several parameters are specified as compile time flags. Some flags control the nature of the dataflow 
jobs. For example: 

#define DOUBLE_EXECUTION 
//#define INJECT_CORRUPTIONS 

The above macro is used to determine whether to globally enable Double Execution, and whether to 
randomly corrupt some of the threads results to see the mechanism in action. 

The following macro defines whether to include the actual job binary in the control message or only 
its name:  

#define SEND_JOB_NAMES 

When it’s disabled, each job message is self-contained and allows immediate execution on any node 
without access to shared storage (of the precompiled jobs), at the cost of possibly sending the same 
binary code many times. Although jobs are usually small (100-200 bytes for Fibonacci) this can be 
avoided by sending a small job identifier instead of the binary code, later used to load the job from the 
common file system (subsequent requests are loaded from cache). 

Simple scheduling algorithms can be chosen with the macros: 

// Prefer to schedule on the local node until memor y usage is high, then 
// a secondary method is used. If this is not defin ed, the method chosen below is // 
immediately used. 
#define PREFER_LOCAL 
// Define only one of the following: 
//#define RANDOM_SCHED_POLICY 
#define UNIFORM_DISTRIBUTION_POLICY 

Those are very simple but demonstrate how the information gathered from heartbeats can be used to 
help load balancing among nodes. 
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11.4 Expected output 
When launched, node instances will open in SimNow windows and display the simulation progress: 

 
Fig. 31 – Two nodes (two SimNow instances) running on the COTSon simulator. 

When the simulation completes, the output of each node can be examined in the stdout log files, the 
output of node 1 could be for example: 
[[Manager 1] Simulation parameters: 

[Manager 1]  16 cores in 4 nodes with 4 cores each.  
[Manager 1]  64MB public shared memory, 16MB per no de. 
[Manager 1]  4*1MB message queues, leaves 12MB for dynamic allocation. 
[Manager 1] Starting service thread, ip 0x4202e0. 
[Scheduler 1] Dynamic allocation area rounded from 0x7ffff46f4140 to 0x7ffff46f5000, size 12MB. 
[Manager 1] Starting service thread, ip 0x40c360. 
[Test] Computing fibonacci(41). 
[Scheduler 1] Starting message pump. 

[Scheduler 1] Submitting job fib_reporter_job with UFI 10010000000200. 
[Node 1 Writer] Sending message type 1, 73 bytes in  2 frames. 
[Scheduler 1] Submitting job fib_main_job with UFI 10010000000400. 
[Node 1 Writer] Sending message type 1, 77 bytes in  2 frames. 
[Scheduler 1] Finalizing 0: Write destination updat ed from VFP 200 to UFI 10010000000400. 
[Scheduler 1] Submitting write to node 1, tloc 1001 0000000400. 
[Node 1 Writer] Sending message type 6, 24 bytes in  1 frames. 

[Scheduler 1] Finalizing 0: Write destination updat ed from VFP 200 to UFI 10010000000400. 
[Scheduler 1] Submitting write to node 1, tloc 1001 0000000401. 
[Node 1 Writer] Sending message type 6, 24 bytes in  1 frames. 
[Scheduler 1] Got job load message for UFI 10010000 000200, binary size 17, frame size 8, sc 1. 
[Scheduler 1] Creating new job descriptor for UFI 1 0010000000200 @ 0x7ffff46f5140. 
[Job 10010000000200] Creating job from desc 0x7ffff 46f5140, UFI 10010000000200, original sc 1, current  sc 1. 
[BinariesStore] Adding job binary: fib_reporter_job , 142 bytes. 

[Scheduler 1] Got job load message for UFI 10010000 000400, binary size 13, frame size 16 , sc 2. 
[Scheduler 1] Creating new job descriptor for UFI 1 0010000000400 @ 0x7ffff46f51e0. 
[Job 10010000000400] Creating job from desc 0x7ffff 46f51e0, UFI 10010000000400, original sc 2, current  sc 2. 
[BinariesStore] Adding job binary: fib_main_job, 61 8 bytes. 
[Scheduler 1] Got thread write message, tloc 100100 00000400, value 0x10010000000200. 
[Scheduler 1] Got thread write message, tloc 100100 00000401, value 0x29. 
[Job 10010000000400] Ready. 
[Job 10010000000400] [tid 7fffe3fff700] fib main fo r n=41 - spawning. 

[Job 10010000000400] Ended. 
... 
[Scheduler 1] Got thread write message, tloc 100100 00000200, value 0x9de8d6d. 
[Job 10010000000200] Ready. 
[Job 10010000000200] [tid 7fffe3fff700] report: fib  result = 165580141 
[Job 10010000000200] [tid 7fffe3fff700] Exit reques ted. 
[Job 10010000000200] Ended. 

[Scheduler 1] Sending termination requests... 
[Node 1 Writer] Sending message type 7, 8 bytes in 1 frames. 
[Node 2 Writer] Sending message type 7, 8 bytes in 1 frames. 
[Node 3 Writer] Sending message type 7, 8 bytes in 1 frames. 
[Node 4 Writer] Sending message type 7, 8 bytes in 1 frames. 
[Node 1->1] Got terminate message. 
[Scheduler 1] Exiting. 

If a node (node 3 in the example) was killed by user input, the recovery node (node 1 was chosen in 
the example) will begin to take over and process the work of the failed node and display: 
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Fig. 32 – Output of the simulation when a node in the system fails. 

The log should show: 
... 

[Watchdog] Node 3 probably died, no heart beat rece ived in the last 189 milliseconds. 
[Manager 1] Starting recovery procedure for node 3.  
[Manager 1] Starting service thread, ip 0x406d60. 
[Recovery Scheduler for 3] Checking shared segment sanity... 
[Recovery Scheduler for 3] Job descriptors map in s hared memory has 37 items. 
[Recovery Scheduler for 3] Adding new job from desc  0x7ffff65793c0. 
[Job 1003000000bc00] Creating job from desc 0x7ffff 65793c0, UFI 1003000000bc00, original sc 2, current  sc 0. 
[Job 1003000000bc00] Ready. 

[Job 1003000000bc00] [tid 7fffe3fff700] fib main fo r n=29 - calculating. 
[Recovery Scheduler for 3] Adding new job from desc  0x7ffff65791e0. 
[Job 2003000000e600] Creating job from desc 0x7ffff 65791e0, UFI 2003000000e600, original sc 2, current  sc 2. 
[Recovery Scheduler for 3] Adding new job from desc  0x7ffff6579140. 
[Job 30030000000c00] Creating job from desc 0x7ffff 6579140, UFI 30030000000c00, original sc 3, current  sc 2. 
... <More recovered jobs information> ... 
[Recovery Scheduler for 3] Has 46 jobs in local mem ory: 

 0 initializing 
 35 waiting for inputs 
 8 ready 
 3 running 
 0 finished 
 0 total completed 
[Recovery Scheduler for 3] Starting message pump. 

[Recovery Scheduler for 3] Got job load message for  UFI 1003000000c200, binary size 13, frame size 16,  sc 2. 
[Recovery Scheduler for 3] Creating new job descrip tor for UFI 1003000000c200 @ 0x7ffff657a860. 
[Job 1003000000c200] Creating job from desc 0x7ffff 657a860, UFI 1003000000c200, original sc 2, current  sc 2. 
[Recovery Scheduler for 3] Got thread write message , tloc 2003000000e601, value 0x1e. 
... <More recovered messages processing> ... 

If Double Execution and random error injections are enabled, an injected soft-error will produce 
output similar to the following: 

 
Fig. 33 – Double Execution of dataflow threads, and the corresponding verification output. 

This is a simple implementation of Double Execution; each job is executed twice (notice the different 
tid on each execution), and the results are not committed to the shared memory until the results of 
both threads are ready and compared equal. When an error is injected, the mechanism detects it and 
launches the job again on two threads. 

