Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROGRAMME

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Teradevice Compuing

D6.4 — Evaluation of the TERAFLUX Abstraction Layer and Fine-tuned
Model

Due date of deliverable: SMarch 2014
Actual Submission: f9May 2014

Start date of the project: Januafy 2010 Duration: 51 months

Lead contractor for the deliverable: UCY

Revision : See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU Public

PP | Restricted to other programs participant (includimg Commission Services)

RE | Restricted to a group specified by the consortiuntiding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Deliverable numbeD6.4
Deliverable nameEvaluation of the TERAFLUX Abstraction Layer and Fine-tuned Model
File name: TERAFLUX-D64-v10.doc Page 1 of 65



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Change Control

Version# | Date Author Organizatio | Change History
n
1 10.03.2014 Rosa M. Badia BSC First update
Daniel Jiménez
Carlos Alvarez
2 20.03.2014 Alberto Scionti, Bruce UNISI Final UNISI contribution
Jacob, Roberto Giorgi
7 10.05.2014 Skevos Evripidoy, UCY Last fixes
Pedro Trancoso
8 11.05.2014 Roberto Giorgi UNISI review
Release Approval
Name Role Date
Skevos Evripidou Originator 10.03.2014
Skevos Evripidou WP Leader 10.05.2014
Roberto Giorgi Project Coordinator for formal deliv erable | 11.05.2014

Deliverable numbe6.4

Deliverable nameEvaluation of the TERAFLUX Abstraction Layer and Fine-tuned Model

File name: TERAFLUX-D64-v10.doc

Page 2 of 65




Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

TABLE OF CONTENTS

GLOSSARY 8
EXECUTIVE SUMMARY ...ccuuiiiiiniiiiinniiiiinniiiimsssiisssoimsssosisssosssssosssssssssssssssssssssssssssssssns 10
1 INTRODUCTION ....cuuuuueritiiiiiisssnnreessssssssssssesssssssssssssssssssssssssssssssssssssssssssssssssssss 11
1.1 DOCUMENT STRUCTURE .vtetveetteessseesereessseessseessseesssesssssessssassssesssssssssessssssssssssssassssessssensesessssssssssssssesseseses 11
1.2 RELATION TO OTHER DELIVERABLES ....eeuvttesuteetteesuseesueeenueessseeesssesssesessesessseesssessssssnseesssesssseesnssessssesssesssseesnses 11
1.3 ACTIVITIES REFERRED BY THIS DELIVERABLE «.vveuveeeuveesuteesteseseeessesssessssessssessnsesensessssessssssensessnsssensessnsssensessses 12

2 BACKGROUND WORK ......ccittiiiinnunreriiniiissssnnnessssssssssssssessssssssssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssnnns 13
3 FINE-TUNED EXECUTION MODEL.....ccccciiittuiiiienniiimeniiiiesiiimessssnsesssssssssssssssssssssssssssssssssssssssssssssssssssssssns 15
3.1 SUPPORT FOR THE EVOLUTION OF THE PROGRAMMING IMODEL ....eeuvveeiieeiieeniieeniieesireesireesiseesaseesiseessseesasesssnees 15
3.1.1  DDM-StYlE EXCCULION (UCY).c..eeeeeeeeeeeeeeeeeeeeee et e et ee e ettt a e ettt s e e et e e e e teaaeettaaeeeasaaessanaann 15
3.1.2 TaskSs —another approach for a hRardware TSU (BSC) ......c.ueeeeecueeeeeeiiieeecieeesieeeeeeaeeeceaaesviean 23
3.1.3  TM SUPPOITE (UNIMAN).......oooeeeeeeeeeeeeeee et ettt e ettt e et e ettt a e e et a e e et e e e etsaaesattaseeessaaeassnaans 25
3.1.4  Architectural Support for Task Scheduling (UNIMAN) ...........uueeeeeeeeeieieeecieeescieeeeseaaeeieaaesivieaan 28

3.2 ADVANCED SCHEDULING IMIECHANISIM ....ctteitieiiitttteee e e e ettt e e e s et teeeeesesaunbbeteeeaeesaunsbeeeeeeeeaansenaeeaeaeananses 38
3.2.1  Dynamic SCREAUIING (UCY) oottt et e sttt e ettt ettt a e ettt e e ste e e attaaessataaesasaaaesnanaaas 38
3.2.2 Changes in the Hardware Task Superscalar task scheduler structure in order to simplify the overall
system network and reduce System StAIlS (BSC) .......cuueeeeueeeeeeieeeeeeee et e ettt e et e et e e et a e e e e e e sirana s 39

33 ADVANCED IMEMORY IMANAGEMENT ....etttttteetiuutrtteeeeesaauueeteeeeesaauneteeeaessaaaunseeaeeeeeaaanssnaeeeesasaansenaeeeesessanses 43
3.3.1  Memory consistency mechaniSMS (UNISI) ...........c.eeeeeeueeeeeiieeesieeeeeeeeeeteeesceeeeesteaeesenaaaesiraeaans 43
3.3.2  Consistency Required Mech@niSMS (UNISI)...........c..oeeeeeueeeeeieeeeeieeeeeeieeeeeeeeeeeteeeeeeteaeeeeaeaaeesaenaan 45
3.3.3  Memory consistency overheads and TSU impact (UNISI) ........cocceeeeeeeeeieeeieeeesceeeeeieseeeceeaesivaeen 48

4 ABSTRACTION LAYER ... cittuiiiittniiiitniiiieniiiiessiiiiessisisessiossssssssssssssssssssssssssssssssssssssssssssnssssssnssssssnssssssnnes 53
4.1 ABSTRACTION LAYER FOR RELIABILITY (UAU) c.utiieitiiiiieeieesite sttt sttt sttt st e e sie e s sbaessaeessbaeenaeeenes 53
4.1.1  ADSErACEING FrOM FAUILS ....oevvaeneeeeeeeeeeeeeeeee et e ettt e e e e ettt a e e e e et aaaaeeessssasaaaaaeeaas 53
4.1.2  FDU/TSU Checkpoint/Restart MECRANISM ...........ccueecveeieeesieeiieeeeeesieseeeesitesessaesiseseesaesssessssseeses 54

4.2 ABSTRACTION LAYER FOR PERFORMANCE (UNISI, UCY) ..eeuiiiiiiiie ettt ettt et 56
4.2.1  Dynamic Scheduling in DDM (UCY) .....uoeuuueeeeeeeeeeeeeeeee e eeteeettta e et ttaaestaaestsaaessiteaasanaaassnanaeas 56
4.2.2  Virtual memory implementation in TERAFLUX architecture (UNISI)...........cccocvvuveeeeveeeeeieeaeaeennnn. 57
4.2.3 TLBs integration in the TERAFLUX architecture (UNISI) ..........oeveceeeeeeiiieeeieeeecieeeeeeeeeeceea s 60
4.2.4  TMINLErfACE (UNIMAN) ......cooneeeeeeeeeeeeeeee et eetee ettt e ettt e ettt a e ettt e e e et e e e stssaesettaseeeasaaeassnaans 61

5  CONCLUSIONS 63
REFERENCES .....cuuiiitiiiiiiniiiieniiiiensiiiieasiiiiessioimessisisssssssssssssssssssssssssssssssssssssssssssns ...64

FIGURE 1: TERAFLUX ARCHITECTURE TEMPLATE ..euutteruteesureesteesseeesseesuseesseessseesssessssessssesssseesssesssesssssesssesssssessssssnssesnses 13
FIGURE 2: TASK 3 MAY MODIFY A[], BUT TASK 2 AND 4 WANT TO READ A[] AS PRODUCED BY TASK 1. THE SOLUTION IS ADDING
CONTROL DEPENDENCIES BETWEEN TASK2->TASK 3 AND TASK 4->TASKS ...veiieereeeeirieeeeireeeeneeeeennveeesssneessnsnsessnneeens 15
FIGURE 3: SPEEDUP FOR THE TSU++ EXECUTION ON CHOLESKY BENCHMARK ......uttttteeseeaiuieeteeeeeeseineeeeeeeeseannseeeeeeesennnnseeeens 16
FIGURE 4: TSU IMPLEMENTATION FOR TFLUXSCC ....veiiuieisiieesiieesiieesiteesiteesite e sttt esaseesateesaseessteessteenseeesasesssseenssesnseeensessnnes 17

Deliverable numbeiD6.4
Deliverable nameEvaluation of the TERAFLUX Abstraction Layer and Fine-tuned Model
File name: TERAFLUX-D64-v10.doc Page 3 of 65



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

FIGURE 5: SPEEDUP RESULTS FOR TFLUXSCC FOR MMULT, QSORT*, QSORT, RK4, TRAPEZ, AND FFT, ON THE INTEL 48-CORE

SCC SYSTEM wtteuteesuteesuteesuteesuteesteesuteesuseesuteesuseessteesaseessseesaseessteesaseessteesabeesteesaseensbeasbeenseeesbeebteenseeenbeeeseesnses 18
FIGURE 6: BLOCK DIAGRAM OF THE DDM-MC IMULTI-CORE PROCESSOR. 1e.uvveesuveesereesureessreessseessseessseessseesseessssessssessssensesenses 19
FIGURE 7: BLOCK DIAGRAM OF THE TSU MICRO-ARCHITECTURE SUPPORTING EIGHT CORES. ...uvveevreeueeeieeenereensreenseessseesnseeennes 19
FIGURE 8: SYSTEM EVALUATION. (A) SPEEDUP FOR THE DDM-MC EXECUTION. (B) SPEEDUP FOR THE DDM-MC EXECUTION ON VERY

SIMIALL SIZES. 1vteuureesureesuteesureesuseesuseesuseesuseessseessseessseesaseessseesaseenssessssesssseessseesseesssessssessseesnsseesseeensesenseesnseesnseesnses 21
FIGURE 9: CACHEFLOW IMPLEMENTATION ON DDIMI-MIC. ..titieeee ettt ettt e ettt e e e e e st e e e e e s e anneeeeas 23
FIGURE 10: COMPUTING SYSTEM WITH PICOS PIPELINE HARDWARE....cc.uveeureesureensreessseessreesseeesseeessseesseessssessseesssesssessssessnses 24
FIGURE 11: CLUSTERS WITH EXTENSIONS TO CACHE AND DIRECTORY TO SUPPORT TRANSACTIONAL MEMORY .....ccuvvevuveeireeneeennns 26
FIGURE 12: SPEEDUP, NORMALIZED TO SINGLE CORE EXECUTION ..euvveerureesureesueeensreesuseessseessseesseeesseeessesesssessseessseesssessnsessnnes 27
FIGURE 13: TRANSACTIONAL TOKEN MANAGERS IN A CLUSTER BASED TRANSACTIONAL MEMORY SYSTEM...cevuveerereesereevreenaneenens 28
FIGURE 14: A DATAfIOW FUNCTION FOR COMPUTING FIBONACCI NUMBERS. ......veerutteruteestreesueeenseeessseesseeessseesseessseesssessnseesnnes 29
FIGURE 15: DATAFLOW SCHEDULING (ABSTRACT VIEW) ..vviteeutreeeeitreeeeeiteeeeeesseeeeesseeeeasseseesssseesassesesanssesesssssssasessssssseseanns 30
FIGURE 16: TOKEN SCHEDULING «..veeuveesuteesureesureesureessseesuseesuseessseesusesssseesssesssssesssessssessssessssessssesssssssssessssessssesnssssnseesnnes 31
FIGURE 17: REFERENCE SCHEDULING ...cctttteeiuuttttteeeeesaueetteeeeesaausseeeeeeesasaunseeteeeesaaaunseeteeeeesaaansssaeeeeeesaaannsseaeeessasanseeees 32
FIGURE 18: DISTRIBUTED TOKEN SCHEDULING.....uveesuteesuteesureesuseessseesuseessseesssesssseesssessssessssesssseesssesssesesssesssessssesssssessessnses 33
FIGURE 19: EXAMPLE OF MANY-CORE SYSTEM WITH OUR HARDWARE SUPPORT FOR TASK QUEUES. THE SHADED PORTIONS ARE

ADDITIONAL HARDWARE FOR THE SCHEDULER ...vteeuvteeutteeueesteesseessteesseessseesseessseessessseessessnseesnsessseesssessnseesssessns 35
FIGURE 20: ARCHITECTURAL PARAMETERS USED ...teettetuuttttteeeeesaauusteeeeeesaaaunsteeeeeesasaunsseteeeeesaaansasaeeeesesaaannsseeeeessasanseeees 35
FIGURE 21: NUMBER OF L2 MISSES, AS A PERCENTAGE OF THOSE SEEN WITH FIFO SCHEDULING......eevuteeiieenereenireenieeenveeenaeeenns 36
FIGURE 22: NUMBER OF L1 MISSES, AS A PERCENTAGE OF THOSE SEEN WITH FIFO SCHEDULING.....uueeerirerreneeeeerererrnneeeeeeeennnns 37
FIGURE 23: DYNAMIC AND ROUND-ROBIN SCHEDULING POLICIES ....vveuveeiiieniteeniieesiteesiieesieeesieeesaseesseeesaseesssessssesseesnseesnnes 38
FIGURE 24: COMPARISON OF NANOS++ AND PICOS WITH DIFFERENT NUMBER OF THREADS AND TASKS FOR BLOCK CHOLESKY

APPLICATION WITH MATRIX SIZE 2048X2048 (EACH BAR IS LABELLED WITH THE BLOCK SIZE). ..eevuveeevierreesreesreesnveessveenns 40
FIGURE 25: COMPARISON OF NANOS++ AND PICOS WITH DIFFERENT NUMBER OF THREADS AND TASKS FOR BLOCK LU APPLICATION

WITH MATRIX SIZE 2048%2048 (EACH BAR IS LABELLED WITH THE BLOCK SIZE). c.vveevveerureenireenieeesieeesseeesseeenseessseessseesnnes 40
FIGURE 26: NUMBER OF TASKS AND AVERAGE TASK SIZE IN CYCLES OF BLOCK CHOLESKY AND LU APPLICATIONS BOTH EXECUTED WITH

A MATRIX SIZE OF 2048X2048 AS A FUNCTION OF THE BLOCK SIZE. +eeuuvveeuveesveeeueesteesnseesseessseessseesssesssseesssessnseessseesns 41
FIGURE 27: PICOS HARDWARE PERFORMANCE FOR CHOLESKY AND LU APPLICATIONS. ....eevuvierereerereessreesseeessreessseesseeessssessnsennns 42

FIGURE 28: PROPAGATION OF MEMORY-CONSISTENCY INFORMATION. ON THE LEFT, CONSISTENCY INFORMATION IS PROPAGATED TO
THE NODE/TSU LEVEL. THEREFORE, AFTER THE CORE IN NODE O RELEASES ITS COPY OF A, THE CORE IN THE NODE 1, WHICH
HAS A CACHED COPY, CONTINUES TO READ A STALE COPY FROM ITS CACHE. ON THE RIGHT, ALL CONSISTENCY INFORMATION IS
PROPAGATED TO THE INDIVIDUAL CORES. THEREFORE, AFTER THE CORE IN NODE O RELEASES ITS COPY OF A, THE CORE IN THE

NODE 1 DISCARDS ITS CACHED COPY AND OBTAINS A NEW COPY.... .44
FIGURE 29: COST PER CYCLE TO BROADCAST FRAME RECORDS. ...uuuuuieeeeiierttieeeeeeerertnneeeeeeeeesssnnaseeesesssssnnaeeessessssnnneeeessesssnns 50
FIGURE 30: THE TERAFLUX ABSTRACTION LAYER FROM THE FAULT TOLERANCE POINT OF VIEW. .eeeieieieieeeeeieieeeeeeeeeeeeeeeeeeeeeeeeans 53

FIGURE 31: VIRTUAL MEMORY ARCHITECTURE, TWO EXTREMES. TOP AND BOTTOM FIGURES ILLUSTRATE DIFFERENT EXTREMES FOR
REGION IDs, FRAME IDS, AND PHYSICAL PAGE SIZES. THE THREAD USES 64-BIT ADDRESSES THAT ARE MAPPED AT A
REGION/FRAME GRANULARITY ONTO THE GLOBAL ADDRESS SPACE. EACH PROCESS/THREAD ADDRESS SPACE IS COMPRISED OF
OVER A THOUSAND OF SUCH REGIONS. THE GLOBAL ADDRESS SPACE IS COMPRISED OF BETWEEN MILLIONS AND BILLIONS OF
SUCH REGIONS. PROTECTION INFORMATION IS HELD IN THE |D TABLE, ONE OF WHICH IS MAINTAINED FOR EVERY
PROCESS/THREAD ADDRESS SPACE, AND WHICH IS HELD IN A PER-CORE HARDWARE STRUCTURE WHILE THE THREAD IS RUNNING.
THE TLB CACHES PAGE- TABLE ENTRIES AND TRANSLATES ADDRESSES FROM THE GLOBAL ADDRESS SPACE TO THE PHYSICAL
ADDRESS SPACE AT THE GRANULARITY OF LARGE PAGES (BETWEEN 64KB AND 1IMIB). ....oviievieiiiceicteeicteeteeecve e 59

Deliverable numbeiD6.4
Deliverable nameEvaluation of the TERAFLUX Abstraction Layer and Fine-tuned Model
File name: TERAFLUX-D64-v10.doc Page 4 of 65



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

LIST OF TABLES
TABLE 1: THE EXECUTION SCENARIOS OF CHOLESKY BENCHIMARK..........ccceeiiiiiiiieiiieeeiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeaeeeeeeeeeaeaeeens 16
TABLE 2: THE BENCHMARK SUITE CHARACTERISTICS. 1eiiiiteiieeeiiieiiieieeieeieee ettt ettt ittt ittt et e e et eeeeee e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeens 21
TABLE 3: VIRTEX-6 FPGA RESOURCE UTILIZATION AND POWER CONSUMPTION ESTIMATIONS. ..ceeeieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 21
TABLE 4: TIMINGS OF THE TSU OPERATIONS ...uuueeeettetttuuieeeeererestnaaeeessessssnaeeesssessssnaaeeessssssssnmeeessssssssnaseessssssssnneeeessessssns 22

Deliverable numbeiD6.4
Deliverable nameEvaluation of the TERAFLUX Abstraction Layer and Fine-tuned Model
File name: TERAFLUX-D64-v10.doc Page 5 of 65



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

List of contributors to the writing of the document

Rosa M. Badia, Daniel Jiménez, Carlos Alvarez
BSC

Arne Garbade, Sebastian Weis, Theo Ungerer
UAU

Andreas Diavastos, George Matheou, Pedro TrancosBaraskevas Evripidou
ucy

Behram Khan, Salman Khan, William B Toms, Mikel Lujan, lan Watson, Mikel Lujan
UNIMAN

Roberto Giorgi, Alberto Scionti, Bruce Jacob
UNISI

© 2009 TERAFLUX Consortium, All Rights Reserved.

Document marked as PU (Public) is published iryJtidr the TERAFLUX Consortium, on theww.teraflux.euweb site
and can be distributed to the Public.

The list of author does not imply any claim of owstép on the Intellectual Properties describedis tliocument.

The authors and the publishers make no expressiaaptied warranty of any kind and assume no resibdiis for errors
or omissions. No liability is assumed for inciddr@aconsequential damages in connection with wiray out of the use of
the information contained in this document.

This document is furnished under the terms of tBRAFLUX License Agreement (the "License") and majyde used or
copied in accordance with the terms of the Liceree information in this document is a work in preggs, jointly
developed by the members of TERAFLUX Consortium ("RERUX") and is provided for informational use only.

The technology disclosed herein may be protectedhieyor more patents, copyrights, trademarks andide secrets owned
by or licensed to TERAFLUX Partners. The partneserve all rights with respect to such technolagy reelated materials.
Any use of the protected technology and relateceristbeyond the terms of the License without thierpwritten consent
of TERAFLUX is prohibited. This document containsiterial that is confidential to TERAFLUX and its miers and
licensors. Until publication, the user should assuimat all materials contained and/or referencethis document are
confidential and proprietary unless otherwise iathd or apparent from the nature of such matefi@lis example,
references to publicly available forms or documgnts

Disclosure or use of this document or any matedaltained herein, other than as expressly permisgarohibited without
the prior written consent of TERAFLUX or such otlparty that may grant permission to use its progrietnaterial. The
trademarks, logos, and service marks displayedhis document are the registered and unregister@dermarks of
TERAFLUX, its members and its licensors. The coglyriand trademarks owned by TERAFLUX, whether tegéd or
unregistered, may not be used in connection with @reduct or service that is not owned, approvediistributed by
TERAFLUX, and may not be used in any manner thékédy to cause customer confusion or that disgasal ERAFLUX.
Nothing contained in this document should be coestras granting by implication, estoppel, or otlieewany license or
right to use any copyright without the express teritconsent of TERAFLUX, its licensors or a thirary owner of any
such trademark.

Printed in Sena, Italy, Europe.

Part numberplease refer to the File name in the document footer.

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUXPBCIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT AQHIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER(INCLUDING, WITHOUT
LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOT BUSINESS, REVENUE, PROFITS, DATA
OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENTCLAIMS BY THIRD PARTIES OR THE

Deliverable numbeiD6.4
Deliverable nameEvaluation of the TERAFLUX Abstraction Layer and Fine-tuned Model
File name: TERAFLUX-D64-v10.doc Page 6 of 65



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT,TRICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF &IH DAMAGES.

Deliverable numbeiD6.4
Deliverable nameEvaluation of the TERAFLUX Abstraction Layer and Fine-tuned Model
File name: TERAFLUX-D64-v10.doc Page 7 of 65



Project.: TERAFLUX

- Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Glossary

Cluster

Group of cores (synonymous of NODE)

DDM

Data-Driven Multithreading

DF-Thread

A TERAFLUX Data-Flow Thread

DF-Frame

The Frame memory associated to a Data-Flow thread

DTA

Decoupled Threaded Architecture

DTS

Distributed Thread Scheduler (the whole set of D3 &nd L-TSUs)

D-FDU

Distributed Fault Detection Unit (per-node FDU,aal2-FDU)

D-TSU

Distributed Thread Scheduling Unit (per-node TSidp &.2-TSU)

Emulator

Tool capable of reproducing the Functional Behavigynonymous in this
context of Instruction Set Simulator (ISS)

FPGA

Field-Programmable Gate Array — reconfigurable Wwaire

HTSS

Hardware TaskSuperScalar initial hardware impleatéort based on the
original design [3] used as a base to perform alvaare space design
exploration.

L-Thread

Legacy Thread: a thread consisting of legacy code

L-FDU

Local Fault Detection Unit (per-core FDU, also LI{B)

L-TSU

Local Thread Scheduling Unit (per-core TSU, alsellSU, or LSU)

MMS

Memory Model Support

NIU

Network Interface Unit

NoC

Network on Chip

Non-DF-Thread

An L-Thread or S-Thread

Node

Group of cores (synonymous of Cluster)

OowWM

Owner Writeable Memory

0N

Operating System

Per-Node-Manager

A hardware unit including the TSU and the FDU

Picos

Final Hardware proposed implementation of the Tagk®Scalar. It improves
the original design in performance, uses feweruess and better supports
the OmpSs programming model.

PhyGAS

Physical Global Address Space

SCC

Intel 48-core experimental research processor

Sharable-Memory

Memory that respects the FM,OWM,TM semantics of TERAFLUX
Memory Model

SimTSS

Cycle-Accurate Software Simulator of the Picos Mamk implementation
tuned with the latencies obtained from the hardwamementation of HTSS.

S-Thread System Thread: a thread dealing with OS servicéor
StarSs A programming model introduced by Barcelona Supamaing Center
Simulator Emulator that includes timing information; synonymoin this context of
“Timing Simulator”
TFlux Thread Flux DDM-Style runtime implementation
TLS Thread Local Storage
TM  Transactional Memory
TMS Transactional Memory Support
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TP Threaded Procedure

UAS Unified Address Space
(synonymous of PhyGAS, Physical Global Address 8pac

Virtualizer ~ Synonymous of “Emulator”

VCPU Virtual CPU or Virtual Core
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Executive Summary

This document describes the work that was performhedng the fourth year (m37-51) of the
TERAFLUX project within the context of Task 6.4 (B+81) “Fine-Tuned Execution Model” and
Task 6.5 (m25-51) “Abstraction Layer”. Since batisks extend for the last 27 months of the project
we also include a short summary of the work peréatnm the third year (m25-M36) for these tasks.

The work in Task 6.4 was a collaboration work bg thfferent partners involved and thus we report
here the contribution of each partner.

UCY implemented and tested the execution of a DOieSapplication on an FPGA-based
system (year 4), a single-node many-core systear @) and a multi-node multi-core system
(year 3 and 4)

UCY implemented and tested the dynamic scheduli@tireads for DDM-Style
applications (year 4)

UNISI proposed the advanced memory management BAHEUX (year 4)

BSC presented the evolution of the HTSS implemamtdyear 3 and 4)

UCY developed and evaluated a runtime dependesojution mechanism for the DDM-
Style of the TERAFLUX execution model (year 3)

UNISI designed and evaluated a multi-node TSU waykhanks to the implementation of the
T* ISE (year 3)

UNIMAN showed the TM support for the TERAFLUX artdcture (year 3)

UCY presented a program analysis tool based on RAHRA(year 3)

HP extended the TSU design (TSUF) for supportiogramon memory model for FM,

OWM, TM (yeard); this work is only mentioned heoe Eompleteness but is documented in
detail in D7.5 Section 9.

The work in Task 6.5 was a collaboration work bg thfferent partners involved and thus we report
here the contribution of each partner.

UAU developed and evaluated an abstraction layerel@bility

UCY developed and evaluated the dynamic schedplitigy for the DDM-Style model
UNISI proposed the virtual memory implementatiod &me TLB integration in the
TERAFLUX architecture

UNIMAN proposed the TM interface

Our achievements show that our goals for this pldneove been met.
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1 Introduction

In the last period of this project, partners cdntted in different ways as to achieve the goalshhbd
been set for the project. Regarding the TERAFLUXhtecture Work Package (WP®6), the partners
contributed to the fine-tuning of the TERAFLUX ex¢ion model (Task 6.4) and to the definition
and implementation of the TERAFLUX Abstraction Lay@ask 6.5). In terms of the TERAFLUX
execution model, UCY, BSC, and UNIMAN have conttédmlito the evolution of the support for the
programming model. UCY proposes different impleragohs for the support of the DDM-Style
TERAFLUX execution. In particular, UCY presents DEBflyle implementations for real systems: an
FPGA-based system, a distributed multi-node systard,a many-core system. BSC and UNIMAN
present the architecture support for the TaskSsimadd the execution of Transactions, respectively
Both UCY and BSC present an evaluation of the psedoarchitectural support for a set of
applications showing near-linear speedup for difiéiscenarios.

Also, UCY and BSC contribute to the definition afvanced scheduling mechanisms. UCY proposes
the dynamic scheduling for the DDM-Style executiahile BSC presents the changes in the
Hardware TaskSuperScalar.

Within the context of the evolution of the execntionodel, UNISI describes the TERAFLUX
advanced memory management. In particular, the memmnsistency mechanisms and estimated
overheads are presented.

Another major topic covered in year 4 was the TERWBK Abstraction Layer. Regarding this topic,

UAU contributes with the definition of the techn&yand mechanisms for the support of reliability by
the Abstraction Layer. UNISI, UCY, and UNIMAN pregeiechniques that focus on the improving
the performance through the Abstraction Layer. dntipular, UCY focuses on dynamic scheduling
for better utilization of the system, UNISI focusas the virtual memory implementation, and TLB
integration to the TERAFLUX architecture, and UNIMNAon the TM support.

Overall, the work described in this document presdéhe collaborative efforts by the different
partners regarding the evolution of the TERAFLUXeExtion Model and the Abstraction Layer.

1.1 Document structure

In Section 2 we briefly recall the background warg, the work that has been performed during year
3 of the project within the context of Tasks 6.4l @5. Section 3 presents the work regarding the
TERAFLUX execution model that was performed witthie context of Task 6.4. In Section 4 we the
work regarding the TERAFLUX abstraction layer thats performed within the context of Task 6.5.
Finally in Section 5 we present the conclusionglierwork performed.

1.2 Relation to other deliverables

In addition to the deliverables of the previousrgetor this work package (D6.1 and D6.2), the
current deliverable is strongly related to delideaD6.3 (“Fine-tuned TERAFLUX Execution
Model”) it also describes the work performed im lontext of Tasks 6.4 and 6.5 during year 3 of the
project.
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1.3 Activities referred by this deliverable

The activities described in this deliverable aret gd the work performed in TERAFLUX in the
context of WP6 in year four of the project (m37-5Ihis work was performed within the context of
the two active tasks for this work package for gesiod:

* Task 6.4 (m25-51) “Fine-Tuned Execution Model” and

» Task 6.5 (m25-51) “Abstraction Layer”.
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2 Background Work

As presented before, the active tasks for periofl e project for WP6 are Tasks 6.4 and 6.5. Both
these tasks were active for period 3 and periotitheoproject. Given that D6.3 already reported the
activities performed within the context of Task &dyear 3, this current document focuses on the
activities performed during year 4 for Task 6.4 aoth year 3 and period 4 for Task 6.5. For thesak
of a better understanding of the activities perfdnfor both Tasks, we start by giving a brief
summary of the work that was done within the conté#xTask 6.4 in year 3 of the project. A more
detailed description can be found in deliverable3D6

The WP6 work package focuses on the TERAFLUX executodel and the architectural support
for this model [34]. The basic TERAFLUX executiorodel was presented in the first two years of
the project. This model is based on the dataflomcepts, where dataflow is used as the policy for
scheduling threads (sequences of instructionsnshetions are added to the dataflow threads as a
way to explore more parallelism and improve thegpmmmability. Several different types of
dataflow threads were defined, as well as the mgmmardel. In addition, we have adopted a template
for the architecture proposed within the WP6, whigtdepicted in Figure 1. More details on the
execution model and architecture can be found iri 26d D6.2.

KEY:

n = # of nodes Nk = k-th Node (k=1..n)

m = # of cores per node NI = Network Interface

u= # of DRAM controllers insisting on the NoC = Network on Chip
Unified Physical Address Space

z=#0f1/0 Hubs

Cj = j-th core (j=1..m)

MC = Memory Controller

\\ DTSU = Distributed Thread-Scheduler Unit

| | | DFDU = Distributed Fault-Detection Unit
o DTMU = Distributed TM Unit

LL$H = Last Level Cache Hierarchy

\\
LLSH j§ DTSU DFDU DTMU |

LOCAL INTERCONNECT

CLS$H = Core Level Cache Hierarchy
TMx = TM Extensions to core memory
PU = Processing Unit

core LTSU = Local Thread-Scheduler Unit
LFDU = Local Fault-Detection Unit
LTMU = Local TM Unit

Core level HW support
(e.g. LTSU+LFDU+LTMU)

Figure 1: TERAFLUX Architecture Template

In year 3 of the TERAFLUX project, the partners ég@gvoposed ways to extend the model as to allow
for the efficient execution across different nodésnulti-cores. This required extensions to the D-
TSU, which are reported in deliverable D6.3. Thelamentation of the memory model proposed in
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previous years and the extension of the T* instoacset have also been part of the efforts perfdrme
during year 3.

While it is well known that the dataflow model isl@ to exploit the maximum available parallelism,
making it efficient is a challenge. This is esplgiaue for execution models that depend on tlagicst
definition of the dependencies. For this analysegmammers are many times faced with the task of
identifying the dependencies among threads. In szases this might not be possible as dependencies
may only be determined at runtime. During year & WP6 partners have developed and tested the
use of I-structures at the Node level. During yg@ahe WP6 partners have experimented with an
efficient mechanism to extend the execution fotritisted systems. An alternative approach is to
allow the use of dynamic dependence through the HEBMJLE instruction as done in the T*
approach (c.f. D7.1, D6.2), widely adopted and dbed in D4.6, D5.3 and D7.4.