11.5 Further references to more in-depths 
For more details on the operating system structure and its mechanisms that support the reliable 
execution of Data-Flow threads while assuming incoherent shared memory and possibility of node 
hard-failures, please refer to deliverable D5.4 Section 4. This information is also contained in the 
TFOS.pdf document in the source folder. 
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12 Research Use Case from THALES 
This section shows a subset of the experiments performed on the applications provided by Thales, to 
evaluate the TERAFLUX architecture and associated tools in an industrial context. More details on 
these analyses can be found in deliverable D2.4. 

THALES provided the following two use-cases: the Radar application and the Pedestrian Detection 
application. This document focuses on the later one, the Radar application, providing some easy 
instructions for its installation and test.  

The Radar application is an airborne radar application embedded in planes to detect the position and 
radial speed of another flying target despite the presence of jamming devices. It is based on the Space-
Time Adaptive Processing (STAP) algorithm. This application detailed in D2.1 and D2.3 is 
characterized by: 

• Real-time constraints expressed in the form of throughput requirements; 
• The pure dataflow behavior of a signal processing application; 
• But very large data (5th dimensional data) being transferred between each task/filter; 
• T necessity to manipulate this data (e.g., rotate, transpose, etc.) for each filter to benefits from 

cache locality; 

12.1 Goal of the experiment or example 
The goals of the experiments are: first, to evaluate the scalability of the proposed architecture and 
associated dataflow execution models in the context of real-time applications, selecting one 
application that is very dataflow friendly (radar). 

Second, to evaluate the ergonomics of the tools and associated dataflow languages, and to evaluate the 
cost of porting legacy single-core applications to the TERAFLUX platform, including the 
parallelization costs versus the obtained speedups, using the available execution models. 

Third, to estimate what are the best parallelization options for porting classification algorithms and 
signal-processing algorithms to teradevices. In the case of the Radar application its parallelization is 
quite straightforward alongside the dataflow pipeline (more details can be found on D2.4). 

12.2 Location of the involved files 
 To start, the tsuf version of TSU must be checked out with: 
$ svn co https://svn.code.sf.net/p/cotson/code/bran ches/tflux-test/tsuf/ $TSUF_HOME 

The Radar benchmark (STAP) can be checked out with: 

$ svn co https://svn.code.sf.net/p/teraflux-stap/co de $STAP_HOME 

12.3 Detailed instructions to start 
 Before using the Radar application the following steps must be followed: 

1. Checkout, build and install COTSON; 
2. Checkout, build and install the TSUF version of the distributed Thread Scheduling Unit 

(TSU); 
3. Checkout, build and install the SimNow simulator; 
4. Checkout, build and install the TERAFLUX-version of the OpenStream compiler; 
5. (Optional) Checkout, build and install the OmpSs compiler (not compatible with the Thread 

Scheduling Unit models); 
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A Makefile  is included with the application. Simply type make to see all the available options. The 
makefile  should be updated with the paths of the previously installed software (i.e., COTSon, 
SimNow, OpenStream and optionally OmpSs). Below the options that concern the OpenStream with 
TSU support version of the Radar application: 
$ make <stap-os-cotson|run-os-cotson-small|run-os-c otson-large|run-os-cotson-
huge|run-os-cotson-multi-small|run-os-cotson-multi- large|run-os-cotson-multi-
huge|clean-os-cotson> 
$   Build OpenStream version of the application. 
$   Run COTSON OpenStream version on small input. 
$   Run COTSON OpenStream version on large input. 
$   Run COTSON OpenStream version on huge input. 
$   Run multi COTSON OpenStream version on small in put. 
$   Run multi COTSON OpenStream version on large in put. 
$   Run multi COTSON OpenStream version on huge inp ut. 
$   Clean files created by the OpenStream applicati on.  

To launch a single node TSU execution with the small dataset just launch make run-os-cotson-small. 
The -cotson-multi- variations will execute a multiple node TSU simulation. Three different input sets 
are provided for evaluation. 

The sources provide a $STAP_HOME/resources folder with the TSU configuration files, the default 
use machine configurations provided by COTSon, modify them to use larger/smaller configurations. 

12.4  Expected output 
The Radar application doesn’t provide any visual output. It takes a radar signal and detects moving 
objects. When running the TERAFLUX version of the application with the make run-os-cotson-

<small|large|huge>  command it generates as output the detected objects in a text file with the 
name of the selected input set: <small|large|huge>.txt . The Makefile  command run-os-

cotson-<small|large|huge>  places the output file in run/<os-cotson> . The user can check 
that the result is correct by comparing this output against the output of the sequential single core x86 
version that can be run with the make run-seq-<small|large|huge>  command that generates its 
output file in run/seq folder. 

Some speedup results for the Radar application observed with different configurations (4 cores per 
node) of the TERAFLUX machine compared to the sequential version are reported in table 2. 

Table 2 – Radar application speedup against sequential execution 

Dataset 
Cores Small Large Huge 

4 3.48 3.48 3.48 
8 6.22 6.24 6.26 
16 10.28 10.41 10.44 
32 14.33 14.59 14.63 
64 16.96 18.08 17.92 

12.5  Further references to more in-depths 
More details on the Radar and the Pedestrian Detection applications use-cases can be found in 
deliverables D2.1 and D2.2. Some implementation details are provided in deliverable D2.3, whereas 
the final evaluation is part of deliverable D2.4. 
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13 Research Use Case from UAU 
This section shows a simplified experiment to investigate the performance overhead induced by the 
fault detection mechanisms developed in TERAFLUX. A more detailed analysis can be found in 
Deliverable D5.4.  

13.1 Goal of the experiment  
The goal of this experiment is to show the performance overhead of pessimistic and optimistic Double 
Execution of Fibonacci(31) for one TERAFLUX node with 4 cores. The configuration of the 
simulator is similar to the one described in Deliverable D5.4. 

13.2 Location of the involved files  
To start, the fault-tolerant version of the Thread Scheduling Unit (TSU) must be checked out with: 

$ svn co https://svn.code.sf.net/p/cotson/code/bran ches/tflux-test/ft-tsu/ $FT_TSU_HOME 

The fault-tolerant version of the TSU (tflux_tsu.cpp), the used cpu timer (timer_uau.cpp), and the 
COTSon configuration skeleton (tsu_bench.lua) used for the experiment can all be found in 
$FT_TSU_HOME. 

The benchmarks are stored in: 

$ FT_TSU_HOME/examples 

13.3 Detailed instructions to start  
Before the experiment can be started, the required dependencies must be installed by: 

$ FT_TSU_HOME/configure –-simnow_dir /path/to/simno w 

The configure script will perform the following tasks: 

1. Checkout and build the COTSon simulator; 

2. Build and link all required files in $FT_TSU_HOME; 

Afterwards the experiment can be started with: 

$ FT_TSU_HOME/run_example –-res_folder /path/to/res ults_folder  

Where the res_folder option describes the folder where the results of the experiments will be stored. 

13.4 Expected output 
After the experiment has finished the execution, the raw output files of the simulator runs can be 
found in the res_folder. 

Finally, the simulator outputs can be aggregated by a script, which creates an example_results.csv file 
in the res_folder: 

$ FT_TSU_HOME/build_example_table.sh –-res_folder / path/to/results_folder  
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The following tables show the results extracted from the example_results.csv for regular dataflow 
execution (Table 3), pessimistic Double Execution (Table 4), and optimistic Double Execution (Table 
5). For a better classification of the example execution, we also present the results for TERAFLUX 
nodes with 1, 2, 8, 16, and 32 cores. The results extracted from the example_results.csv are 
highlighted in yellow. Based on the execution times, the run-time overhead for pessimistic and 
optimistic Double Execution (compared to the baseline regular execution) can be additionally 
calculated. Since the objective is to depict the overhead solely induced by Double Execution, the 
overhead has been normalized to the regular execution time using half of the cores. 