In terms of hardware modules to support the exegutiodel, in addition to the Thread scheduling
modules for the support of DTA- and DDM-style dataf threads, which are reported in D7.4, during
year 3 there was a special effort in developingrttuelules for support of coarse grain threads (the
TaskSs module) and transactions (TM module). Thendo allows for the system to explore
dynamically coarse-grain dataflow threads as a doedabor alternate model to the fine-grain DTA-
and DDM-style dataflow threads. Recent evolutionthe project developed the support of the
efficient execution of transactions for exploringetaccess to shared modifiable variables within
dataflow threads.

Lastly, the successful execution of a parallel @mpgibn depends also on the careful analysis of its
execution and overcoming eventual bottlenecksthreeithe application or the runtime support for the
proposed model. In year 3 we have adopted an mgistiol for the analysis of the execution of
TERAFLUX applications. With this tool it is possibto analyze the status of the different queues in
the runtime and the time spent in different rowgioé both the application and runtime. This analysi
helps in tuning the runtime and also determinintjl&oecks in the application.
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3 Fine-tuned Execution Model

In this section we present the work that was peréat by the different partners in enhancing the
TERAFLUX execution model.

3.1 Support for the Evolution of the Programming Model
3.1.1 DDM-Style Execution (UCY)

3.1.1.1TSU++: Multi-node Implementation for DDM-Style Execution
(UCY)

TSU++, an object-oriented software implementatidn T&Us for the DDM-style applications,
supports both single-node and multi-node executioDDM-style applications. The communication
(data or updates) is conducted through network agessusing the IP addresses of the participant
nodes. During the start of the execution of a DDiMgpam a connection between all participating
nodes is conducted and the execution starts fremabt node. Programmer must be careful to add
extra dependencies in order to avoid having batlkd @nd write dependencies on the same task as in
Figure 2.

Data reside in a global memory space and tasksaegehdata by reading and writing at that global

space. Dependencies are formed whenever a numhbasks want to read the global memory data

produced by a parent task or when a single tasksatarmodify that data. As soon as a task produces
data, the TSU will ensure that the data will behexged with the remote nodes that will run tasks
that are dependent on that data.

Figure 2: Task 3 may modify A[], but Task 2 and 4 want to red A[] as produced by Task 1. The solution is
adding control dependencies between Task2->Task 8@ Task 4->Task3

Each task informs the TSU about the data it produ@me call per produced variable). Each
dependency contains information about what datareqaired by the consuming thread. The TSU
processes data dependencies one by one. It deg=rthiea node that will execute the dependent task
and checks to see if the data was sent to that fiodata not yet sent, it sends the data to thaeno
and marks them as sent to that specific node. Renuates that receive the data, update their version
of the global memory, and then afterwards decrertiareadycount of the dependent task.
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For the evaluation of this system we have execdiffdrent application on a multi-node multi-core
platform of Four AMD Opteron 6276, with 2 CPU (2@&@z 16 cores), 48 GB RAM with Gigabit
Ethernet and no cache coherence across the Nodeshade chosen the Blocked Cholesky
Factorization benchmark because it is the most togpplication ported to TSU++ system so far. It
has a very complex dependency graph. Also, it'somputationally intensive and performance-
sensitive benchmarRable 1 illustrates the characteristics of the executicenario of the Cholesky
benchmark. We have run four different executionnades on four DDM nodes. Each node is
equipped with 32 cores (AMD Opteron 6276).

In TSU++ the TSU is implemented as a software m@duhning on one of the machine’s cores,
while the threads’ execution takes place on therotdores. Notice that in the Scenario_4 we have
evaluated our system by using all the cores fortlineads’ execution. As such, the TSU'’s code is
switched with the threads’ code on the cores. Teedup results are depicted in Figure 3. The
Cholesky application achieves very good speeduggitdets complex dependency graph

Scenario | Number of Nodes | Number of Cores/Node | Total Cores | Matrix Size | Block Size
Scenario_1 4 31 124 16 K 128
Scenario_2 4 31 124 32K 256
Scenario_3 4 31 124 32K 128
Scenario_4 4 32 128 32K 128

120 1172 24 115.62
100 87.71
a 76.72
= 80 -
3
Q 60 I
o
Vi o40 -
20 A
0 -
Scenario_1 Scenario_2 Scenario_3 Scenario_4

Figure 3: Speedup for the TSU++ execution on Choleglbenchmark

We have developed an OpenMP version of the Choleskghmark (Matrix size 4096 with Block
size 32x32) and compared it with the Data-Flow ieer¢DDM-style of execution) a 32 core machine
(AMD Opteron 6276). The OpenMP achieved speedupbfersus 25.9 for the Data-Flow version.

Finally, we have compared the TSU++ implementatigth the MPI implementation of the Blocked
Cholesky benchmark from githuhbt{ps://github.com/pawnbot/Matrix-Invensen a distributed multi-
core environment. From the results below we cartfsseour system outperforms the MPI framework
due to its data-driven execution as well as iticieifit and lightweight network interface. For this
comparison we have used 1, 2 and 4 AMD Opteron 623éhines. The most notable test case is the
last one where we have run the benchmark usingch28s on 4 different machines. For 32 cores
DDM gets speedup close to 25 and MPI around 11r&llvédDM achieves speedup slightly above
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115 where the MPI achieves only 4. This is dueh® fact that the Cholesky algorithm has very

complex data dependencies that cannot be handliédwviee MPI implementation.

Matrix Size

Block Size

Cores Per Node

# of Nodes

Total Cores

Serial Time

Parallel Time

Speedup

Serial Time

Parallel Time

Speedup

4K

64

32

1

32

215.53

8.32

25.89

42.90

5.38

7.97

8K

64

32

32

1065.70

41.84

25.47

33448

30.06

11.13

8K

64

32

64

971.74

2456

39.56

33525

306.93

1.09

16K

128

32

64

13595.94

197.66

68.78

2730.15

1360.47

2.01

32K

128

32

1
2
2
4

128

105386.21

911.48

115.62

21682.60

5432.17

3.99

3.1.1.2TFluxSCC Implementation for Intel SCC (UCY)

TFluxSCC [2] is a software platform for the exeoutiof DDM-style applications on the Intel SCC
processor [5]. TFluxSCC is based on the TFlux [8t&3Driven Multithreading (DDM) platform that
was developed for commodity multicore systems. Thian efficient implementation of the DDM-
style model on a clustered many-core that is usedh a&ase study to achieve high degree of
parallelism. With TFluxSCC we achieve scalable genfance in a cluster of many simple cores using
global address space without the need of cachereotye support. Our scalability study shows that
applications can scale, with speedup results rgnfgom 30x to 48x for 48 cores.

We want to show that using the DDM-style model x#@ution on the Intel SCC we are able to avoid

the restrictions or the limitations of the architee that may affect the performance or the

programming style. Although the Intel SCC provideglobal address space, it doesn't allow caching
data coming from this memory location as it doesatte any support for hardware cache-coherency.
The DDM-style model though, and consequently ouluX&CC implementation, doesn't require any

hardware to maintain coherency as it disallows kaneous access to shared data.

Contrary to the original TFlux implementation, ikFlixSCC we integrate the TSU functionality with
the application thread as shown in Figure 4.We rentbe busy wait loop from the TSU and call its
operations at the end of the execution of an apifptin thread, which is the only time that the TSU
will have real operations to execute (send updatssages to consumers). This solution allows us to
utilize the execution unit of the core to the maxm

o

Tile Inline
L2 b 12
Core 1 Core 2

Application
TSU

Application

TSU

Figure 4: TSU Implementation for TFluxSCC

We performed a scalability study of the performafacesix applications with different characteristic

In our workload we have included applications theg embarrassingly parallel, applications that are
compute-bound and others that have a combinationesfory- and compute-bound, as well as more
complex dependencies among the different pardilelads. Three of them are kernels that represent
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common scientific operations; two belong to Miench suite [4] and one to theAS suite [1]. Our
hardware setup was an Intel SCC experimental psoceRockyLake version. The system has a total
of 32GB of main memory. The operating system usedHe Intel SCC cores was the Linux_dcm
kernel provided by Intel SCC Communities repositibigt supports caching the data coming from the
off-chip shared-memory to L2 cache. To cross coenpilr benchmarks for the Intel SCC we used the
GCC v.3.4.5 compiler with the optimization flag GBor porting and executing the applications on
the Intel SCC we used the RCCE v1.4.0 tool-chajn [7

Our study emphasizes on the scalability of the D&iyle model, thus in Figure 5 we present
Speedup values for 2-t0-48 cores using the largetidata set size. The results in Figure 5 show a
large speedup for most applications. The applicatwith the largest overall speedup is TRAPEZ,
which is an application that is compute-bound amiess no memory overheads. RK4, which has a
considerable number of threads and dependencibigvas also a good speedup and thus it shows
that the execution of the TSU code does not inour ilarge overhead for the execution of the
application. QSORT?* that performs the partial saytapplication shows considerable improvement in
performance compared to the original QSORT. MMUhttis both a compute- and memory-bound
application performance a maximum of 38x speedimally, FFT and QSORT show the smallest
speedup of all applications. QSORT is split int@ @hases. The first one is like QSORT* where the
total vector is split into smaller parts and eaohecsorts its part independently. This phase masufi
speedup. The following phase combines the restibdl sorted parts as to build the complete sorted
vector. This is done as a reduction using the mgogealgorithm.

60
50

540

o 30

[+}]

& 20
10 +——
0 .

MMULT QSORT* QSORT RK4 TRAPEZ FFT

H2 W4 m8 W12 "16 " 27 m32 W48

Figure 5: Speedup results for TFluxSCC for MMULT, QSORT*, QSORT, RK4, TRAPEZ, and FFT, on the Intel 48-
core SCC system

3.1.1.3DDM-mc: The hardware DDM-style implementation on FFGA
(UCY)

In this section we present the implementation ef Erata-Driven Multithreading Multi-core (DDM-
mc) system, a novel parallel system that suppbgsdDM model. DDM-mc has been implemented
on a Xilinx Virtex-6 FPGA [9]. The proposed syst@onsists of two major modules: 1) the Multi-
core Processor, an eight core shared memory syk&s utilizing a hardware TSU implementation,
2) and the Runtime System, a software supportidwadles the communication between the DDM-mc
applications and the Multi-core Processor. DDM-nfloves getting real values about time, power
consumption and overheads of a Threaded Dynamafldatimplementation.
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The performance evaluation has shown that DDM-nts geod results for both large problem sizes
and for very small. With this work we have demoatgd that Threaded Dataflow concurrency can be
supported in hardware with negligible overheadsamdry small hardware and power budget. DDM-
mc provides dataflow concurrency without the nemdchiche coherence and at the same time it is low
complexity and low power system.

3.1.1.3.1 The DDM-mc Multi-core Processor

The DDM-mc Multi-core Processor (Figure 6: Bloclagiiam of the DDM-mc Multi-core processor.
Figure 6) is a shared memory octa-core that imptesnthe DDM execution paradigm by utilizing a
hardware version of the TSU. It consists of eightriyBlaze Blocks (MBBSs), each of the featuring a
Xilinx MicroBlaze [10] soft-core with its caches@local memory. The MicroBlaze is a 32-bit RISC
Harvard architecture processor that operates atVIl#9. The data accesses are cached by a 32-KB
L1 cache (D-Cache), while the instruction accessescached by a 16-KB L1 cache (I-Cache). The
MBBs exchange data with the TSU through the Fasptix Link (FSL) Buses [11]. An FSL Bus is a
fast 32-bit wide interface that provides unidirentl FIFO-based communication. The TSU
dispatches the threads that are going to be exkcatéhe MBBs, through the Output FSLs. The
MBBs send DDM commands (updates, thread templated,to the TSU through the Input FSLs.

UART Interrupt AXI DDR3 SDRAM
Interface Controller Tlmer Controller

A i
A J

AXI Bus |

Local
"1 Memory
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Figure 6: Block diagram of the DDM-mc Multi-core processor.
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Figure 7: Block diagram of the TSU Micro-architecture supporting eight cores.
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In this case, the Thread Scheduling Unit (TSU) evalioped as a hardware peripheral using the
Verilog HDL. It uses threads’ meta-data for theadditiven scheduling of the threads, such as the
Thread ID, the scheduling policy, the Instructiorarie Pointer and the consumers of the thread.
Figure 7 depicts the block diagram of the TSU’sroaechitecture that supports eight cores. The TSU
uses three main units for storage, the Thread TampMemory (TTM), the Dependency Graph
Memory (DGM) and the Synchronization Memory (SM)he TTM contains the Thread Template of
each thread, i.e. the thread’'s meta-data, whileDi@& contains the consumers of each thread. The
consumer threads are kept separately from the Torfddilitate simultaneously access from the TSU.
The SM contains the Ready Count (RC) values foh ¢laead. An RC value indicates the number of
producer-threads that a thread needs to wait b&foexecution. A thread that implements a loop has
multiple instances, one for each iteration, heheeltSU holds a separate entry for each instanee of
thread in the SM.

The Fetch Unit dequeues the DDM commands, sentdhdoyxdres, from the Input FSLs in a round-
robin fashion and it forwards them to the DDM Comhdvianager (DCM) for further processing.
The DCM is responsible for storing and removing thi®rmation into/from the TTM and DGM
modules. Also, it forwards the update commandsht Wpdate Unit. The Update Unit reads the
Thread Template attributes from the TTM. Also,dtdtes the thread’s consumers in DGM if it's
necessary. After that, the Update Unit decreasef@ of the corresponding threads in the SM. If the
RC value of a thread reaches zero, then it wildbemed that it is ready to be executed and so it is
sent to the Scheduling Unit.

The Scheduling Unit enforces the scheduling pdiigyassigning a ready thread to the corresponding
Output FSL. Two scheduling methods have been imphted: dynamic and static. The dynamic
method distributes the thread invocations to thresa order to achieve load-balancing. In thdacstat
method the thread instances are assigned to disppeti.

3.1.1.3.2 System Evaluation

For the performance evaluation we use a suitexoflifierent benchmarks widely used in scientific
and image processing applications. Table 2 illtstréhe characteristics of the benchmarks along wit
the problem sizes. The execution time measurenvegnts collected using the AXI Timer module of
the system. Figure 8 depicts the system evalualibe. speedup results of all six applications are
depicted on the left graph of the figure. FigureS§stem Evaluation. (a) Speedup for the DDM-mc
execution. (b) Speedup for the DDM-mc executionvery small sizes. The results show that the
DDM-mc system scales very well across the rangeahef benchmarks achieving almost linear
speedup. We have also evaluated the ability oDib&1-mc to handle small problem sizes and ultra-
lightweight threads: the speedups of the DDM-mdesyson very small sizes (16x16, 32x32 and
64x64) are shown on the right graph of the figliee three applications, MMULT, BMMULT and
Conv2D achieve speedups from 7 to 7.96. The highptexity of the LU ended up with smaller
speedups in the order of 2 to 4.4. Note that we #epthread size of the blocked algorithms to 4x4
for these experiments.
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Table 2: The benchmark suite characteristics.

Benchmark Description Granularity Problem Size
Small Medium Large

MMULT Matrix Multiplication variable 256x256 512x512 1024x1024
BMMULT Blocked Matrix Multiplication 32x32 block | 256x256 512x512 1024x1024
LU Blocked LU Decomposition 32x32 block | 256x256 512x512 1024x1024
Conv2D 9x9 convolution filter 32x32 block | 256x256 512x512 1024x1024
Trapez Trapezoidal rule for integration | variable 217 steps | 271 steps 2% steps
Blackscholes | Financial analysis application variable 8 options | 12 options | 16 options

If

Speedup
T
Speedup

1)

MMULT BMMULT A1) Conv2D Trapez Blackscholes MMULT BMMULT Comv2D
ESmall = Medium N Large W16xle ©32x32 WE4x6d
(a) (b)
Figure 8: System Evaluation. (a) Speedup for the DDMnc execution. (b) Speedup for the bLM-mc executioon very
small sizes.

Table 3 depicts the FPGA resource utilization aoalgr consumption estimations for the prototype
of the DDM-mc processor. The utilization percentafjeach component is shown in parenthesis. The
component labeled “other” includes the clock getmrahe interrupt controller, the timer etc., all
necessary for the proper functionality of the systbut outside the scope of this work. The hardware
device utilization of our prototype is rather lowhich will enable us to extend the functionality of
our system in the future. The Block RAM (BRAM) ut#tion on the other hand is quite high (93%).
We choose to utilize as much as possible BRAMmddel big caches and local memories in order to
increase the system’s performance. The maximumatipgrfrequency of the TSU peripheral is 198-
MHz. Furthermore, the TSU consumes a small proporof the overall power of the system.
Particularly, an MBB consumes 223.5% more powen thi&U. We believe that this feature will
allow the implementation of a power efficient muéind many-core DDM system.

Table 3: Virtex-6 FPGA resource utilization and powe consumption estimations.

Component | Flip Flops LUTs BRAMSs Power (W)
MBB x 8 28340 (9%) 31782 (21%) 384 (92%) 0,27016
TSU 2055 (0%) 3307 (2%) 8(1%) 0,01511
FSLx 16 1000 (0%) 2128 (1%) - 0,02864
Other 1311 (0%) 1574 (1%) 0(0%) 0,17081
Total 32706 (10%) | 38791(25%) | 392(93%) 0,48472

Table 4 depicts the minimum and maximum cost (icles) of the TSU operations. Since the TSU
operates dynamically, the majority of its operagigiepends on the size of its structures. For instan
the maximum cost of the TTM Write/Invalid operatisnequal to its minimum cost plus the size of
the TTM structure in cycles. The cost of the operat that manage consumers, such the DGM Write
operation, depend on the number of the consumeo$ ¢énsumers) that it will manage. Moreover,
the cost of some operations depends on the casthef operations. For instance, the minimum cost
of the DCM’s store operation depends on the minineost of the DGM Write and TTM Write
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operations. The size of the TSU structures areliens: the Input and Output FSLs consist of 128
entries, the DGM and TTM consist of 16 entries #redSM consists of 1024 entries. The SM Update
operation costs a lot because the SM size is équE)24. The reason for this is that the SM module
allocates and deallocates the RC values dynamicllyarticular, the maximum cost of the SM
Update operation depends on the allocation proeedur solve this issue, we allocate blocks of RC
values (32 RC values each time) in order to aveduent allocations. This technique improves the
TSU performance since the SM Update operationeisrtibst frequent operation. Notice that the TSU
operations are performed in parallel. For examplaije the Fetch Unit reads data from the Input
FSLs, the Update Unit can perform updates and tineduling Unit can store ready threads in the
Output FSLs.

Table 4: Timings of the TSU operations

Operation ‘ Minimum Cycles ‘ Maximum Cycles
Dependency Graph Memory (DGM)
Write (16 * # of consumers) + 10 (16 * # of consumers) + 10 + (2 * DGM size)
Read (3 *# of consumers) + 7 (3 *# of consumers) + 7 + DGM size
Invalid # of consumers + 10 # of consumers + 10 + DGM size
Thread Template Memory (TTM)
Write/Invalid 10 10 + TTM size
Read 7, 7+ TTM size
DDM Command Manager (DCM)
Store Thread Template 3 + DGM Write + TTM Write 3+ DGM Write + TTM Write
Remove Thread Template 3+ DGM Invalid + TTM ln\Jplid 3+ DGM Invalid + TTM Invalid
Forward Update Command 2 2
Fetch Unit
Read from Input FSLs 4 4 + # of consumers
Send data to DCM 1 | + # of consumers
Other
FSL Bus Enqueue/Dequeue 1 1
Synchronization Memory (SM) Update 14 28 +(2 * SM size)
Scheduling Unit: schedules a ready DThread 8 9
Update Unit: receives data from DCM and executes an up- | 4+ SM Update + TTM Read 4 + SM Update + TTM Read + DGM Read
date command

3.1.1.3.3 CacheFlow on DDM-MC

DDM can improve the locality of sequential procegsiby implementing deterministic data
prefetching using data-driven caching policies ezhlCacheFlow [6]. CacheFlow policies include
firing a thread for execution only if the code addta of the thread are present in the cache.
Furthermore, blocks associated with threads sckddal execute in the near future are not replaced
until the thread finishes its execution. Resultsaapplying CacheFlow have shown that CacheFlow
reduces cache misses considerably, even on catbemb sizes. Figure 9 depicts a proposed design
for the implementation of CacheFlow on the DDM-ngstem. More specifically we show how the
MBB has to be modified to support CacheFlow. Fas flanctionality we will use a Scratch Pad
Memory (SPM) instead of Data Cache (D-Cache). $B& will be used for storing the prefetched
threads’ data. The SPM controller will be respolesior transferring the data of the ready threads
from main memory (External DDR3 SDRAM) into the SPWMhen the data will be allocated in SPM
for a specific thread, the SPM controller will infio the MicroBlaze to execute this thread through th
Output FSL Bus. Moreover, when a thread finishesekecution, the SPM controller will be also
responsible for writing back the modified threadata into the main memory. Currently we are
working on the implementation of the SPM controllearticularly, we are working on the part that is
responsible for transferring the data from SPM ssmmemory and vice versa.
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Figure 9: CacheFlow implementation on DDM-mc.

3.1.2 TaskSs — another approach for a hardware TSU  (BSC)

In this work we have contributed with a signifidgrimproved Hardware TaskSuperScalar design (cf.
D6.1, D6.2, and D6.3): Picos [12] [13]. Picos haadsvis a major revision of the Hardware Task
Superscalar architecture with several improveméntts work-flow. The main improvements are
related with architectural changes to add suppondsted tasks, better memory management and
faster task dispatching (more details are explaineskctionError! Reference source not found).
Figure 10 shows the organization of a computingesysthat includes the Picos hardware. It is
composed by a many-core with any number of thréaalssend two kind of task information to the
Picos hardware: (1) the dependency informatione masks, and (2) the notification of ending a
task. The Picos hardware is composed by one gaté@sy), one or more Dependence Chain
Trackers (DCT), one or more Task Reservation Stati@RS) and one Task Scheduler (TS). All
those components work together in parallel in otddsuild the dynamic task dependency graph and
generate a list of ready tasks that are sent lattletthreads to be executed. The connections batwe
the modules are decoupled by FIFO queues thanseronnected by arbiter modules (not drawn in
Figure 10 for clarity). There is one arbiter modh&tween the output queues of one type of module
and the input queues of a different type of modideexample, one arbiter reads from a single autpu
qgueue from the GW and writes to one of the inp@ugs of the adequate TRS).
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Figure 10: Computing system with Picos pipeline hatware
Operational Flow Overview

Once a thread reaches a task creation it createsvaVork Descriptor (WD) (similar to the concept
of continuation, cf. D6.1) that basically is a meynetructure containing the necessary information
for the new task to be executed. This informaticsiny includes the address of the task code to
execute and the address of all its dependenciéstingir directions (input, output, input and output
inout, or direct for immediate values). Once thi®\¢ created, it is sent to the Picos hardware that
reads its information and stores the data of theesponding task until all its dependencies are
fulfilled. For the first task created all its depkemcies are ready because all its input and inout
dependencies are already in memory. However, thet ommmon case is that a task has to wait until
one or more of its dependencies become ready affter tasks finish. The information (finishing
messages) of those finished tasks is sent to tus Pardware by the threads that execute those. task
With this finishing message Picos will delete tlweresponding WD in the system and proceed to
mark as ready all the task dependencies that dmuldaiting for the dependencies of the just finishe
task. Then, the Picos hardware will try to sendrtber ready task/s to execute. That means sending
the WD to the TS, which will put it available td #le threads in the system. When one thread shat i
not busy realizes that a new WD is available ittstexecuting the corresponding task. If a task
creates new tasks, new WDs are created and thadkapey information is sent to Picos as explained
above.

The main differences with previous versions are:

- Now original ORT and OVT modules are joined in tlesv DCT module.

- The memories and packets have been redesigned thaiminimum amount of resources.

- The GW module has been redesigned with TRSs mem@iability information in order to
increase the task scheduling throughput.
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- Also the GW module now receives the Finished Tamstkets to preserve the order between
task finishing packets and children tasks cregpackets as a way to support nested tasks.

3.1.3 TM Support (UNIMAN)

First we briefly recall the context of Transactibmemory (TM). TM attempts to simplify concurrent
programming by allowing a group of load and stoperations to execute in an atomic way. It is a
concurrency control mechanism analogous to datatvaseactions for controlling access to shared
memory in concurrent computing. TM systems can tekis hardware, software or as hybrid
implementations [16] [17] [18] [19] [20]. This digssion is related to the hardware implementation of
TM systems.

TM hardware must perform a number of tasks.

1. Transaction modifications are isolated from thd ofghe system until commit time through
data versioning.

2. The system detects and resolves read-set andsetiteanflicts.
3. Transaction commits appear to occur atomically.

4. In case of a conflict leading to an aborted tratisac a consistent state is reached after
rewinding.

Transactional mechanisms are being designed whdepikg following requirements under
consideration.

1. Performance should be achievable without an undugeln on the programmer.
2. The mechanisms should scale gracefully to largeeByswith large amounts of concurrency.

3. The system should be able to cope with, and ifiptesexploit, a hierarchical organization of
cores into nodes.

Our research at Manchester University aimed to anghe following questions regarding a TM
hardware system.

1. Is it better to exchange information about shaliayveen transactions as they go along or to
do so only at the commit time?

2. How can we leverage the node (clustered) architecto provide good performance for
transactions?

3. What sharing patterns exist across a broad rangedoads?

4. What is the best balance between communicatioraggoand false sharing? It may be that
consistent performance can only be achieved thradgiptive mechanisms.

At Manchester we have developed a scalable traneatimemory system in COTSon. The scalable
system is a purely lazy implementation but the cinprocess takes advantage of a hierarchical
organization of cores into nodes (clusters). Fidlreshows a high-level view of the scalable model
that we are evaluating, which is conformant to TRERAFLUX architectural template (cf. Figure 1,
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Section 2).

Figure 11: Clusters with extensions to cache andmictory to support Transactional Memory

The system consists of multiple nodes with eachertwaling multiple cores. Each core has its own
private L1 and L2 cache. Within each node (cludtegje is a shared L3 cache, a directory and part o
distributed memory. The directory tracks transamlanemory regions and maintains information at
cache line granularity. Each directory entry camaa bit vector to represent sharers. Sharers are
maintained at the node level.

L1 and L2 caches are used to maintain data vergjoBluring commit, a transaction firatcupies all

the directories in its R/W-set amdarks all the cache lines in its write-set. The “occugnd mark”
process is similar to Scalable TCC [14]. After céetipg the occupy phase the transaction locks the
L3 controller and then writes back all its modifieM lines to the shared L3. After writing back id
data, the transactiamlocks the L3 controller and then sends commit messagab the directories in

its write set so that they can send the relevawlitiations. The write back is required so that L3
contains the most up to date copy and can resmoanyt requests to the cluster.

There are many optimizations possible to our imeletation. For example using bloom filters to
reduce the size of our read/write-set and to ladctbries at lower level of granularity [15].

Evaluation:
For the evaluation purposes we have run two oSteMP benchmarks on the scalable TM
hardware. IrFigure 12 we show the performance results of these benchemark
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Token based transactional memory

Here we describe our design for a token basedactineal memory system that keeps a check on the
number of potentially conflicting transactions rimgnin a TM system. One of our major work in
TERAFLUX is to separate memory into multiple re@aiVP3). An interesting area of research is to
divide transactional memory regions into furtheraer sub-regions with special hardware
maintaining the number of concurrent access toethasb-regions. We call this hardware the
transaction token manager. The sub-regions can be as small as a cache tidecan be as big as
multiple page sizes. The token manager maintaiken® for each sub-region and keeps a small
history of the number of conflicts that has happeetween transactions due to accesses to particula
sub-regions. The history needs to be small to niakeasible to be implemented in the hardware.
Based on the history, the hardwamntrols the number of concurrent transactions that caesaca
particular transactional sub-region. If the numb&iconcurrent transactions reach a threshold, any
further accesses to the sub-region by new tramsectiredel ayed.

The token manager maintains tokens for each TMregimn. When a transaction requests an address
from a particular sub-region the hardwaretecting that region looks at its history and based on the
history provides a transaction with a token to thih-region. Token giveaccess rights to a
transaction. Once a transaction finishes it rettliegoken back to the hardware.

The token manager protecting the sub-regions tsilalised with one token manager per cluster in a
multi-cluster system. Figure 13 shows the tokenagars in a multi-cluster TM system.

We have been working on the design of the systetdba to lack of time we were not able to
implement the complete system in order to thoroutgdt it for evaluation.
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Figure 13: Transactional Token Managers in a clustebased Transactional Memory system.

3.1.4 Architectural Support for Task Scheduling (UN  IMAN)

In this section we describe UNIMAN's hardware inmpémtation and testing of scheduling
approaches for dataflow programming models. Thideigeloped on the basis of the same line of
reasoning of UNISI, BSC, UCY (cf. D7.1, D6.1, D6[3%.3), but provides also novel elements.

The scheduler can make decisions that improve Idatdity if it is sufficiently aware of the data
requirements of the tasks by placing tasks on cetesse caches contain the required data. In the
general case information about which tasks usewtiata is absent as a consequence of the way in
which conventional imperative programming modelsehleen extended to include the ability to
perform parallel execution. However, models likéaflaw programming implicitly allow for parallel
execution and contain additional information abthét access patterns of the computation. The main
characteristics of the dataflow model are that #exation of an operation is constrained only by the
availability of its input data. The computationpsrformed by side effect free tasks and the exacuti

is triggered by the presence of data instead obgpdicit flow of control. These constraints prevent
both deadlocks and race conditions.

In this section we demonstrate how the structuoeiged to programs by the dataflow programming
model can be incorporated into task schedulers,ingathem aware of a task's data requirements
without any further help from the programmer.

Our major contributions are:
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—An examination of how the use of a dataflow progreng model can by allowing more intelligent
scheduling techniques improve system performance.

—We propose two novel scheduling policies, ‘Tokeh&luling’ and ‘Reference
Scheduling’ and demonstrate how these schedulitiggmresult in better resource utilization.

—We propose the design of a scalable hardware stdratiat has low hardware complexity and is
relatively insensitive to the access latency offtasdware queues.

—A demonstration that the proposed architecturppsut has significant performance benefits and
the scheduling policies have much better resoutitization when compared with other scheduling
policies. Our scheduling policies result in a readucin cache misses by up to 72% and 95% for the
L1 and L2 caches respectively compared to FIFOdudirgy (see next sections).

SCHEDULING

Dataflow is an asynchronous and self-scheduling inetlere the execution of nodes is constrained
only by data dependencies. From the code, Figurevé4an see that each ‘fib’ function creates two
new tasks ‘fibl’ and ‘fib2’. The schedule(&fib, 1)eates a dataflow task which executes fib as its
function once all the dependencies are computedsdt informs the dataflow scheduler that this task
is waiting for only one piece of input data to keady for execution. Finally fibl's and fib2's
argument is set to the value n-1 and n-2 respédgtiveaking them ready for execution.

void fib()
{
int n = read(1); // receive n
if fn¢2) 4
}
else {
f1 = schedule(&fib, 1); // spawn fibl, waiting for 1 argument

h
b3
non

schedule(&fib, 1); // spawn fib2, waiting for 1 argument

arg = n-1; // send fibl, n-1
f2.arg = n-2; // send fib2, n-2

Figure 14: A dataflow function for computing Fibonaci numbers.

Figure 15shows how tasks are managed by a dataflow schadiiey example code &fgure
14. Note that this diagram is just an abstract viéwhe scheduling of a task taking place, the
discussion about the actual design and implementafi the scheduler is in later sections.