Table 3 – Node Utilization and Execution Time of the Baseline Dataflow Execution 

Cores Node Utilization 
[%] 

Execution Time 
[ns] 

1 99.9 34,762,104 
2 99.9 17,769,355 
4 99.7 9,209,017 
8 98.4 4,864,722 
16 96.7 2,550,796 

 

Table 4 – Node Utilization and Execution Time of Pessimistic Double Execution 

Cores Node 
Utilization[%] 

Execution 
Time[ns] 

Runtime 
Overhead [%] 

2 99.2 35,751,164 2.8 
4 99.0 18,741,358 5.4 
8 99.2 9,680,112 5.1 
16 98.3 5,080,112 4.4 
32 94.1 2,921,200 14.5 

 

Table 5 – Node Utilization and Execution Time of Optimistic Double Execution 

Cores Node Utilization 
[%] 

Execution Time 
[ns] 

Runtime 
Overhead [%] 

2 99.7 35,611,170 2.4 
4 99.5 18,358,568 3.3 
8 99.7 9,500,460 3.1 
16 98.4 4,996,302 2.7 
32 97.0 2,723,690 6.7 

 

13.5 Further references to more in-depths 
Please refer to Deliverable D5.4 for a deeper analysis of the fault tolerance mechanisms in 
TERAFLUX. 
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14 Research Use Case from UCY 
In this document the steps followed to integrate the DDM-Style TSU in the COTSon/SimNow 
simulation framework are described. The integration allows using the features of the TSU from a 
client code without having the TSU executing at user level. The DDM-style TSU has been integrated 
into COTSon by using as template the TSU version 2 developed in the project – namely TSU2 (it 
integrates also a simplified timing model), and the TSU++ implementation for DDM-style execution. 
The TSU2 operates as an intermediate API to provide communication between the user application 
and the simulator. A single queue has been used to store threads that are ready for execution and a 
FIFO policy for scheduling. The TSU does not operate in busy-wait mode but instead it is performing 
event-driven execution, which seems to make simulation faster. 

14.1 Goal of the experiment or example 
The goal of the experiment is to show the execution of a given benchmark application (i.e., in this 
case the Cholesky decomposition application) upon the TSU++ implementation for the TERAFLUX 
architecture using the DDM-style execution model. 

The Data-Driven Multithreading Virtual Machine (DDM-VM) is a virtual machine that supports 
DDM execution on homogeneous and heterogeneous multicore systems. The DDM-VM is composed 
of: 

• Thread Scheduling Unit (TSU), which is implemented as a software module executing on one 
of the cores. Such TSU model is written in C language; 

• Run-time support system that (with the help of the TSU) handles the tasks of thread 
scheduling, execution instantiation and data management implicitly on the rest of the cores; 

The TSU++ is a software implementation of the DDM-VM’s TSU that is written in C++ language. It 
allows a programmer to write parallel data-driven programs using the object oriented styling. A 
program is described as a graph of tasks and dependencies between those tasks. The TSU++ also 
supports distributed execution on independent multi-core systems/nodes. For this functionality, a 
Network Interface Unit (NIU) is implemented as a software module that is executing on the same core 
as the TSU, as well as a Shared Global Address Space (S-GAS) is supported across all the nodes in 
the system to facilitate data movement. 

Differences over DDM-VM’s TSU 
• The TSU++ it consists of C++ classes which have a well-defined purpose and are easy to test; 
• Tasks are defined as functions; hence, there is no need for “goto” statements; 
• The development of DDM programs is easier since there is no need to program using macros. 

All the programmer’s TSU communication needs are accessible via a TSU object.   
The TSU++ is supported also on Windows OS. 

14.2 Location of the involved files 
The directory containing all the involved files is located at:  
$COTSONHOME/code/branches/timing-unisi/tsu.ddm  

The directory containing the source code of the TSU++ implementation is located at:  
$COTSONHOME/code/branches/timing-unisi/tsu.ddm/TSU  

The directory containing the applications that can be run on COTSon is located at: 
$COTSONHOME/code/branches/timing-unisi/tsu.ddm/App  
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14.3 Detailed instructions to start 
The steps for integrating the TSU++ implementation of DDM-Style based on TSU2 are the following:  
 

� Download COTSon and SimNow 
o Download COTSon from COTSon Repository by typing in the shell:  
     svn co https://svn.code.sf.net/p/cotson/code/ $COTSONHOME  

         For Example: svn co https://svn.code.sf.net/p/cotson/code/ cotson 
o Download SimNow Simulator from:  

http://developer.amd.com/tools-and-sdks/cpu-development/simnow-simulator/ 
o Uncompressed the SimNow file 

 

� Configure and Install Cotson With TSU++ 
o cd $COTSONHOME/branches/timing-unisi/trunk 
o sudo sysctl -w vm.max_map_count=4194304 (every time the system restarts) 
o sudo apt-get install ruby1.8 ruby1.9.1 
o sudo ./configure --simnow_dir <the file where the SimNow is located> 

             For Example:  sudo ./configure --simnow_dir ../../../../simnow-linux64-4.6.2pub/ 
o sudo mount -o remount,size=8G /dev/shm (set the size of your RAM. Here it's 8GB) 
o cd $COTSONHOME/branches/timing-unisi/;  sudo make build 
o Download the DDM file (tsu.ddm) from this URL: 

https://www8.cs.ucy.ac.cy/projects/ddmgroup/wp/teraflux/cotson/ 
o Extract the file. You should have a folder named tsu.ddm 
o Move the tsu.ddm folder into this path: $COTSONHOME/branches/timing-unisi/ 
o cd $COTSONHOME/branches/timing-unisi/tsu.ddm and execute: 

� make clean; make 
 

� Executing DDM applications 
o Go to $COTSONHOME/branches/timing-unisi/tsu.ddm 
o Modify the script.bash file 

The script.bash file contains the appropriate script code to execute the TSU’s executable. 
Below is the content of the script.bash file. The command of the first line is responsible for 
transferring the executable (TSUClient) in the simulator. The command of the second line 
changes the permissions of the executable, i.e., it gives execution permissions to the current 
user. Finally, the command of the third line executes the DDM application in the simulator. The 
TSUClient takes the following arguments: 

• Program Id: it indicates the benchmark that the user wants to execute. For example, 0 corresponds to matrix multiply and 
1 corresponds to Cholesky decomposition; 

• Cores: represents the number of cores; 
• AQ Threshold: it determines how many tasks will be given to the least loaded worker before checking for the next worker 

with the minimum load. The default is 5; 
• Matrix Size: is the size of the matrix to be used (valid only for specific benchmarks); 

• Block Size: another parameter considered only in specific benchmarks; 
• Iterations: it represents the number of times the user wants to execute the application (this argument is optional); 

o make run 

$ xget $COTSONHOME/branches/timing-unisi/tsu.ddm/TS UClient ./TSUClient 
$ chmod +x ./TSUClient 
$ ./TSUClient 1 4 5 1024 32  
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14.4 Expected output 
For the purpose of evaluation, the Cholesky decomposition application (which is one of the most 
complex applications available at the moment) has been chosen. Fig. 34 shows a screenshot for the 
execution of TSU++ on the COTSon simulator. The output timings are shown on the right.  

 

Fig. 34 - Executing TSU++ on COTSon. 

The output is stored in the node.1.stdout.log file. It should display a content similar to the following: 
 

 

 

 

 

 

 

 

 

14.5 Further references to more in-depths 
Further information and details about the TSU++ code is available in the deliverable D6.4. 

Worker 0: stack 0xa2f000 16384 
Worker 1: stack 0xa34000 16384 
Worker 2: stack 0xa39000 16384 
Worker 3: stack 0xa3e000 16384 
Program: Cholesky decomposition, Cores 4, AQ threshold: 2, Matrix Size: 2048, BlockSize: 32 
Deallocate worker frame at 0xa2f000 
Deallocate worker frame at 0xa34000 
Deallocate worker frame at 0xa39000 
Deallocate worker frame at 0xa3e000 
All workers done, goodbye 
Speedup:       3.480233 
Serial time:   24.089845 
Parallel time: 6.921906 
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15 Research Use Case from UD 
The Delaware Adaptive Run-Time System (DARTS) is a software implementation of the Codelet 
Model proposed by Zuckerman et al. [4], and presented in D9.1 and D9.2. It was written with two 
main objectives in mind: (1) to be a faithful implementation of the Codelet Model, and (2) to be 
modular, so that further research to explore fine-grain event-driven program execution models could 
be performed. 

DARTS relies on the hwloc library [1] to map the topology of the underlying hardware to the Codelet 
abstract machine model required to specify how many synchronization units (similar to DF-Threads' 
thread scheduling units) and compute units (or cores) there should be, and how they should be 
physically grouped. It also relies on the lock-free data structures provided by Intel Threading Building 
Blocks [3] if they are present on the system for efficient work queuing. 

Further details about the implementation of DARTS on the generic X86 architecture can be found in 
the Euro-Par publication [2] and in D9.3. A detailed explanation of the port of DARTS to the 
TERAFLUX simulation infrastructure, including a discussion of the necessary trade-offs, is also 
available in D9.3. 

15.1 Goal of the experiment or example 
This example demonstrates how to build and run examples that come with the port of DARTS on 
COTSon simulation infrastructure. In the following it will be demonstrated how to first build DARTS, 
then run the experiments. The focus will be on the merge sort example, however all the other 
experiments can be built using a similar methodology. 

15.2 Location of the involved files 
The archive for DARTS-TSUF can be found at:   

$COTSON_ROOT/branches/ud-darts/darts-tsuf 

The directory containing scripts to run the recursive Fibonacci sequence computation, Matrix 
Multiplication, and Merge Sort examples is located at:  

$COTSON_ROOT/branches/ud-darts/scripts 

15.3 Detailed instructions to start 
The Merge Sort example can be run by typing the following commands. In the following, it is 
considered that the COTSon repository is located in the path pointed by the variable $COTSON. The 
directory where to install and run the experiments is pointed by the variable 
$PATH_TO_EXPERIMENTS (note that the two variables can be defined by the user). 

• Building DARTS-TSUF.  After having checked the COTSon's files out, do: 

$ cd $PATH_TO_EXPERIMENTS/ 
$ mkdir $PATH_TO_EXPERIMENTS/darts-build 
$ cd $PATH_TO_EXPERIMENTS/darts-build 
$ cmake $COTSON_ROOT/branches/ud-darts/darts-tsuf 
$ make  
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• Running the DARTS-TSUF merge-sort example. First, copy the scripts from the script folder 
as follows: 

$ mkdir $PATH_TO_EXPERIMENTS/scripts 
$ cd $PATH_TO_EXPERIMENTS/scripts 
$ cp $COTSON_ROOT/branches/ud-darts/scripts/* .  

Configure the config.lua script so that it points to the right tflux_tsu.so library, as well as the right 
script to run (in this example, msort.sh). Then edit msort.sh's variables: 

$ export OUTPUT_PATH=$PATH_TO_EXPERIMENTS 
$ export DARTS_PATH=$PATH_TO_EXPERIMENTS/darts-buil d 
$ export COTSON_PATH=$COTSON_ROOT/trunk/bin 
$ ./launch.sh  

15.4 Expected output 
The output is stored in the results.txt file. It should display a content similar to the following: 

DF owm 0x7ffff7674000 10000000 
Creating 1 workers for 1 cores 
Starting workers 
Starting master node 1 nodes 1 workers 1 
mergesort(500) 
Done 
Time:2.39678e+08 ns 
Deallocate OWM at 0x7ffff7674000 
All workers done, goodbye 
=================================================== ====== 
====================    DF STATS   ================ ====== 
df time:  240736779 ns (240.737 ms) 
core  0:  23360631 insts 240736779 xc         0 ic,  240736779 cycles  

The number of elements to be sorted is displayed (the example tries to merge 500 random numbers). 
If the simulation went through, the “Done” message is displayed, followed (on the next line) by the 
amount of in-simulation nanoseconds it took to run the experiment. 

15.5 Further references to more in-depths 
More details about the DARTS run-time and the Codelet model can be found in the deliverables D9.1, 
D9.2, and D9.3. Deliverable D9.3 also explain the process of porting the run-time on an x86-based 
TERAFLUX architecture.  
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16 Research Use Case from UNIMAN 
Our main goal is the design and implementation of Transactional memory (TM) system in the 
COTSon simulator. We have developed TM system that supports lazy and eager version management 
and conflict detection mechanism. The TM models have been extended and a scalable TM system has 
been developed. The scalable system is a purely lazy implementation but the commit process takes 
advantage of a hierarchical organization of cores into nodes. The committed changes are broadcasted 
within the node but outside the node the invalidations are sent only to the nodes that were actually 
sharing the committed data. In order to implement the scalable TM system we have used directory 
based cache coherence protocol as a starting point for our baseline version. 

In the following subsections, we will be explaining in detail of how to run our TM models in the 
COTSon simulator along with the directory based protocols on which our scalable TM version is 
based on. 

16.1 Goal of the experiment or example 
The main goal of the experiment is to show how to run different benchmarks on the TM system 
developed in COTSon. We will show how to run applications on scalable directory based simulator as 
well as the TM system implemented on top of the directory infrastructure. We will also be giving 
detailed description of running dataflow benchmarks with transactions running on the simulator. We 
will be showing how the TM model works along with the TSU to run dataflow plus transactional 
memory benchmarks. 

16.2 Location of the involved files 
The complete TM infrastructure is present in the following two locations. 

$COTSONHOME/branches/tm-uniman 

And 
$COTSONHOME/branches/tflux-test/tsuf 

First is the cache coherent NUMA architecture. The code for this directory based coherent 
architecture is present in: 
$COTSONHOME/branches/tm-uniman/trunk/src 

The configuration files for the scalable system are present in: 
$COTSONHOME/branches/tm-uniman/trunk/src/example/un iman/cc_numa_tracer 

The code for the TM system developed at uniman is present in 
$COTSONHOME/branches/tm-uniman/trunk/src 

And the configuration files are in 
$COTSONHOME/branches/tm-uniman/trunk/src/example/un iman/tm_tracer 

The code for the scalable TM system is present in 
$COTSONHOME/branches/tm-uniman/trunk/src 

And the configuration files are in 
$COTSONHOME/branches/tm-uniman/trunk/src/example/un iman/tm_tracer_scalable 

Finally the configuration files to run TM system along with the TSU to run dataflow plus 
transactional benchmarks are present in 
$COTSONHOME/branches/tflux-test/tsuf/test 
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We will be looking at all these files and give example of running simple benchmarks on all these 
configurations in order to help the user in using our TM infrastructure for further experimentation. 

16.3 Detailed instructions to start 
The first step is to check out the full COTSon repository (including branches) and set $COTSONHOME: 

Next the user has to compile the main trunk and also the ‘branches/tm-uniman/trunk’: 

if the configure terminate successfully than just type: 

Again for “branches/tm-uniman/trunk”: 

Running benchmarks on Scalable ccNUMA architecture 
In order to run scalable directory based ccNUMA architecture we need to configure the COTSon 
simulator: 

$ cd $COTSONHOME/branches/tm-uniman/trunk/src/examp les/uniman/cc_numa_tracer 

The main file that configures the system is cotson_tracer.in. Fig. 35, shows the snapshot of that 
configuration file. 

 

Fig. 35 – Configuring ccNUMA architecture in COTSon. 

The configuration file sets up the number of nodes in the system totalNumOfNodes as well as total 
number of cores in each node. It also sets up the directory structure and the protocol being used to 
implement coherency. 

$ svn co https://svn.code.sf.net/p/cotson/code cots on 
$ export COTSONHOME=<installation_dir>/cotson 

$ cd $COTSONHOME/trunk 

$ ./configure –simnow_dir <path_to_simnow_installat ion>  

$ make 

$ cd $COTSONHOME/branches/tm-uniman/trunk 

$ ./configure –simnow_dir <path_to_simnow_installat ion> 
$ make  
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In the same directory there is the file run.sh, which contains paths of all the benchmarks that need to 
run on the simulator (in the examples directory there are several benchmarks, in this case the default 
is Micro-Benchmarks/microtest). In order to run benchmarks the user just needs to type make. The 
result containing all the execution statistics is saved in the log file after the simulation exits 
successfully, in the same directory. 