In step 1, a task, which requires a single arguriseateated by a dataflow thread t1 running
on core 1. The task is sent to the scheduler, whelmtains the information about this
created task in its pending queue. In step 2, dlpmovides the required argument to the
waiting task. After receiving the arguments thé&tasw has all its input data and is ready to
execute. The scheduler moves the task from theipgrid the ready queue making it
available to be scheduled to any core. In stepr8gaest is sent by core 2 to the scheduler for
a ready task. When a scheduler gets this requesinds a task from the ready queue to the
requesting thread (this is also in line with workosed by UNISI, UCY, cf. D6.2 D6.3).

Deliverable numbeiD6.4
Deliverable nameEvaluation of the TERAFLUX Abstraction Layer and Fine-tuned Model
File name: TERAFLUX-D64-v10.doc Page 29 of 65



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Stepla: Dataflow task f1 s created. Step2a: Input value 'n-1' made
mET available tothe task f1.
. E _{_ _____ ;_;'_ R _c_i |;i'_1 _____ " Scheduler
' = L
! ateflow Thread (t1) i ,r'm— —————————————————— - Scheduler
P : i Dataflow Thread (t1)
1 fl=schedule(&fib,1) 1 1: (& fib,?) !
e | e | flarg=nl ; BB | {1 (&7ib,n-1)
Pending Queve ReadyQuewe /[ | [T |r—
Pending Queue Ready Queue
Steplb: Scheduler puts the task in its pending
queue waiting for its inputs to become available.
Step2b: When all the inputs are available the
scheduler shifts the task to the ready queue.
Step3a: Request anew task. Step3b: Scheduler sends one of the ready tasks to the

requesting core.

P L LT . request Scheduler

Tazki)

T (&5, 01)

ing Queue Ready Queue

f1: (&ib, (n-1))

Figure 15: Dataflow Scheduling (abstract view)

NOVEL SCHEDULING POLICIES

In this section we describe how the structure mledito programs by the dataflow programming
model can be exploited to provide useful informatio the task scheduler. By using this information
the scheduler is aware of a task’s data requiresr@ml can make better decisions. We propose two
scheduling policies and discuss potential perfogaadvantages that can be gained from them.

Token Scheduling

This scheduling strategy relies on the assumptiahif a reference to a data structure is passad fr

a task running on core x, the probability of thaticture is cached by core x is high. This only kgor

for passed references as passed values have alreadycopied in the process of passing them so do
not allow for data reuse.

Consider the example shownHigure 16 In step 1a, task running on corel passes 2 amsietask
t2. In step 1b, core2 sends an argument to tagiue2making it ready for execution. As the schedule
knows where data for the task came from, it assigpsocessor affinity to task t2, in this case dore
based on the proportion of references it receiveh each processor.
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Figure 16: Token Scheduling

When a core requests a new task in step 2a, theslglen looks at its list of ready tasks and then
assigns the task which has the highest affinityesédu that processor as shown in step 2b.

Token scheduling does not base the affinity of k tasthe core where it was spawned but records
where the data of the task is coming from and basethat information assigns an affinity. This
technique is explored besides other miss-redutticmiques like CacheFlow (cf. Section 3.1.1.3.3 or
[6]). We are not making any claim on the effecforesence of data in the assigned core cache.

Reference Scheduling

In reference scheduling, instead of the task raéagravhere its inputs came from, the scheduler
records which references each core has recentlgsaed and tasks are assigned to the cores by
matching the set of references used by the tafletoores reference history. This is explainedwelo

Figure 17shows how the reference history is obtained anidtaiaed by the scheduler using the task
information present in the programming model. Wtask t2 becomes ready, the scheduler compares
references passed to it in its argument list to riference history of the cores. In this case the
scheduler sees that the reference to data strustisr@resent in core 1's history, so it assigrestdsk

t2 to core 1.

Later on when the task t2 is sent to core 1 focetien, the reference history of core 1 is updaed
that it now contains the reference to structure dall. The reference histories do not need talgel

and are bounded to a very small storage requiremeneflect that older items are less likely td sti
remain in the cache by decaying items in the hystatil ultimately they are evicted.
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_is set to corel.

being sent to core 1, the scheduler updates its core
reference history as well, for future scheduling
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Figure 17: Reference Scheduling

ARCHITECTURAL SUPPORT

Distributed Task Queuing

A centralized queue is the simplest way to impleimesk queues in scheduling, and the block
diagrams demonstrating our scheduling policies glibwentralized queues for simplicity. In a
centralized system, all the tasks are enqueuediemaeued from a single shared queue. While this is
sometimes acceptable, a single queue can quickilynbe a bottleneck as the number of cores scale
up. To address this bottleneck and allow betteyudinput and latency times, software and hardware
schedulers often use distributed tasks queues tadgth stealing [24] [25] [26] [27] [28].Figure 18
shows the distributed queue structure we propasthéoscheduler in order to group the tasks based
on their affinity to specific processors.

Design

Our design provides for low overhead distributesktgqueues and is tolerant to increasing on-die
latency as the number of cores in the system scHRs is achieved by implementing the distributed
task queues in the hardware. The tasks are storéae ihardware queues, scheduling is implemented
in hardware and we have hardware task prefetclettsas each hardware thread can start a new tasks
as soon as it finishes its current one. The designalso many similarities with Carbon [22], DTA,
DDM, TaskSuperScalar (cf. D6.1, D6.2, D6.3).
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g Step 1c: When all the arguments are available, the
scheduler moves the tasks to the ready queue. Note that
the scheduler knows which cores the data for the tasks
came from sa it updates its affinity table accordingly,

Stepla: Input valve ‘&vi’ made ovailoble to
task 2.

Care 1

| targ =8l

t4: [&foo2,?)

i td.arg =Ev2

1
\ Pending Queue Ready Queve with affinity (Distributed) /

Stepib: Input vaolve 'v2' mode availoble to
task b4,

Figure 18: Distributed token scheduling

From the tasks queue hardware perspective, adasiknply a tuple [22] (or “continuation”). In this
implementation, it is a tuple of four 64-bit valyes function pointer and pointers to shared data
passed to a task as arguments. Similarly the @fs¥ence history is also a tuple of 64bit values.
Reference histories can be implemented as blooernfi[29] to make the comparison between task
reference and history references cheaper, thusngakie hardware for comparison much simpler,
guicker and more energy efficient. The hardware gaslues have limited capacity, in order to support
a virtually unbounded number of tasks for a giveacpssor, and to support virtually unbounded
number of processors, we can extend our model tertasks out of the hardware tasks queues into
the memory system using a mechanism similar to. [22]

According to the TERAFLUX architectural templateyralesign considers a CMP where the cores
and last-level caches are connected by an on-dworle This design has two main components: a
centralized global scheduling unit (GSU, similaratsingle D-TSU) and a per-core local scheduling
unit (LSU, i.e., an L-TSU)Figure 19shows our design.

Global Scheduling Unit (GSU). The Global scheduling unit holds enquired tagka set of hardware
gueues with one queue per core in the system.cbluilsl be extended to implement a hardware queue
per hardware context. The global scheduling ungléments the task scheduling policies described
earlier. Since the queues are physically locatedeclto each other, the communication latency
between the queues is minimized.

Local Scheduling Unit (LSU). Centralized scheduling systems may not scale thémumber of cores
in the system. This issue is addressed with Loché&uling Units.

Each core in the system has a local schedulingtiiaitprovides an interface between a core and the
GSU. The LSU is used to hide the latency of degungua task from the GSU by buffering a small
number of ready tasks. The LSU includes a tasleprieér and a small task prefetch buffer (similar to
CacheFlow [6]). Without the LTU, if a thread semrdssk request to a GSU it will stall waiting foet
response from the GSU.
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When a task is requested by the core’s hardwaeadhthe LSU returns a task to the core and sends a
prefetch request for the next task to the GSU. T&Y buffer should be large enough to hide the
latency of accessing the GSU. In our benchmarkgivaethat buffering a single task is sufficient to
hide the GSU dequeue latency. Because the datafiaph dias provided in advance the information
about which references a task will use, a buffet chn be implemented without loss of precision.

Benchmarks and Evaluation:

As our concern is the effect of scheduling on libgabrecision in the micro architectural model was
not necessary, so we model comparatively simplerdier x86 processors, accompanied by MESI
coherence protocol. While we vary the number ofcgssors simulated, all the experiments were
carried out with 64KB private L1 data caches artdMB unified private L2 caches. All caches were
4-way set associativ€igure 20summarizes the base system configuration.

For experiments with hardware scheduling, we a@dhtitrdware described in the previous sections.
We applied a 20 cycle delay for an access (e.gueure or dequeue) to the global task unit. This is
addition to the latency for the cores to messageGISU over the on-chip network. Within this
simulator we implemented the five different schéuylpolicies: Random, FIFO, Source, Token and
Reference Scheduling. These different strategipsesent increasing levels of complexity for the
scheduler. Our proposed policies of Token and Refsr scheduling are already explained in detail in
the previous sections. Here we will briefly disctiss other scheduling policies with which we wil b
comparing our proposed schemes:

* Random. Each processor is randomly assigned a task freet af tasks currently available to
run. If there are more processors than availalskstgporocessors are selected at random to
assign the available tasks to. This strategy ikded to demonstrate that any improvements
are not simply because we are introducing an elenfamndomness to the scheduling.

* FIFO. Itis our baseline and schedules tasks strintthé order that they become ready.

» Source Scheduling. It is a strategy that can take advantage of mmgrwhich are split into
distinct parts. With this strategy, cores will mefntially run tasks created by other tasks on
that core. This approach is similar to one use@asbon [22].

» Token Scheduling, as explained before.
» Reference Scheduling, as explained before.

Benchmarks

To test the effects of our scheduling policieshia $cheduler, we used a set of six benchmarks:

a) Block matrix multiplication, b) iterative refimeent for motion estimation, c) index searching, d)
route planning, and e) and f) two versions of knsedinrwe constrain these relatively small examples
to the dedicated hardware available in HPC it iprimciple possible to manually achieve the same
potential using conventional solutions, howeves thiakes solutions that are fragile and may not
exhibit performance portability. As programs in@ean size and become more complex, or in more
general scenarios where resources are not dedidasedire shared with other programs, effective
hard coding become untractable. The hard codirgirategies into the program also assumes that the
programmer is able to correctly determine the gmate strategy, real world problems are often too
complex especially when such problems include itipaitis outside of the programmers’ control.
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Figure 19: Example of many-core system with our hatware support for task queues. The shaded portionsre@
additional hardware for the scheduler

Results

When evaluating the scheduling policies, we obsémerovements in locality, measured through
cache misses which can be seen in [21]. This shilmevaumber of L2 misses as a percentage of those
seen when using FIFO scheduling. We see that fobehchmarks our Reference and Token
scheduling policies perform at least as well adoés alternate policy. In case of Routing benchkmar
the reference scheduling policy reduces the cadbsesito 30% of the FIFO level on 32 cores. On
the average the Reference scheduling policy rediheek?2 cache misses to about 50% of the FIFO
level. The advantage of the Reference schedulitigyps that the scheduler knows exactly which
data was most recently sent to which processociwds expected results in the best data locality.

Parameter Configuration

#Processor 1-64

L1 ICache Private, 64KB, 4-way, 2 cycles
L1 DCache Private, 64KB, 4-way, 2 cycles
L2 Cache Private, 2MB, 8-way, 20 cycles
Main Memory 500 cycles

Interconnection Network 2D-Mesh

Figure 20: Architectural Parameters used

The Source policy which prioritizes the processdrere a given task was created shows almost
identical performance to FIFO. This policy relies the observation that a tasks children are more
likely to share data requirements than a randork ¢édsewhere in the system. Unfortunately this

observation fails to work for a range of modelsluding those that converge to a single task to
perform some control logic before returning to workthe dataset. Examples of this model include
MapReduce [30] and the ForkJoin [31] frameworksndRem, as expected, performs progressively
worse as the number of processors increases. $hiedause the probability of finding a good

schedule by chance decreases as the number oEpooseises.
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Figure 21: Number of L2 misses, as a percentage dfase seen with FIFO scheduling
In Figure 22 we see the reduction in L1 cache misses for ébtihe benchmarks. Iterative refinement
and Routing show no significant effect on the L1lheamisses from changing scheduling policy. This
is because the inputs for threads are too largét tm the L1 cache. This emphasizes that any
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scheduling policy will only obtain advantage frowcdlity if the data is partitioned such that it
remains in the cache between threads. Clever sthgdioes not obviate the need for appropriate
partitioning of the problem.
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Figure 22: Number of L1 misses, as a percentage ¢fase seen with FIFO scheduling
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3.2 Advanced Scheduling Mechanism

3.2.1 Dynamic Scheduling (UCY)

One relevant component in the Abstraction Layeheésability for threads to be mapped dynamically
to cores. This can be used for example to avoidanhjcally at runtime, to schedule a thread to a
faulty core, or to a core that is near its therthe¢shold.

For the DDM-Style execution, the TSU++ (see Secohl1.1) runtime implements a number of
scheduling policies that permit the programmer/ctengo control the mapping of threads to the
cores. The scheduling policies are assigned pesathrallowing for maximum flexibility. The
supported scheduling policies are as follows:

» Dynamic: The default policy distributes the threads invimrat among the cores in a way
that maximizes load-balancing. We denote this gadis the dynamic scheduling policy. It
takes the load status in consideration and soenctse of scheduling threads with similar
execution durations, it provides optimal perform&anc

» Static: The static policy distributes the invocations afp&cific thread to a specific core.

* Round-Robin: The round-robin policy distributes the invocatimighreads across the cores
in a round-robin fashion. It requires no informatiaf the core status and aims at distributing
the threads among the cores uniformly.

* Modulo: The modulo policy uses the context, uniquely dgiishing each thread invocation
modulo the number of cores to select the target.cor

3.2.1.1Scheduling Example: Dynamic and Round-Robin Police

Figure 15 demonstrates the dynamic and round-rgbimeduling policies used for an arbitrary
program with multiple different threads. As timeradevant in the case of these two policies, the
length of the threads rectangles represent theicugion duration. The vertical distance between the
dependency arrows start and end represent the rigeded for performing the following tasks:
informing the TSU that a thread has finished, deemting the Ready Count (RC) of its consumers,
fetching the data of ready threads and eventualigriing the thread in the Firing Queue (FQ). For
simplicity we assume that these steps are accameglin a constant time and that the scheduling
decision is made mid-way. The empty dashed reatanglpresent waiting time for an execution unit
to become available.

Round Robin Scheduling Dynamic Scheduling

time needed tor
inform the TSU that the
thread finished
decrementing RC, fetch
data, insert thread in FQ

P1

Figure 23: Dynamic and Round-Robin Scheduling Polies
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In part (a) of Figure 23 the round-robin policyused for all the threads. This policy keeps a commo
counter value initialized to zero (i.e. the id béftfirst core) and every time a scheduling decisson
required the current value of the counter is ratdras the core identifier and the counter is then
incremented by one. In part (b) of the figure tlgaamic scheduling policy is used for all the thiead
This policy selects the core with the least loaticlv promotes better load-balancing. Both policies
result in different schedules as shown in the ggur

3.2.2 Changes in the Hardware Task Superscalar task scheduler
structure in order to simplify the overall system n etwork and
reduce system stalls (BSC)

As explained in sectioBrror! Reference source not found.our previous design of a Hardware Task
Superscalar Architecture [13] has been improvee iéw hardware has been called Picos. In order
to dimension the new hardware, a space design o has been performed to find the amount of
necessary resources to fully exploit current artdréumany-core architectures. As a result of this
work, the resource utilization of the system hasnbeeduced while the task scheduling throughput
has been increased. The resulting proposed coafigar(called High Performance Configuration,
HPCConf) for a Picos Hardware machine is composgdl® modules (whose functionality is
explained in section 3.1.2): 1 Gateway, 4 TRSs,Ci®and 1 TS. Each TRS has a 256-entry TM.
Each DCT module has 2 memories: the VM is an indexteay of 512 entries while the DM is an 8-
way set associative memory with 64 entries (to alsount a total of 512 entries). That configuration
is able to efficiently manage real applicationdwitige potential parallelism.