Running benchmarks on TM architecture 

Configuration files for TM architecture are reached by issuing: 

$ cd $COTSONHOME/branches/tm-uniman/trunk/src/examp les/uniman/tm_tracer 

cotson_tracer.in file configures the simulator to run TM benchmarks. Fig. 36 shows the screenshot of 
that configuration file. 

 

Fig. 36 – Configuring TM architecture in COTSon. 

As shown in the figure, the configuration file sets up the TM protocol. It configures the network and 
the caches used in implementing TM protocol. The caches are modified to contain extra information 
for saving and committing transactional data. 

In the same directory there is the file run.sh, which contains paths of all the benchmarks that need to 
run on the simulator (in this case, the path to vacation binary). In order to run benchmark the user just 
needs to type make. The result containing all the statistics of the execution is saved in the log file after 
the simulation exits successfully, in the same directory. 

Running benchmarks on Scalable TM System  

Scalable TM system builds on top of directory based protocols. The configuration files to implement 
the scalable TM system are reached by issuing: 

$ cd $COTSONHOME/branches/tm-uniman/trunk/src/examp les/uniman/tm_tracer_scalable 

cotson_tracer.in file configures the simulator to run TM benchmarks. Fig. 37 shows the screenshot of 
the configuration file. 
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As shown in the figure, the configuration file sets up the scalable TM protocol. It configures the 
network, the caches and the directories used in implementing TM protocol. The caches and the 
directories are modified to contain extra information for saving and committing transactional data and 
implementing the TM protocol. Directories are configured to implement the TM protocol rather than 
conventional coherence protocol. 
To run the benchmark (Micro-Benchmarks/microtest in this case) the user has to do a make. The file 
run.sh contains paths of all the benchmarks and the log file contains all the stats of the execution. 

 
Fig. 37 – Configuring TM architecture in COTSon. 

Running dataflow plus TM benchmark in COTSon using TSU and TM hardware 

This section explains how to set up the simulator so that it has both the TSU and TM hardware 
working together to run applications that have dataflow and transaction properties. 
In order to run dataflow and transaction benchmarks, the COTSon simulator needs to implement the 
TSU hardware as well as TM hardware so that both aspects of the applications can be handled in 
hardware for greater efficiency. 
The configuration files to set up TM mechanism along with TSU hardware are reached by issuing: 

$ cd $COTSONHOME/branches/tflux-test/tsuf 
$ make 
$ cd $COTSONHOME/branches/tflux-test/tsuf/test 
$ make run_htm_single    (or make run_htm_multi) 

There are two configuration files tsu_tm_single.lua and tsu_tm_multi.lua to run single node and multi 
node simulation respectively. The user has to do a make run_htm_single or make run_htm_multi. The 
snapshot of the make file in shown in Fig. 38. 

As shown in the figure, the makefile sets up TM running on single and multi-node with the TSU 
hardware. The tsu_tm_single.lua and tsu_tm_multi.lua files configure the network, the caches and the 
directories used in implementing TM protocol. 

To run the benchmark the user has to do a make. HTMTESTS variable in the makefile contains the 
list of the benchmarks to run. The log file contains all the stats after the execution exits successfully. 
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Fig. 38 – Makefile to setup TM and TSU hardware for single and multimode simulation. 

16.4 Expected output 
This section explains some of the output files that are generated when the execution successfully 
exits. We will also be showing some screen shots to show the execution in progress and the output 
that should be expected when running the benchmarks. 

Running benchmark on Scalable ccNUMA architecture 

Fig. 39 shows the devices when running ccNUMA COTSon simulation. The cotson_tracer.in sets up 
the number of cores in the system as shown in Fig. 40. In this example the number of cores is 4, 
which is reflected in Fig. 39. The log file is generated when the execution successfully exits. Fig. 
41shows the snapshot of the log file, which is generated when the matrix multiplication example 
finished execution. The log file shows the cache stats of the simulation running with 4 cores. 

 

Fig. 39 – Device window while running COTSon simulation 

 
Fig. 40 – cotson_tracer.in configuration file setting up the number of cores in the simulated machine 
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Fig. 41 – Log file showing icache statistics for the cpu 0. 

Running benchmarks on TM architecture 

Fig. 42 shows the COTSon simulation running vacation transactional memory benchmark. As you can 
see in the figure the number of commits and aborts are printed in the console.  

 
Fig. 42 – COTSon graphical main window and the console output. 

The output of the benchmark is printed on the COTSon main graphical window. Finally the 
simulation stats are written to the log file that is created in the same folder where the configuration 
files are present. 

Running benchmarks on Scalable TM architecture 
Fig. 43 shows COTSon simulation running Genome benchmark. The figure shows how the scalable 
TM system is configured containing many nodes, distributed memory structure and a shared L3 cache 
within each node.  
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Fig. 43 – Configuring the scalable TM architecture in COTSon. 

This configuration is setup in the cotson_tracer.lua configuration file. The structure of the system can 
be changed by making modifications in the lua file. The user can increase or decrease the number of 
cores within a node. The levels of cache hierarchy, the directory and network structure can also be 
configured. The log file is created when the simulation exits successfully. 

 
Fig. 44 – COTSon simulation setting up and running TM and TSU hardware. 

Running dataflow plus TM benchmark in COTSon using TSU and TM hardware 
The final experiment we will show in this report is how to run TM hardware along with the TSU 
hardware for benchmarks that have transactions and dataflow properties. Fig. 44 shows the COTSon 
simulation configuring and then running a simple micro benchmark using the TM and TSU hardware. 
The dataflow instructions are handled by the TSU hardware and the transactional memory instructions 
are handled by the TM hardware. The log file is created at the end, with all the simulation statistics. 

16.5 Further references to more in-depths 
Refer to previous deliverables (D7.4, D7.3, D7.2 and D7.1) for more details about the TM models and 
their integration with the common simulation platform. 
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17 Research Use Case from UNISI 
One of the main building blocks of the TERAFLUX project is the implementation of the Thread 
Scheduling Unit (TSU) model, running in the COTSon simulation platform. As result of the research 
activity, several versions of the TSU model has been implemented and made available to the other 
partners. The two most stable versions at the current moment are the TSUF and the TSU4. Both of 
them allow the execution of dataflow benchmark kernels (such as the recursive Fibonacci, and Matrix 
Multiplication) both on a single node simulated system, and a multi-node simulated system. The 
purpose of the TSU model is the scheduling of dataflow threads (namely DF-Threads) among the 
available cores, as expected from the hardware counterpart. 

17.1 Goal of the experiment or example 
The main goal of the experiment is to show how to run a dataflow benchmark application using the 
TSU model developed within the COTSon simulator. To this end, the following subsections describe 
how to run a simple test using the TSU4 model (for the TSUF implementation, refers to the chapter 9, 
sections from 9.1 to 9.5). The experiment allows the user to understand how the scheduling unit 
model has been integrated in the simulation platform, and which information it provides to the user. 

17.2 Location of the involved files 
The scheduling unit model is distributed in a dedicated directory contained in the branches folder: 
$COTSONROOT/branches/timing-unisi/tsu4  

17.3 Detailed instructions to start 
As an example, detailed instructions to run the recursive Fibonacci benchmark kernel on the TSU4 
model of the thread scheduling unit will be provided. This benchmark is used to stress the thread 
scheduling unit since it is able to generate a huge number of DF-Threads even for a small size of the 
input. In order to run the example, move on the correct folder: 
$ cd $COTSONROOT/branches/timing-unisi/tsu4  

Open the Makefile file with a text editor and check that the first line is correctly pointing the source 
folder in the trunk COTSon folder. Then, in the same file set the variable TESTS to fib, in order to run 
the selected benchmark: 
$ vim Makefile  

ROOT=../../../trunk/src 
DATE=$(shell date +%s) 
PWD=$(shell pwd) 
MCAST=$(shell expr 1 + $(DATE) % 250) 
DEBUG=1 
TESTS = fib 
 
all: tsu_monitor.o tsu_manager.o tflux_tsu.so tsumo n $(TESTS) 
...  

Open the run_script.sh file with a text editor. In the opened file set the variable TESTS to fib, in order 
to run the selected benchmark. In order to properly set the configuration of the simulated system (i.e., 
size of the input of the benchmark, number of cores, etc.), the following variables must be checked: 
NUM_NODE defines the number of nodes composing the system, CORES defines the number of 
cores in each node, SZ and MT_SIZE define the input size for the used benchmark (SZ refers to the 
Fibonacci kernel, while MT_SIZE refers to the Matrix Multiplication kernel). In this example the 
Fibonacci kernel with 14 as the input size is run. SH_MEM variable defines the name of the object in 
the host system used to implement the shared memory across the nodes. Finally, OUTPUT variable 
point to the folder where the simulation output will be recorded (set also TSU_STATS, SCRIPT, and 
REPORT_DIR variables). 
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$ vim run_script.sh  

!/bin/bash 
 
# number of nodes 
NUM_NODE=1 
# benchmarks 
TESTS="fib" 
# number of cores per node 
CORES=4 
TTCORES=$(($CORES*$NUM_NODE)) 
#for fibonacci 
SZ=14 
#for matrix multiply 
MT_SIZE=512 # matrix size 
#shared memory name (unique for each simulation) 
SH_MEM="DTHREADSharedMemory" 
 
if [[ $SH_MEM ]]; then 
    export DTHREAD_OBJ=$SH_MEM"1" 
    export DTHREAD_READY_OBJ=$SH_MEM"2" 
    export DTSU_SYNC_OBJ=$SH_MEM"3" 
fi 
 
BIN_BENCH_DIR=$PWD 
 
if [ -z $OUTPUT ] ; then OUTPUT=./S-LOG ; fi 
 
SCRIPT="$OUTPUT/script" 
TSU_STATS="$OUTPUT/stats" 
FILE_LAST_LOG="file_last" 
REPORT_DIR="$OUTPUT/report" 
...  

The Lua configuration file is set to run a timing simulation (sampler object is set to simple) of the 
target system: 

$ vim tsu.lua  

abaeterno_so="tflux_tsu.so" 
wd=os.getenv("PWD") 
 
tmpdir=wd 
runid="tsu" 
-- clean_sandbox=false 
 
options = { 
        --max_nanos='3G', 
        exit_trigger='terminate', 
        -- sampler={type="no_timing", quantum="10M" }, 
        sampler={type="simple", quantum="10M"}, 
        heartbeat={ type="file_last", logfile=runid ..".log" }, 
        custom_asm=true, 
        tsu_ignore_errors=true, 
        -- tsu_speculative_threads=true, 
        -- tsu_statfile="/tmp/xx.dat", 
} 
 
one_node_script="run_interactive" 
-- display=os.getenv("DISPLAY") 
copy_files_prefix=runid.."." 
-- clean_sandbox=false 
 
simnow.commands=function() 
        -- use_bsd('32p.bsd') 
        use_bsd('4p.bsd') 
        -- use_bsd(BSDS) 
        use_hdd('karmic64.img') 
        --use_hdd('debian.img') 
        set_journal() 
    send_keyboard('xget '..SCRIPT..' script') 
    send_keyboard('sh -x script | tee LOG 2>&1') 
end 
 
function build() 
        i=0 
...  

At this point is possible to launch the simulation. To this end, the reader needs to open two console 
windows. In the first console (after moving in the $COTSON-ROOT/branches/timing-unisi/tsu4) the 
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reader launches the external monitor (i.e., the object that is used to manage the shared memory across 
the nodes) 
$ make run_tsumon  

Once the monitor is running, the following output should be presented: 
$Booting TSU Monitor ... 
$Start TSU Monitor 
$TSU Monitor is configured with 1 nodes 
$TSU Monitor is initializing shared memory (DTHREAD SharedMemory1) $.... 
$TSU Monitor is initializing ready shared memory (D THREADSharedMemory2) .... 
$TSU Monitor is initializing sync shared memory (DT HREADSharedMemory3) .... 
$TSU message queue m2n(DTHREADSharedMemory1mq_mon2n ode0) for node(0) is initializing.... 
$TSU message queue n2m(DTHREADSharedMemory1mq_node2 mon0) for node(0) is initializing.... 
$Initialization for shared memory finished!  

Finally, on the second console the user launches the benchmark execution as follows: 
$ make run  

17.4 Expected output 
The following files are involved in the output process. The file node.1.tsu.log contains the statistics 
gathered by COTSon during the simulation: 
Input values: 
cpu0.bpred_perfect                                          false 
cpu0.branch_mispred_penalty                                 8 
cpu0.commit_cpi                                             1.0 
cpu0.dcache.fudge                                           1.0 
cpu0.icache.fudge                                           1.0 
cpu0.twolev.hlength                                         14 
cpu0.twolev.l1_size                                         1 
cpu0.twolev.l2_size                                         16kB 
cpu0.twolev.use_xor                                         1 
cpu0.type                                                   timer0 
cpu1.bpred_perfect                                          false 
cpu1.branch_mispred_penalty                                 8 
cpu1.commit_cpi                                             1.0 
cpu1.dcache.fudge                                           1.0 
cpu1.icache.fudge                                           1.0 
cpu1.twolev.hlength                                         14 
cpu1.twolev.l1_size                                         1 
cpu1.twolev.l2_size                                         16kB 
... 
Output values: 
cpu0.cycles                                                 149999985 
cpu0.haltcount                                              108195301 
cpu0.hb_ATC_flush                                           67 
cpu0.hb_CR3_different                                       36 
cpu0.hb_CR3_equal                                           31 
cpu0.hb_ev_Exception                                        692 
cpu0.hb_ev_HW_interrupt                                     219 
cpu0.hb_ev_SW_interrupt                                     0 
cpu0.idlecount                                              112802301 
cpu0.instcount                                              24655697 
cpu0.invalid_translation_bytes                              1936557 
cpu0.iocount                                                4069258 
cpu0.metadata_bytes                                         10468840 
cpu0.other_exceptions                                       210511 
cpu0.plain_invalidations                                    2988 
cpu0.range_invalidations                                    32 
cpu0.read_mmios                                             368 
cpu0.read_pios                                              1062 
cpu0.segv_exceptions                                        0 
cpu0.timer.cycles                                           37823009 
cpu0.timer.instructions                                     24147071 
cpu0.timer.twolev.lookup                                    2048709 
cpu0.timer.twolev.misses                                    83286 
cpu0.timer.twolev.reset                                     0 
cpu0.timer.twolev.update                                    2048709 
cpu0.trace_cache_size                                       0 
cpu0.valid_translation_bytes                                90649248 
cpu0.write_mmios                                            564 
cpu0.write_pios                                             4169 
cpu1.cycles                                                 149999985 
cpu1.haltcount                                              121463351 
cpu1.hb_ATC_flush                                           24 
cpu1.hb_CR3_different                                       1 
cpu1.hb_CR3_equal                                           23 
cpu1.hb_ev_Exception                                        504 
cpu1.hb_ev_HW_interrupt                                     30 
cpu1.hb_ev_SW_interrupt                                     0 
cpu1.idlecount                                              121840334 
...  
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The file terminal_fib_0_4 (enter in the subfolder S-LOG – see the Makefile configuration in the 
previous subsection) contains the output generated by the benchmark and the simulator during the 
simulation: 
Loading module abaeterno.so. 
Using image path: "/home/scionti/Tools/cotson-relea se/trunk/data" 
Known Device: Deerhound RevB QuadCore Socket L1 
Known Device: Intel(R) Pro/1000 MT/PT Desktop Netwo rk Adapter 
Known Device: USB JumpDrive 
Known Device: AMD-8111 I/O Hub 
Known Device: AMD-8131 PCI-X Controller 
Known Device: AMD-8132 PCI-X Controller 
Known Device: AMD-8151 AGP Tunnel 
Known Device: Debugger 
... 
 