Figure 24 and Figure 25 show a comparison of thechmmark performances when using the
aforementioned configuration (HPCConf) and the qrenfince of the OmpSs benchmark versions
using Nanos++ runtime for Cholesky and LU proble@spSs results are for a machine with 12
cores at 2.4 GHz, using one thread per core. Ther&ishows in the Y-axis the speed-ups obtained
against the sequential execution when we changendhgber of threads (X-axis) and the parallel
approach (the block size). The executions showsach graph solve the same problem: a Cholesky
and a LU application for a 2048 problem size (matiut with different block sizes. Each bar label
shows the selected block size (up to 1024) artchéis been obtained executing with Nanos++ (Nanos
bars) or simulated with Picos hardware (Picos bdrg)avoid the variability of comparing different
executions, all the tests have been executed times and the best results have been chosen. Also i
is important to note that while Nanos++ real exind are influenced by the parallel memory
behavior of the application, Picos results are thagea sequential execution that can exhibit a
different memory behavior.
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Figure 24: Comparison of Nanos++ and Picos with diérent number of threads and tasks for block Choldsy
application with matrix size 2048x2048 (each bar imbelled with the block size).

In Figure 24 and Figure 25 it can be seen that whemparallelism is increased (bars with diminighin
block sizes) Nanos++ and Picos take advantageeaintiieasing number of tasks (Cholesky with a
matrix size of 2048 and a block size of 1024 hdg drtasks while with the same matrix size and a
block size of 16 has 357760 tasks). However adas$le granularity diminishes (the problem size is
the same in all the executions) the overhead intred by the software runtime scheduler starts to
introduce diminishing returns in the obtained speped This effect can be observed in the last
execution configurations in Figure 24: bars 64-Ngr&2-Nanos and 16-Nanos. The Picos hardware,
on the other side, can take profit of the paralieliof the application regardless of the parallelism
granularity and, in fact, the more aggressive talpelism, the better Picos exploits it. This baba

is really desirable as it decouples the applicatiarallelization approach from the hardware in \Wwhic
it is going to be executed, making parallel prograars’ life easy.

14
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Figure 25: Comparison of Nanos++ and Picos with diérent number of threads and tasks for block LU appication
with matrix size 2048x2048 (each bar is labelled i the block size).
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Figure 25 shows another interesting effect: supeal speed-up for the LU parallelization with block
size 16. This effect can be seen in bars 16-Naritbstwo threads (2.34x), with four threads (4.59x)
and with eight threads (8.58x). Note that the dupesar speed-up is measured in real executiongjusin
the software OmpSs approach not developed in tbjeg. It can be explained by the memory access
pattern of the LU application that creates sequenéaependent tasks that access the same memory
locations and are executed in the same physica @lowing very good cache behaviors). This
effect couldn’t be achieved in a sequential executivhere the control-flow order of execution of the
tasks prevents two consecutive ones from accesbimgame memory locations. This superlinear
speed-up makes Nanos++ perform better than thevhaedfor this case. The problem is that this
effect cannot be observed in Picos because it#tseme note executed but are extrapolated from the
sequential execution. However, the same behaviexpscted to occur in a real machine allowing the
hardware to be at least as good as the software.
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Figure 26: Number of tasks and average task size tycles of block Cholesky and LU applications bothx@cuted with
a matrix size of 2048x2048 as a function of the hik size.

Figure 26 shows the number of task instance exawutright axis) and the average task size in sycle
(left axis) of the executions in Figure 24 and Fega5 as a function of the block sizes. As it can b
seen comparing the three figures, the softwareaggprsuffers not only when the tasks are small but
also when the number of tasks grows exponentialiy hardware, on the other side, transforms its
limited memory storage drawback in an advantageoPhardware keeps obtaining good results as it
only maintains a limited number of in-flight taskisthe same time, but processing them very fast.

Another interesting side effect of using the Picasdware instead of the software approach is tat t
hardware doesn’t suffer from contention when thenloer of threads increases. This effect can be
seen comparing 12-thread and 8-thread bars fokde 256 in Figure 24. While bars 256-Picos
show that the hardware takes profit of the increagi available resources, bars 256-Nanos show that
the runtime obtains less speed-up with more ressurthe reason for this different behavior is the
decoupled design of the hardware that allows wadk in parallel in the different dependence chains
that the application generates avoiding contertarsed by shared data structures.

In fact, taking the above example of contentiorihte limit to better illustrate it, Cholesky with a
matrix size of 2048 and a block size of 64 has ximam speed-up of 86x and the selected
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configuration can extract a speed-up of up to 7&k 856 workers. Note that in this experiment both
the problem size and the parallelism approach iffiereht from the ones presented in section 3.1.1.1
where a matrix size of 32768 and block sizes of @3 128 were used. As a result the experiment
presented in this section has smaller tasks aond/arlmaximum theoretical speed-up. An even more
parallel configuration (with eight TRS and eight D@&odules) with double number of workers can
scale up to 83x. This effect is fully shown in Figw7 where it can be seen, for the selected
parallelization of the chosen applications (bothtlefm solving a 2048x2048 problem size), the
speed-up obtained when they are executed in amsysterironment with 256 workers using the
selected HPCConf. For the sake of comparison, Eiguralso shows the best speed-up that can be
obtained for these traces (“ldeal” bars) and therowement that will result when using 512 workers,
with a doubled configuration (that is the samehesHPCConf but doubling the number of TRS and
DCT modules, labelled “2x HPCConf"). Figure 27 slsothat the selected configuration reaches
speed-ups close to the ideal for all the benchmdtisthe most demanding applications this speed-
ups can still be improved by simply increasing tienber of modules in the system showing that
even for very aggressive machines and demandinigcaipns the decoupled Picos system would be
able to deal with the challenge.

160.0
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H HPCConf
B 2x HPCConf
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Speed-up

60.0

40.0
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Figure 27: Picos Hardware performance for Choleskyand LU applications.

Regarding the Picos hardware the results obtaihed shat the runtime task management hardware
approach is much more efficient than the softwéterrsative (Nanos++ runtime of OmpSs) for the
selected applications when they are divided in rsdévemall tasks. Furthermore, the hardware
approach efficiently decouples the parallelizatapplied to the applications from the resources
(physical threads) used in performing the compomatallowing the applications to be easily
optimized for a wide range of target platforms. §dhedvantages are due to two main factors: the
speed at which the hardware can manage the tapkadiencies and its decoupled design that allows
different processes (as chaining dependencies \gbitgling tasks to execute) to be performed in
parallel. Both, the minimized overhead and reducedtention imply that smaller tasks can be
executed efficiently, providing a suitable baseasbiailding and exploiting next-generation many-core
architectures.
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3.3 Advanced Memory Management

3.3.1 Memory consistency mechanisms (UNISI)

TERAFLUX requires several different consistency misdcf. D7.1, Section 7), including:
* Frame Memory — FM;
* Thread-Local Storage — TLS;
* Code Memory — CM;

* Owner-Writable Memory — OWM (which, as discusselbtye could also be used to implement
Frame Memory, Thread-Local Storage, and Code Memory

* Transactional Memory — TM;

There are at least two memory-related operationlarsystem that would require consistency-model
communication across the chip (and, depending @nciiosen implementation of transactional
memory, more operations could be required):

* region-acquire:
— aregion is acquired by the writer;

— all other potential readers/writers of that regae notified, their write permissions are
removed, but their read permissions gpgonally removed,

* region-release

— any suspended read permissions are restored

In the exact same way that one can choose thermdatteof the TLB and thus the level to which

address (re-)mappings must be broadcast, so, toe, can choose the level to which these
acquire/release consistency operations must baltasa Simply put, they must be broadcast to the
level at which they are expected to take effecq.[¥adr instance, the following types of access
protections are used in many architectures to dewidether a load/store operation is allowed to
progress:

* readable;

* writable;

* executable;

* kernel-owned;

If each of these is checked and enforced atctive level, then it is to the core level that all
acquire/release events must be broadcast (assufoinghe sake of argument, that access-level
protections are the mechanism by which one grantienies read/write access to shared regions).
This, of course, can be optimized by delivering itifermation to the node level, and designing the
node keep track of usage within itself (e.g., tiglodrame metadata in the TSU, providideg facto
back-pointers), thereby requiring “selective” broast to the core level. This would still be
considered a core-level broadcast, as opposediteiieg information to each node and having the
process stop right there.

By comparison, using mode-level access mechanism would require no informatiorassigher
than the node, and thus individual cores wouldseet any changes in consistency status. This design
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choice would necessarily allow each core to freelgess the data in its local caches, pausing only t
check when accesses miss that local cache. Thuguild not support owner-writable memory in
which read operations to a shared region causegtion violations prior to the release of that oegi
The following illustration indicates the level tohigh memory-consistency information propagates
and shows the implications for each design chdi@TSU refers to what we called D-TSU in the
TERAFLUX architectural template, cf. Figure 1).

NODE 0 NODE 1 NODEO NODE 1
Cores Cores Cores Cores

OO0 | | DO ] L[]
O] DDDD

lensu‘ |L2!TSU Core reads ‘ |_2'r|-5|_| ‘LZH.'SU ‘ Core discards
7y 4 stale copy 7y stale copy
\@Z/ M before reading -
T A modified & released I A modified & released
MEMORY by Core in Node 0 MEMORY by Core in Node 0

Figure 28: Propagation of memory-consistency inforration. On the left, consistency information is propgated to the
node/TSU level. Therefore, after the core in Node (eleases its copy of A, the core in the Node 1, whibas a cached
copy, continues to read a stale copy from its cach®n the right, all consistency information is proggated to the
individual cores. Therefore, after the core in Nod® releases its copy of A, the core in the Node Isdards its cached
copy and obtains a new copy.

As Figure 28 shows, broadcasting only to the No8e&lTevel is simpler, requires less overhead (in
terms of both performance and power), but can r@sualore-level inconsistencies. However, the only
way that this particular inconsistency can hapgeif Gached copies are allowed after the owner-core
in Node 0 acquires a writable copy of item A. Thilng problem is avoided if one can ensure that, at
the time of the acquire operation by the Core ird®&@®, no cached copies exist anywhere in the
system. The implication is that, to avoid the immstency, one must do one of two things: (1)
broadcast at the core level theailability of an updated copy of item A upon itdease, or (2)
broadcast at the core level theavailability of item A at the time of thacquire operation. Either
way, one performs a core-level broadcast.

Most likely, the ability tooptionally disseminate consistency beyond the node levelddzailideal, so
that one could use the same scheme to implememheFfemory, Code Memory, and Owner
Writable Memory. The following subsection descrilaesmechanism that would do exactly this, using
the TSU system in an operator-overloaded manner, (ise core-level and node-level mechanisms
where appropriate to manage the protection andstensy status of the memory, for example to turn
off read and write permissions for a particulariosaguntil the writer releases it, or to allow read
permissions while a different core is writing aiceg to handle all or nearly all of the memory
consistency models required by TERAFLUX.
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3.3.2 Consistency Required Mechanisms (UNISI)

Given the previous hypothesis, the following are dinly mechanisms that need to be implemented in
the system. Using these primitives, one can impigrakk (with perhaps the exception of transactional
memory) of the consistency domains discussed earlie

* TSU metadata, one such data structure to be créatedch region:

- Frame ID

- a list of any “writers” (i.e., the threads that sm®ducing the values needed by the reader
thread, which is the thread to wake up),ndr... if nil, then this is just regular memory,
such as local storage or code memory or shared myentut it is not “Frame Memory?

- a “written” status bit for each writer

- thread owner (i.e., “reader” or thread to wake up);

- permissions: read/write/execute/etc. for both tvaer and non-owners;

* region-acquire: privileged operation
arguments: id, region, writers, permissions (owner, non-owner);
If such a frame exists, modify its metadata. Haes not exist, create it as well as its metadata.
Metadata is held in the TSU. If the non-user-pesiniss aranil, then the TSU must ensure that
there are no cached copies within its node (alteelg, one could create a broadcast
mechanism in theeleaseoperation in which a “scope” is defined for théease, indicating
whether it is meant to apply at only the node lgwehll the way to the core level).

* region-release:privileged operation
arguments: region, permissions (owner, non-owner);
If such a frame exists, modify the permissions ediogly.

* Core L1 cache miss acquires cache-block metadataTiISU;

* If a TSU acts in concert with its local L2 cachel@ansures that, for any data in the L2 cache
(which must also enforce inclusion with the L1 cegfy there is corresponding metadata held in
the TSU, then broadcasts are simplified in the cdseewly-created data frames (which would
not be cached anywhere and thus should requiremslevel broadcasts).

As mentioned, these mechanisms are all that isssacgto create the various forms of memory listed
earlier. How each can be implemented is describéle subsections below.

1. Note that the writer list and status bit forled@SU entry can be more simply implemented throagiingle count value,
provided that system software can ensure thatengiata-producer-thread (“writer”) only generatesngle write reference
to a given Frame ID.
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3.3.2.1Frame Memory consistency (UNISI)

On thread initialization, allocate a Frame ideritifythe data-producers that will wake up the thread
and cause it to execute:

* region-acquire
id: thread
region: frame
writers:{set of data-producers}
permissions: owner: read + write, non-owner: nil

This creates an entry in the TSU system with theeeted information. The thread’s “writers” write to
the memory system, using the Frame ID as an addidws TSU system collects these memory
references and updates the matching databasesdmyrigetting the correspondingitten bits (or by
decrementing the counter). Once the writers firtisé,reader thread is awakened automatically by the
TSU.

3.3.2.2Thread-Local Storage consistency (UNISI)

On the creation of a thread (at initialization ater), allocate regions as follows:

* region-acquire
id: thread
region: frame
writers: nil
permissions: owner: read + write, non-owner: nil

This creates a read/write region owned by the §pddhread, not shared with other threads.

At the end of a thread's life (as part of the tlre@stroy operation), its non-persistent memory
regions are de-allocated (i.e., those that areshamed):

* region-release
region: frame
permissions: owner: nil, non-owner: nil

This destroys a region. Note that the OS must mamdrat regions are shared and/or persistent, so
that it does not accidentally destroy a region ihateant to remain in the system.

3.3.2.30wner-Writable Memory consistency (UNISI)

To either create or take ownership of an existewgjan of memory, perform the following. There are
two variants, one of which allows concurrent readess, the other of which does not. The first
example assumes that other threads CAN read thenredhile the owner thread is writing it (the
readers just get stale data).

* region-acquire
id: thread
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region: frame
writers: nil
permissions: owneread + write, non-ownerread

* [write region]

* region-release
region: frame
permissions: owner: read, non-owner: read

This creates a read/write region (or simply chanpesstatus of an existing region) owned by the
invoking thread, and other threads are alloweddepkreadable copies, but not writable copies, in
their L1 and L2 caches. When the region is releaised marked as readable by all; if afterward a
thread wants write access, it must perform an aecquperation. The second example assumes that
other threads CANNOT read the region while the awtheead is writing it (they get permission-
violations when they try).

* region-acquire
id: thread
region: frame
writers: nil
permissions: owneread + write, non-ownernil

* [write region]

* region-release
region: frame
permissions: owner: read, non-owner: read

This creates a read/write region (or simply chanpesstatus of an existing region) owned by the
specified thread, and other threadsraseallowed to keep readabie writable copies in their L1 and
L2 caches. When the region is released, it is nobdsereadable; if afterward a thread wants write
access, it must perform an acquire operation.

3.3.2.4Code Memory consistency (UNISI)

To create an executable block of code, perfornidhewing:

* region-acquire
id: kernel
region: frame
writers: nil
permissions: owneread + write, non-ownernil

* [initialize region]
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* region-release
region: frame
permissions: owner: read, non-owner: read + erecut

This creates a read/write region (or simply chanpesstatus of an existing region) owned by the
specified thread, which in this case is the kerpethaps acting on behalf of the compiler. While th
kernel writes the region, other threads raoe allowed to keep readabde writable copies in their L1
and L2 caches. When the region is released, inikea as both readable and executable.