1 exec> open /home/scionti/Tools/cotson-release/tru nk/data/4p.bsd 
Opening "/home/scionti/Tools/cotson-release/trunk/d ata/4p.bsd" 
created device Machine 
Instructions per Microsecond: 3000 
CPU Model Name: Opteron 
System Bus Frequency: 100 
CPU Clock Mul: 4 
Turbo_Port61: 0 
Turbo_Vsync: 0 
Guard Memory Required: TRUE 
CPU Manages Cycles: TRUE 
Disk Block Cache Size: 64K 
Disk Block Cache Depth: 5 
Disk Block Cache Bits: 12 
info: creating device #0 "AMD 8th Generation Integr ated Northbridge" 
info: creating device #1 "Dimm Bank" 
info: creating device #2 "AMD-8111 I/O Hub" 
ATA: Image [/home/scionti/Tools/cotson-release/trun k/data/karmic64.img] does not have an ID field. 
info: creating device #3 "Memory Device" 
info: creating device #4 "Winbond W83627HF SIO" 
... 
BSD Load completed! 
 
1 exec> ide:0.image master /home/scionti/Tools/cots on-release/trunk/data/karmic64.img 
ATA: Image [/home/scionti/Tools/cotson-release/trun k/data/karmic64.img] does not have an ID field. 
MASTER drive Image file is now /home/scionti/Tools/ cotson-release/trunk/data/karmic64.img 
 
1 exec> ide:0.journal master on 
Journaling was already enabled 
 
1 exec> keyboard.key 2D AD 
 
1 exec> keyboard.key 22 A2 
 
1 exec> keyboard.key 12 92 
 
1 exec> keyboard.key 14 94 
 
1 exec> keyboard.key 39 B9 
 
1 exec> keyboard.key 34 B4 
 
1 exec> keyboard.key 35 B5 
... 
1 exec> go 
TIME=3.33333 ms IPC ( 0.993879 0.707539 1 1 ) 
TIME=6.66667 ms IPC ( 0.991326 0.98112 1 1 ) 
TIME=10 ms IPC ( 1 1 1 1 ) 
TIME=13.3333 ms IPC ( 0.958046 0.8369 1 0.814146 ) 
TIME=16.6667 ms IPC ( 0.99788 1 1 0.99697 ) 
TIME=20 ms IPC ( 0.968307 0.966541 1 0.995992 ) 
TIME=23.3333 ms IPC ( 0.774968 0.774076 1 0.982427 ) 
TIME=26.6667 ms IPC ( 0.995373 1 1 0.965398 ) 
TIME=30 ms IPC ( 1 1 1 1 ) 
TIME=33.3333 ms IPC ( 0.998995 0.999206 1 1 ) 
TIME=36.6667 ms IPC ( 1 1 1 0.99992 ) 
TIME=40 ms IPC ( 1 1 1 1 ) 
TIME=43.3333 ms IPC ( 0.99907 0.999325 1 1 ) 
TIME=46.6667 ms IPC ( 1 1 1 0.999914 ) 
TIME=50 ms IPC ( 1 1 1 1 ) 
TIME=53.3333 ms IPC ( 0.999072 0.999391 1 1 ) 
TIME=56.6667 ms IPC ( 1 1 1 0.99992 ) 
TIME=60 ms IPC ( 1 1 1 1 ) 
TIME=63.3333 ms IPC ( 0.998833 0.999323 1 1 ) 
TIME=66.6667 ms IPC ( 1 1 1 1 ) 
TIME=70 ms IPC ( 1 1 1 1 ) 
TIME=73.3333 ms IPC ( 0.998844 0.998883 1 1 ) 
TIME=76.6667 ms IPC ( 1 1 1 1 ) 
TIME=80 ms IPC ( 1 1 1 1 ) 
TIME=83.3333 ms IPC ( 0.998409 0.999379 1 1 ) 
TIME=86.6667 ms IPC ( 1 1 1 1 ) 
TIME=90 ms IPC ( 1 1 1 1 ) 
TIME=93.3333 ms IPC ( 0.998437 0.999356 1 1 ) 
TIME=96.6667 ms IPC ( 1 1 1 1 ) 
TIME=100 ms IPC ( 1 1 1 1 ) 
TIME=103.333 ms IPC ( 0.998433 0.999404 1 1 ) 
TIME=106.667 ms IPC ( 1 1 1 1 ) 
TIME=110 ms IPC ( 1 1 1 1 ) 
... 

 

17.5 Further references to more in-depths 
Refer to previous deliverables (D7.4, D7.3, D7.2 and D7.1) for more details about the TSU models 
and their integration with the common simulation platform. 
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18 DRT  - A tool for native testing of T* based pro grams 
DARTS is not the only research effort for providing an efficient way to execute application on large 
computing systems. Looking towards building exascale systems (e.g., next generation 
supercomputers, large data-centers, etc.), the OCR project (Open Community Run-time Framework 
for Exascale Systems [5]) has been set up by Intel and other academic and industrial partners. The 
main objective of the OCR project is the implementation from the scratch (but reusing as much as 
possible current design aspects of run-time systems) of a software level, which is able to help meeting 
the requests of future exascale systems (i.e., high performance, low power consumption, use of 
different programming models and languages, etc.). This piece of software should provide a clear and 
common interface for both the upper side software modules, and the hardware infrastructure.  

On the same direction, but with different goals in mind, the TERAFLUX project proposed the 
Dataflow Run-Time – DRT. In particular, with the aim of facilitating the development and debugging 
of dataflow-oriented applications using the T* ISA extension, within the TERAFLUX project, a run-
time library (DRT) has been devised. DRT is a piece of agile software that helps in providing very 
efficient environment to run programs with a dataflow execution model. It is organized as a library. 
The library is intended to be linked with the application source code, allowing the execution of the 
application directly on the host system. More specifically, the run-time exposes the same interface of 
the library used within the simulator to execute dataflow applications. The library contains functions 
that wrap T* instructions. Similarly, the DRT contains functions that reproduce the same functional 
behavior of their T* equivalent (cf. deliverables D7.1, D7.2, and D7.3 to deeply analyze the T* 
Instruction Set Extension). The run-time Application Programming Interface (API) has been designed 
to provide a two-way mechanism in which it supports the development of an efficient compiler and on 
another side, to provide for a good architectural support. 

In the proposed approach, the DRT allows showing how easily can be to harness the maximum 
capacity of the computing nodes in the TERAFLUX project using the dataflow execution model. The 
main objective to provide this piece of software is to show users that DRT can easily provide a very 
small and powerful run-time, for executing different piece of codes that are coded in different 
programming model, but how easily can be executed in a dataflow style.  

18.1 Goal of the experiment  
DRT provides a simple script file for the “first time” whole checking. Currently, some initial 
examples have been tested, from simple (like the classical recursive Fibonacci sequence computation 
and matrix multiplication). DRT contains some environment variables that help the user to retrieve 
more information during the dataflow application execution. Two of them are: DRT_DEBUG and 
DRT_FSIZE. DRT_DEBUG can be used to get more detailed information about the current 
execution. DRT_FSIZE is used to set the size of internal frame (allocated memory) queue. 

18.2 Location of the involved files  
The source code is uploaded for public access in following repository. The repository is available at: 

http://sourceforge.net/projects/drt  
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18.3 Detailed instructions to start   
In this section, it will be shown one sample example, and how to download and compile DRT in a 
Linux-based system.  

Step 1: the user needs to download the code from the repository. User can access the source code 
from its Linux terminal executing the svn command. In the terminal just type: 
$ svn checkout svn://svn.code.sf.net/p/drt/code/ dr t-code 
$ cd drt-code  

Pressing the enter key will start the download process (which can be seen in the below snapshot). 

 
Fig. 45 – A DRT snapshot showing the download process. 

Step2: The user can notice the script file tregression.sh, which can be used to check whether all the 
files are compiled successfully or not. After executing this script, it will generate one reference file 
and one output file for each example. The reader can also control the debugging information level by 
exporting a new variable called DRT_DEBUG. 
$ ./tregression.sh  

 
Fig. 46 – A DRT snapshot showing the result of the tregression.sh script. During the compilation process, it is 

produced in output an OK message (if no error is encountered) 
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18.4 Expected output 
The final step will be to check a simple example: the recursive calculation of the Fibonacci sequence. 
The program calculates the 15th Fibonacci number implementing the dataflow execution model. 