3.3.2.5Transactional Memory consistency (UNISI)

It depends upon the Transactional Memory (TM) immatation (please see Section 3.1.3).

3.3.3 Memory consistency overheads and TSU impact ( UNISI)

Several scenarios make use of teleaseoperation, and this operation indicates to ther52J that

the status of a region of memory has changed. Tihereason to provide separate acquire/release
operations is if they behave differently (otherwisiee could simply have a single “set-region-
permissions” operation that handles everything).

Both implementations are equally viable. Just fier $ake of clarity, we will assume we keep the dual
acquire/release pair. If we assume that both aeqnd release are used, then the difference is that
one broadcasts, and the other does not. We wilinassthat the acquire operation broadcasts
whenever necessary, and that the release opedatesnot.

Why this is important is that, for correct operatithis scenario (in which a release operation to¢s
automatically notify the cores of updates) requiegher polling by threads expecting a particular
region to become available, or wakeups sent frommTBU (which, yes, are a form of broadcast,
thereby breaking our “no broadcast” model, whichdthe question again of broadcast).

Consider the example of an owner-writable memorwivich concurrent readers are not desired—in
such a scenario, a previous acquire operation drasved copies of the region from all L1 and L2
caches in the system; the owner thread writesaadhgion and then releases it. How do the waiting
threads know that the region is now available? Aarswhey have to perform a load instruction that
misses their L1 cache, then send a request to 2iESU, which sees the updated metadata and
obtains the most recently written copy from memddow do they know to perform this load
instruction? Either they have been looping on tames load instruction for a while (each time,
causing a form of SEGFAULT in which the hardwaralimes at the TSU level that the requesting
thread is not trying to reference a non-existeaimi but instead is referencing a temporarily
unavailable frame), or the TSU has a list of thegmdwake up when a particular frame is released.

The only reason to consider the broadcast-wakewgratipn is to avoid the excessive power
dissipation that would result from numerous spigr(polling) threads.

While keeping the advantages of supporting prograhility (cf. D3.5) and reliability (cf. D5.4) the
TSU will face the same types of communication oearh seen in many-core designs and their
memory-consistency mechanisms—namely the overhéadanaging data-protection information
that is not centralized but is instead distributédely throughout the system. The overheads include
both space for storage (i.e., the amount of memequired to hold the data-protection information)
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and the time for metadata movement (which affeotf Iperformance and energy consumption). In
particular:

Number of Frame Records The amount of space needed to hold the metadatlfof the
frames and regions referenced by the cores of a nad scale with the numbers of cores on
the chip as well as a given application workload #me degree of sharing that it exhibits.
However, practically speaking, there is no needriore metadata than that needed to manage
the amount of cache storage. For example, if a ksadgp 100 blocks of cache storage, it would
not need significantly more than 100 records ofmgaegion metadata. Providing additional
space for metadata would be unlikely to yield digant performance benefits for normal
memory accesses, as it would only improve the umoomcase of last-level cache misses—
reducing only slightly the reload penalty, assuminmetadata record is smaller than a cache
block. The main benefit of extra frame records wdu for updating the consistency status of
temporarily unavailable regions that are not cutydmeld in the cache. It is safe to assume that
these would not be more numerous than the currentiylable regions, and it is also safe to
assume that most regions would have more than ok beld in the cache. Therefore the
space allocated to frame records at the node $énvelld scale with the L2 cache.

The number of unique frames and/or regions that lwarstored in the L2 cache (i.e., the
maximum number of metadata records needed) iselthiby the number of unique cache blocks
in the L2 cache. For example, a 1MB cache with &ydé cache block would need a maximum
of 16K frame records; a cache of half this sizéwoce the block size would need a maximum
of 8K records; etc.

Frame Record Size As described earlier, the following metadata iinfation is required to
manage each frame or region:

Frame ID: 22—-32 bits (see Figure)

- “Reader/writer” dependence information (could bsiraple counter value, for example 16
bits) (e.g., the “synchronization counter”)

- Thread owner: 16-32 bits (depends on scope of enigs)
- Permissions: 6 bits at minimum (r|w|x for eactowher andnon-owner)

This yields a metadata record of 60—86 bits (8~jted) in size, significantly smaller than the
cache block.

Time Requirements The performance impact of managing frame recaras only be
determined through detailed simulation; howevelisipossible to get a rough idea of per-
operation costs. Worst-case operations require stegece of broadcast (e.g., see discussion
above contrastingcquire andreleaseoperations), which means the entire chip’s intenext
network would be dedicated for a length of timeuiegd to transmit roughly a dozen bytes of
information. The following graph shows for a rarggparameters what the cost to the system
is, in units of cycles per instruction, for updagtiframe records. This is the number of cycles
spent broadcasting frame-record update informaiioa dedicated frame-record broadcast bus,
per CPU cycle (during which 1000 cores are eaclcudi® their own instructions). The
parameters include the following:
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- Frame-record bus width: 4, 8, or 16 bits wide

- Average occurrence of memory read/write operati@dh5-0.40 per instruction (typical
application percentages are roughly one out okjhre

- Likelihood that any given memory reference causesresistency update: 0.0005-0.0015
(0.05%—-0.15%)—one would expect that this value wobk zero for workloads of
independent threads, low for workloads with littlearing between threads, and relatively
high for workloads that share significant data estwthreads

15

< 4 bit bus, 0.40 mem/inst
© B8 bit bus, 0.40 mem/inst
< 16 bit bus, 0.40 mem/inst

# 4 bit bus, 0.35 mem/inst
# B bit bus, 0.35 mem/inst
% 16 bit bus, 0.35 mem/inst
© 4 bit bus, 0.30 mem/inst
10 © B bit bus, 0.30 memiinst
o 16 bit bus, 0.30 mem/inst
< 4 bit bus, 0.25 mem/inst
< B8 bit bus, 0.25 memiinst
16 bit bus, 0.25 mem/inst

Cycles Stalled

0
0.0005 0.001 0.0015

Likelihood that Given Memory Reference Requires Frame Record Update

Figure 29: Cost per Cycle to Broadcast Frame Recosd

As the graph shows (Figure 29), the overhead o§istency traffic in a 1000-core chip is
likely to be extremely high: in particular, noteathany value greater than 1 indicates that the
traffic level is unsustainable, and nearly evergpdr is above 1. Workloads that share any
significant amount of data between threads—the wamkload set for which TERAFLUX is
intended—will require either wide consistency-imf@tion busses, or numerous busses, or
both. For instance, a design using a 4-bit congigtdus and a typical consistency update
ratio of one tenth of one percent (0.001) will riegb—10 independent consistency busses on
the chip to sustain execution throughput of oné&uesion per core per cycle. A design using
a 16-bit consistency bus and the same update f@®1) will require 2—-3 independent
consistency busses. Either way, the total widththef bus required—just for consistency
information—would be 20-50 bit lanes.

3.3.3.1TSU storage and time requirements (UNISI)

Given the estimates of storage and time overheads possible to propose an initial, approximate
design for the memory structures held within thdJT&d the interconnects tying the node-level
TSUs together. The TSU and its distributed systelireguire several obvious structures:

Frame-Record Cache The frame-record cache holds the frame/regioradas; this structure

is maintained at the node level, in conjunctionhwtite L2 cache. As discussed earlier, the
frame-record cache would need to hold roughly tmeesnumber of records as the number of
unique regions and/or frames held in the L2 caphs, extra records to manage the consistency
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for temporarily unavailable frames. The total numtiierecords required can be estimated to be
equal to the number of blocks in the L2 cache.

The frame-record cache would not need to maintaiot snclusion with the L2 cache; it is
certainly possible to support independent lookups refills for both the data/instruction cache
and the frame-record cache. Thus, while the casbd to hold the frame records would need to
be associative, it would not need to be a fullyoasgive CAM. Given the large number of
records, a moderate degree of associativity woikdelyl suffice (this, however, should be
verified in simulation). For example, a startingirmofor design exploration would be 8K
entries, each of 8 bytes (requiring 64KB of stojafee whole cache organized as 8-way set
associative.

* Communication Buffers. TSUs must handle inter-node communications toageanglobal
consistency issues. Given that any core can regaéstirom any other core (other than issues
of address-space privacy enforced by the operagiatgm, TERAFLUX insists that there be no
limitations on the regions of memory that can derenced by a given thread), TSUs could be
handling as many simultaneous outgoing requesthere are cores in a node. Further, if
requests take multiple cycles, say N, the numbeutstanding requests could grow by a factor
of N. Therefore, each TSU will require a set ofdf@aite communication buffers to hold
messages until they have been processed. A stambiimy for design exploration, assuming a
node design of 32 cores, would be a 64-entry ontgponessage buffer and separate 64-entry
incoming message buffer, each organized as a $ellychable CAM but also able to maintain
local message ordering (e.g., FIFO insert, fullgoasative lookup, much like a traditional
reorder buffer).

* Consistency BusAs briefly analyzed above, it is likely that tbleip-wide consistency bus will
require several dozen bit-lanes to ensure sustaigiaba movement; note that this is in addition
to the chip-wide data bus. Assuming that the ratioonsistency messages to data messages is
slightly higher than 1 (every data miss will likelsequire corresponding consistency
information, but not every consistency message w@fuire corresponding data), the
consistency bus will need slightly higher mességeughput than that of the data bus. It is also
likely that an optimal choice will match the numludrcycles needed to transmit a consistency
packet on the consistency bus to the number okesyateded to transmit a data packet on the
data bus. E.g., transmitting an L1 cache blockizd 82 bytes on a data bus of 32 bits will
require a minimum of 8 cycles; the consistencyfousuch an organization should be designed
to take that many cycles or fewer to deliver a @aacy packet. A starting point for design
exploration, assuming a 32-byte L1 cache block an82-bit data bus, would be an 8-bit
consistency bus. This would require 8 cycles togmait up to 64 bits of frame record and op
code. The graph above suggests that a minimum Dirglependent consistency busses would
be required to maintain throughput, depending omarg-request mix. The final number of
consistency busses would have to be a least one than the number of independent data
busses. As the section below suggests that 2—3daiatbusses would be required, the number
of consistency busses will not have to be increasagly to accommodate a large number of
data busses.

More efficient solution are under exploration, sashmerging this information with the TLBs, but the
above discussion can clarify the limits of a triadial separated implementation. More recently, BSC
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has shown that the current protection mechanisesjaite rudimentary and a finer-grain isolation
can be done efficiently (ISCA-2014 paper [33]).

Other details are provided in Section 4.2.2.
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4 Abstraction Layer

4.1 Abstraction layer for reliability (UAU)

From the reliability perspective, the abstractiayelr has to hide the effects induced by hardware
faults from the application layer. Therefore, ttERIAFLUX Node Manager (D-FDUs and D-TSUS)
provides an abstraction of the underlying systaranavhen low-level components are suffering from
permanent, transient, or intermittent faults.

4.1.1 Abstracting from faults

To describe the abstraction of faults to the apgilbm level we illustrate the fault tolerance wadokf

in Figure 30. The D-FDU implements two main funotities to provide the fault abstraction. First,
it gathers health state information from its adfitéd processor cores by the heartbeat message
mechanism. Thereby, the D-FDU identifies corrugtgdyd components, such as failed processor
cores and routers. In addition, faulty dataflowetd executions are determined by a Double
Execution presented in Deliverable D5.4. Secorel OH-DU creates two different datasets from the
gathered information regarding the performance loifipas of its node. One detailed dataset is
published to the D-TSU to allow a fine grained tpkicement, including precise information of failed
or failure prone components. The other dataset asengeneral and includes an aggregated and
abstract health status of the whole node. Therldtgaset contains no direct information of which
component is broken, since this information is ardgd by the D-TSU.

Service Layer
(Ressource Management & Scheduling)

Coarse Grained ]
Task Management 4(—
[

Workload Aggregated Aggregated
Pack
ackage " Load Status |Health Status

Abstraction Layer
(Node Manager)

Fine Grained i
! Fault
Task Management H Detectlon/Locallzatlon

D-TSU I

D-FDU

Dataflow
Threads Core Monitoring

. (Heartbeats)
Physical Layer

(CPUs)

o) ] (o] o] X e

Figure 30: The TERAFLUX abstraction layer from the fault tolerance point of view.

The high-level administrative units, such as thp-level scheduler rely on the abstracted health
status, as well as on the work load status proviethe D-TSU. This status is needed since faults
will eventually degrade the amount of processingabidlities of that node, arising local overload
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situations when more workload is assigned to tbhiden Based on these two datasets, the top-level
scheduler is able to create coarse grained workioackages, without the need for detailed
information about the actual node’s physical caodit

The nodes’ D-TSUs, however, rely on those detaitddrmation, in order to react on faulty
components. While it informs the high-level admirasive units, it is also responsible to perform
recovery actions, to ensure a correct thread edxgcutherefore, it migrates dataflow threads from
permanent or intermittent faulty cores to moreatdk ones. Furthermore, it prevents newly assigned
threads from the higher level units to broken cores

Since the recovery mechanisms play an essent@imdhe abstraction layer, we also present a short
introduction in local thread recovery and globadteyn recovery. Later on, we will also motivate the
interconnection network fault localization for itse in the TERAFLUX abstraction layer.

4.1.2 FDU/TSU Checkpoint/Restart Mechanism

For thread recovery and its check pointing system,need to distinguish between three different
levels within the TERAFLUX architecture; core-levabde-level, and system-level. Each level poses
different challenges but also provides advantages whe other. We start with a short description of
the core-level mechanisms and continue with theededel and system-level mechanisms. Please
note, that more detailed information are availabl#ne Deliverables D5.3 and D5.4.

4.1.2.1Core-Level Thread Restart Recovery

On core-level the restart functionality leveragas inherent existing checkpoints between dataflow
threads. These checkpoints are natively generatetlvd factors. First, a dataflow thread is only
allowed to be executed, if all its input operands available. Second, the communication of threads
takes place only at the end of a thread executidnisideferred until the D-FDU confirmed the fault
free thread execution. This means, if a thread suasessfully and fault-free executed, the resulting
outputs from the thread execution are stored tsutsessor threads. By the time all input operands

a certain successor thread are available, the pbatlfor this particular successor thread is redch
because no other thread is now able to alter ttaewdi#hin the successor’s input operands.

A faulty thread execution, however, will triggeretthode manager’'s thread restart recovery
mechanism. This means in the first step, the D-Ridtlfies the D-TSU about the failed thread
execution and the core, which was responsible Herfailed thread execution. The D-TSU in turn
stops all activities of this particular core aneéal®cates all threads assigned to the faulty msoce
core. The information of all thread assignmentased in the D-TSU’s Thread-To-Core list.

For the case where faults are rather seldom, a opimmistic approach may be preferable. Therefore
we extended the double execution based fault deteatcluding a speculative start of successor
threads as soon as the starting condition fortthrisad is met. This also includes, that the success
thread may work on corrupted operands induced Egult within a former thread execution. This
extension of double execution raises the need fmoader checkpointing mechanism covering more
than the core’s write buffers, which will be dissed in the next two subsections. For detailed
insights in both pessimistic and optimistic doublecution, we refer the reader to Deliverable D5.4
section.
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4.1.2.2Global Recovery

The node-level recovery mechanism is dedicatedifaations, where optimistic double execution is
applied and the communicating dataflow threadsleesi the same node. In such a case, the D-FDU
can create a checkpoint after an arbitrary threadngitment, including the node’s frame memory
region from within the global memory. In additiche D-TSU creates a backup of its own context,
which also contributes to the checkpoint.

All subsequent writes to the node’s frame memoeytaenlogged by maintaining a log of all changes
to the node’s frame memory. In case of a faultgddrexecution after the checkpoint was created, the
D-TSU only needs to restore the backup thread fran@eory and its own context for recovery. As a
side effect, newly allocated thread frames do eetdnto be part of this log, since these threaddsam
will be re-created after the node recovery

In the last case we consider thread communicatewosa node borders along with the optimistic
double execution. In this case, the node managenesds to safe guard the full system to recover
from faults, as faults may be propagated to théajlonemory and thereby may be spread out into
several nodes. Since the node management unitstDai8 D-FDU are autonomous within each
node, there is a need for negotiations betweenaalés in order organize both creating a consistent
global checkpoint and the fault recovery. We immpeted a two-staged mechanism to create a
consistent global checkpoint.