 

Fig. 47 – DRT example execution: recursive Fibonacci sequence with input set to 15 and debug level set to 0. 

As shown in Fig. 47, the program terminates with a correct result. As already mentioned, DRT can 
also provide detailed information using the DRT_DEBUG variable. The level of verbosity can be 
increased using the increasing numbers (i.e., 0, 1, 2, 3, etc.). In the above example, the environmental 
variable has been set to 0, by exporting it as DRT_DEBUG=0. It is worth noting that 0 corresponds to 
the default debug value. To increase the verbosity level, just set the debug value to 1 (i.e., export the 
variable as DRT_DEBUG=1). Fig. 48 shows the result of the program execution with the new debug 
level set. 

 

Fig. 48 – DRT example execution: recursive Fibonacci sequence with input set to 15 and debug level set to 1. 

So, by increasing this verbosity level the user can retrieve more information about the current 
execution. 
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Appendix A – Lua lexical conventions 
Names (also called identifiers) in Lua can be any string of letters, digits, and underscores, not 
beginning with a digit. This coincides with the definition of names in most languages. (The definition 
of letter depends on the current locale: any character considered alphabetic by the current locale can 
be used in an identifier.) Identifiers are used to name variables and table fields. The 
following keywords are reserved and cannot be used as names: 

and break do else elseif 
end false for function if 
in local nil not or 

repeat return then true until 
while     

 
Lua is a case-sensitive language: and is a reserved word, but And and AND are two different, valid 
names. As a convention, names starting with an underscore followed by uppercase letters (such 
as VERSION) are reserved for internal global variables used by Lua. The following strings denote 
other tokens: 

+ - * / % 
^ # == ~= <= 

>= < > = ( 
) { } [ ] 
; : , . .. 

…     

Literal strings can be delimited by matching single or double quotes, and can contain the following C-
like escape sequences: '\a' (bell), '\b' (backspace), '\f' (form feed), '\n' (newline), '\r' (carriage return), 
'\t' (horizontal tab), '\v' (vertical tab), '\\' (backslash), '\"' (quotation mark [double quote]), and '\'' 
(apostrophe [single quote]). Moreover, a backslash followed by a real newline results in a newline in 
the string. A character in a string can also be specified by its numerical value using the escape 
sequence \ddd, where ddd is a sequence of up to three decimal digits. (Note that if a numerical escape 
is to be followed by a digit, it must be expressed using exactly three digits.) Strings in Lua can contain 
any 8-bit value, including embedded zeros, which can be specified as '\0'. 

Literal strings can also be defined using a long format enclosed by long brackets. We define 
an opening long bracket of level n as an opening square bracket followed by n equal signs followed by 
another opening square bracket. So, an opening long bracket of level 0 is written as [[, an opening 
long bracket of level 1 is written as[=[, and so on. A closing long bracket is defined similarly; for 
instance, a closing long bracket of level 4 is written as ]====]. A long string starts with an opening 
long bracket of any level and ends at the first closing long bracket of the same level. Literals in this 
bracketed form can run for several lines, do not interpret any escape sequences, and ignore long 
brackets of any other level. They can contain anything except a closing bracket of the proper level. 

For convenience, when the opening long bracket is immediately followed by a newline, the newline is 
not included in the string. As an example, in a system using ASCII (in which 'a' is coded as 97, 
newline is coded as 10, and '1' is coded as 49), the five literal strings below denote the same string: 

a = 'alo\n123"' 
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a = "alo\n123\"" 
a = '\97lo\10\04923"' 
a = [[alo 
123"]] 
a = [==[ 
alo 
123"]==]  

A numerical constant can be written with an optional decimal part and an optional decimal exponent. 
Lua also accepts integer hexadecimal constants, by prefixing them with 0x. Examples of valid 
numerical constants are: 

3   3.0   3.1416   314.16e-2   0.31416E1   0xff   0 x56 

A comment starts with a double hyphen (--) anywhere outside a string. If the text immediately after --
 is not an opening long bracket, the comment is a short comment, which runs until the end of the line. 
Otherwise, it is along comment, which runs until the corresponding closing long bracket. Long 
comments are frequently used to disable code temporarily. 
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Appendix B – Lua language features 
Lua is commonly described as a “multi-paradigm” language, providing a small set of general features 
that can be extended to fit different problem types, rather than providing a more complex and rigid 
specification to match a single paradigm. Lua, for instance, does not contain explicit support for 
inheritance, but allows it to be implemented with metatables. Similarly, Lua allows programmers to 
implement namespaces, classes, and other related features using its single table implementation; first-
class functions allow the employment of many techniques from functional programming; and full 
lexical scoping allows fine-grained information hiding to enforce the principle of least privilege. In 
general, Lua strives to provide flexible meta-features that can be extended as needed, rather than 
supply a feature-set specific to one programming paradigm. As a result, the base language is light – 
the full reference interpreter is only about 180 kB compiled – and easily adaptable to a broad range of 
applications. Lua is a dynamically typed language intended for use as an extension or scripting 
language, and is compact enough to fit on a variety of host platforms. It supports only a small number 
of atomic data structures such as boolean values, numbers (double-precision floating point by default), 
and strings. Typical data structures such as arrays, sets, lists, and records can be represented using 
Lua's single native data structure, the table, which is essentially a heterogeneous associative array. 
Lua implements a small set of advanced features such as first-class functions, garbage collection, 
closures, proper tail calls, coercion (automatic conversion between string and number values at run 
time), coroutines (cooperative multitasking) and dynamic module loading. By including only a 
minimum set of data types, Lua attempts to strike a balance between power and size. 

Loops 

Lua has four types of loops: the while loop, the repeat loop (similar to a do while loop), the for loop, 
and the generic for loop. 

--condition = true  
while  condition do  
  --statements 
end  
  
 
repeat  
  --statements 
until  condition 
 
 
--delta may be negative, allowing the for loop to count down or up  
for  i = first,last,delta do       
  --statements 
  --example: print(i) 
end 

The generic for loop, would iterate over the table _G using the standard iterator function pairs, until it 
returns nil: 

for key, value in pairs(_G) do 
  print(key, value) 
end 
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Functions 

Lua's treatment of functions as first-class values is shown in the following example, where the print 
function's behavior is modified: 

do 
  local oldprint = print 
  -- Store current print function as oldprint 
  function print(s) 
    --[[ Redefine print function, the usual print function can still be used  
         through oldprint. The new one has only one argument.]] 
    oldprint(s == "foo" and "bar" or s) 
  end 
end 

Any future calls to print will now be routed through the new function, and because of Lua's lexical 
scoping, the old print function will only be accessible by the new, modified print. 

Tables 

Tables are the most important data structure (and, by design, the only built-in composite data type) in 
Lua, and are the foundation of all user-created types. They are conceptually similar to associative 
arrays in PHP, dictionaries in Python and Hashes in Ruby or Perl. 

A table is a collection of key and data pairs, where the data is referenced by key; in other words, it's a 
hashed heterogeneous associative array. A key (index) can be any value but nil and NaN. A numeric 
key of 1 is considered distinct from a string key of "1". Tables are created using the {} constructor 
syntax: 

a_table = {} -- Creates a new, empty table 

Tables are always passed by reference. 

Record 

A table is often used as structure (or record) by using strings as keys. Because such use is very 
common, Lua features a special syntax for accessing such fields. Example: 

point = { x = 10, y = 20 }   -- Create new table 
print(point["x"])            -- Prints 10 
print(point.x)               -- Has exactly the same meaning as line above 

Array 

By using a numerical key, the table resembles an array data type. Lua arrays are 1-based: the first 
index is 1 rather than 0 as it is for many other programming languages (though an explicit index of 0 
is allowed). A simple array of strings: 

array = { "a", "b", "c", "d" } -- Indices are assigned automatically. 
print(array[2])                -- Prints "b". Automatic indexing in starts at 1. 
print(#array)                  -- Prints 4. 
                               -- # is length operator for tables and strings. 
array[0] = "z"                 -- Zero is a legal index. 
print(#array)                  -- Still prints 4, as Lua arrays are 1-based. 

 