In the first stage, the node managers negotiadgtee that a new checkpoint should be created. This
implicates, that all node managers wait until tlemdging write operations from inflight dataflow
threads are finished. All subsequent write attengwts prohibited and thereby stopped. After a
successful negotiation, each node manager staretde a checkpoint for its own node as described
above. After this has been done, the system carepdowith the thread execution. The system-level
recovery and checkpointing is also detailed in D5.4

The reliability abstraction layer guarantees tta hardware always appears fault-free, even in the
case of intermittent, permanent, or transient $ainlthe cores. In the following, we will descrilb@w
the architecture guarantees the transparency h$ tauthe application layer.

4.1.2.3Abstracting from Transient Faults

In the case of a transient fault, our fault recgvaechanism ensures that the faulty thread willehe
executed. Since the fault was transient, the faudtg is still used for further workloads. If thesgem
uses thread restart recovery, the fault just ldadan increased thread execution time, since the
execution of the faulty thread must be abortedrarekecuted.

However, if the system is operating in global systecovery mode, then the whole system is rolled
back to safe, fault-free state. In this case, lbbaj execution is degraded, since all threadsthad
global memory must be recovered to a global anel Stafte.

4.1.2.4Abstracting from Permanent/Intermittent Faults

If the system is suffering from a permanent orrmigent fault, identified by the D-FDU the node's
D-TSU will decided to shut-down the core. Thendbee will no longer be used by D-TSU to execute
subsequent threads. In this case, the node's penfiae is permanently or temporarily degraded. This
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means that the workload can no longer be evenlirilglised to all nodes. Instead, the D-FDU
determines the current performance of its node, iafdms all other D-FDUs about the reduced
performance of the node. In this case, the noda-IBeTSUs adjust their scheduling, in order to
prevent overloading situations of certain nodes.

4.1.2 5Fault localization on NoC-Level

The interconnection network has a significant imipae the processor performance as soon as
bottlenecks may arise, which consequently slowsrdoammunication. These counts especially if
threads communicate with each other and do ndtestacuting until all their operands are available.
Therefore, it is a good idea to take advantagehefhiealth state information of the interconnection
network as well, since work package assignmentsparéormed onall levels. However, as the
abstraction layer hides specific insights of phgiiconditions from the high level administration
units, the D-FDU also aggregate the health staftilseonode’s interconnection network. So the top-
level scheduler may also consider the availableaith of a node, when creating a work package
for that node.

The Localization is performed by the D-FDU and inmvates health state messages (or so called
heartbeats) sent from the monitored cores withio@e. Although these messages are not altered for
fault localization within the node’s network, thestrictive way these heartbeats are transmitted
through net network allows us to extract additiomdbrmation regarding the network. The main
restriction for heartbeat messages is the strining determinism, achieved by isolating these
messages from each other and application messages.

Any deviation from the timing determinism, thataslelayed arrival of a heartbeat message, can be
interpreted as an indicator for a faulty networknponent. These delays are caused by detours a
heartbeat message needs to take to circumventlty fauter/link. Since the routing for heartbeat
messages is also well known, the D-FDU considetHermoment all affiliated network components
as suspicious. Heartbeats that arrive in timeeaDiFDU rehabilitate all affiliated components be t
message’s path. Delayed heartbeats instead steangfie suspicious values for certain network
components. So in other words, the more heartbeasages arrive at the D-FDU, the more accurate
becomes the assumption where the fault is locatethé network. A detailed description with
examples is given in the Deliverables D5.3 (basitalization concept) and D5.4 (extensions to
multiple fault localization).

4.2 Abstraction layer for performance (UNISI, UCY)

4.2.1 Dynamic Scheduling in DDM (UCY)

During year 3 of the project, a dynamic schedujpadcy for the DDM-style runtime was created.
This policy distributes the threads to the cores iway that maximizes load-balance. It schedules
ready threads to the Waiting Queue that has thet lmamber of entries. In case a core is idle for a
certain time period, it might take some of the Viogkli of another core. Since all threads are side-
effect-free, work stealing is allowed. As descripils mechanism can be used as a support for the
abstraction layer. It is possible to have a vidiogbhysical translation table to allow for the
virtualization. Work is assigned to cores accordimgheir availability. If a core is determined lie
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faulty from the FDU, the entry in that table canrbarked as unavailable and thus dynamically no
more work will be sent to that core. Also if a coeaches a thermal limit, it may also be marked as
unavailable for a certain period of time. In adufitiit is possible to change dynamically the total
number of cores that are used for the applicatishljy making some of the cores unavailable.

4.2.2 Virtual memory implementation in TERAFLUX arc  hitecture (UNISI)

The virtual memory model is intended to simplifyaghg, as the chip is clearly intended to support
extremely wide parallel threaded applications—apospd to running 1000 different, unrelated
applications at the same time. Because protecsomonetheless important (it will be used to
implement the various memory-consistency modets)jmplementation must be simple and low-
overhead. Translation from virtual to physical af$es must be done, but it can be done at a
relatively large granularity—e.g., there is no neéedetain the traditional 4K page size, especially
considering the typical multi-GB-per-socket mainmagies available today. Shared memory can be
both simple (e.g., in a way that avoids the cadlmdlpms of virtual-address aliasing) and flexible
(e.g., in a way that allows virtual-address aligkin

Proposal

Understanding that the specific sizes are yet tddtermined (e.g., the size of the physical pape si
and the number of regions in the virtual space, intual-memory implementation presented here
has the following general characteristics:

* The architecture uses a 64-bit virtual addressBG@bit global address, and a 48-bit physical
address;

* Process/thread address spaces are comprised cédpetwundreds and tens of thousands of
equal-sized regions (which can be called “framesgch uniquely identified by a region ID,
managed by the TSU system. It is likely that redi@s would be between 6 bits and 16 bits, so
as to keep the size of the ID tables as small asilple, thereby enabling them to be held
entirely in hardware (as opposed to being cacheth a page-table-cum-TLB arrangement);

* Frames/regions are mapped through the ID table tmgoglobal address space, which is
comprised of between #illion frames (corresponding to a 6-bit region ID) andbilion
frames (corresponding to a 16-bit region ID); thesch frame is uniquely identified within the
global space by a large (22-bit to 32-bit) Frame 1D

* There is a one-to-one mapping from the 80-bit dlamdress space to the 48-bit physical
address space, enforced by the operating systemginra global page table. Note that no such
limitation on mapping exists between the 64-bituat space and either the global space or the
physical space; each thread can map its memonyetglobal space however it desires, up to
the limitations of the protections enforced by dperating system;

* There is a many-to-many mapping from each threadidress space to the global space,
enabling virtual-address aliasing at the processdthlevel,
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* Memory is shared at the frame granularity, and g¢hcbad can map a given frame using a
different protection (e.g., one thread can sedrtmae as read-only, while the other can see it as
write-only);

* Memory is translated, i.e. also relocated, at ttangjarity of large (e.g., 64KB-1MB) pages;
this is the minimum amount of memory that can becated. However, it could very well be
that space could balocated but not actuallyused (e.g., reserved in main memory but never
written to).

Figure 31 shows the relationship between the varaaldresses and the hardware mechanisms used to
provide translation and protection. It shows théreares of the possible design choices: the top
example illustrates a 16-bit region/frame ID (cepending to a 64K-entry ID Table) and a 1MB
physical page size; the bottom example illustrategbit region/frame ID (corresponding to a 64-
entry ID Table) and a 64KB physical page size.

As is well known, this type of segmented mappinguagement, in conjunction with a global page
table, solves the aliasing problem for virtual esch

The ID Table should be small enough to be an ataléd in the hardware, or—if simulations support
such a design decision—a sparsely populated talole & a small CAM. Its purpose is to handle the
verification of protections & privileges, and to pmaddresses from the process/thread virtual address
space to the global address space, both at thelgray of regions or frames. Because the ID table

a core-level hardware resource, its overhead mestad small as possible, in terms of both
performance impact and power impact. The TLB shaakide at the chip level, but if simulation
suggests that inter-thread sharing will be mininalnode-level TLB could be used instead. As
mentioned above, the virtual memory architecturaildiause virtual caches while allowing cache
synonyms.
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Figure 31: Virtual memory architecture, two extremes. Top and bottom figures illustrate different extranes for
Region IDs, Frame IDs, and physical page sizes. Thieread uses 64-bit addresses that are mapped ategion/frame
granularity onto the global address space. Each press/thread address space is comprised of over a tisand of such

regions. The global address space is comprised d@ttveen millions and billions of such regions. Prottion
information is held in the ID Table, one of which ismaintained for every process/thread address spacend which is
held in a per-core hardware structure while the theead is running. The TLB caches page- table entries arithnslates
addresses from the global address space to the piogd address space at the granularity of large paggbetween
64KB and 1MB).

Hardwiring the Address Bits

Given appropriate TSU-level support, it is not resegy to hardwire regions of the virtual, global, o
physical space as having particular consistencyackeristics (e.g., by using one or more bits at th
top of the address to signify cached/non-cachaagk@iser, transactional/normal, etc.).

Hardwiring specific address bits to specific (artessarily software-exposed) memory behavior is
best done (a) when it is unavoidable, as in theSvidirchitecture, or (b) when it would be useful to

allow a user thread to turn such characteristiosh sas cached/non-cached, on and off for a given
object without having to go through the operatiggtem. E.g., if the top virtual bit is ignored as a
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address and simply indicates to the hardware whetheot to cache the referenced data, the thread
can change an object’s characteristics by chartgmgointer, without having to invoke a system.call
The implementation proposed here certaallpws the hardwiring of address bits; it simply does not
require it. This flexibility means that, should it be deed that it would be beneficial to expose
consistency in such a way, the implementation @adzomplished easily.

The downside of hardwiring address bits is thahdtessarily exposes hardware implementation
details to software: a design decision that camasily be undone (e.g., branch delay slots in the
MIPS architecture, which were lauded for in-ordgrepnes but caused enormous headaches for the
high-performance out-of-order implementations tlatne much later). In general, any design
decision that blurs the distinction between implatagon and architecture should be thought through
very carefully to avoid any unnecessary future tétmns.

4.2.3 TLBs integration in the TERAFLUX architecture  (UNISI)

Virtual memory is a requirement of the system, Whécggests the use of one or more TLBs. While
eliminating all TLBs is certainly a realistic desigption, the performance of doing so is only
acceptable when the cache system is large enougitdmmmodate both the application and the
operating system, i.e., significantly larger thahaitvthe application needs by itself. Given that
integrating 1024 cores on a single chip is likaylitnit significantly the amount of on-chip cache

available, it seems likely that a TLB will be rempd.

As for the TLB architecture and the location of ttranslation point, there are three obvious
possibilities to consider:

* OneTLB per core

This allows each core to have its own virtual spabaring between cores must be through the
physical space. Any shared caches use physicakssll, thereby simplifying the virtual
address aliasing problem. Any modification to theBIresident meta-state of an address (e.qg.,
its virtual-to-physical mapping) would require bdoast to the core-level.

Expected power per chip, only for TLB-based tratista 200c, where c is the expected power
dissipation for a single core. Therefore, 20% qndbexpected chip power

Advantages simple programming model

Disadvantages high power dissipation, TLB shootdown issuesesgéth cores

* OneTLB per node

This effectively creates a separate virtual space#&ch node, but all communication outside of
the node is physical. Sharing between cores with@ node is through virtual addresses;
sharing across nodes is through physical addrelNsele-level shared caches would most likely
be physically indexed, virtually tagged (i.e., what commonly used in x86-compatible

2. The power overhead of the TLB is approximated(® of the power of a single core, consistent wéttent results.
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architectures today). Any modification to the TL&sident meta-state of an address (e.g., its
virtual-to-physical mapping) would require broadaasy to the node-level, not the core-level.

Expected power per chip, only for TLB-based traimha 10c, where c is the expected power
dissipation for a single core. Therefore, only 18dap of expected chip power.

Advantages low power dissipation, less consistency-relatethmunication than a per-core
TLB

Disadvantages TLB shootdown overhead scales with the numbercaks (i.e., with the
degree of sharing, not with the number of TLBshesue creates a complex shared-memory
model that depends on whether a collaborating thi®eesident on the same node or not (e.g.,
threads can use the same virtual address for agshegion if they want to, but only if they are
co-resident on the same node, otherwise they maesiphysical addresses to share), separate
node- and/or core-level mechanism required for gmtdection at the frame-access and/or
cache-access levels,

* One TLB per memory channel

Given that the memory channels connected to thp whii be managed by the operating
system, this effectively shares a single virtualcgpacross the entire chip. Core- and node-level
caches would be virtual; any chip-level cache wdgdphysically indexed, virtually tagged.
Modifications to the TLB-resident meta-state of @ddes (e.g., virtual-to-physical mappings)
would require no broadcast.

Expected power per chip, only for TLB-based tramsta 1c, where ¢ is the expected power
dissipation for a single core. Therefore, less thnoverhead.

Advantages low power dissipation, TLB shootdown eliminatextremely simple model for
shared memory

Disadvantages must deal with virtual-cache aliasing problem igthis solved, see below),
separate node- and/or core-level mechanism reqiiredata protection at the frame-access
and/or cache-access levels

Note that the TLB handles translation tasks, armghedding on the TLB’s placement within the
hierarchy, it could also handpeotection tasks as well. If the TLB is located at the careel, then it

can handle all operations, both translation andeptmn. If the TLB is located at the node or chip
level, however, a separate mechanism will be reduat the core level to handle protection tasks
(e.g., verifying access privileges for read/writeess to frames, read/write access to shared memory
correct sequencing of transactions, etc.). Noteé ttmalD Table, described in the Virtual Memory
section below, could provide this function.

4.2.4 TM Interface (UNIMAN)

In year 3 UNIMAN has developed an interface betwdenabstraction layer and the actual
architecture with respect to TM. For the abstractayer, we indicate that Transactions can
be nested using closed nesting behavior.
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In WP3 D3.3 there is more information about howaflatv and TM is allowed to be
combined in abstract level.

The TM interface is the following:

* tm_begin- Marks the start of a transaction. Speculativecakion begins and stores
are isolated from this point on.

* tm_end - Ends a transaction and performs conflict detacin case a conflict has
occured, execution is squashed from the pointehthtching tm_begin. Execution
returns to the start of the transaction.

* tm_abort - Explicitly aborts a transaction. Execution isigghed from the point of
the matching tm_begin. Execution returns to the sfahe transaction.

Transactions can be nested. Closed nesting beheviprovided. The simulator modules
reported upon in Deliverable 7.4 implement thigifece.
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5 Conclusions

In the last period, WP6 focused on the TERAFLUXeFinned Execution Model and the Abstraction
layer. In the TERAFLUX Fine-tuned Execution Modeé wrovided (i) support for the evolution of
the programming model, (ii) advance scheduling raagm and (iii) Advance Memory management.

Two Hardware implementations, one for the DDM-stghbeecution model and the second for the
HTTS (Hardware TaskSuperScalar) have been developgidg FPGAs. Both implementations
provided actual timings that can be used in the ABRJX architecture and they achieve very good
results.

We have developed two DDM-Style software platforthe TSU++ and the TFIuxSCC. The
hardware HTSS has improved significantly the Tagk®del. A token based transactional memory
system that keeps a check on the number of poflgntanflicting transactions running in a
Transactional Memory system.

Two contributions were made for the Advance Schadul(i) The Scheduling of DDM-style
execution that supports: Dynamic, Static, Roundimolband Modulo scheduling. (i) The
improvements to the Hardware TaskSuperScalar hedeced the resource utilization compared to
the initial design and at the same time the tabkdualing throughput has been increased.

For the advance memory management we have intrddu@®ssible implementation of the memory
consistency mechanisms for all the memory type§FEBRAFLUX: Frame memory, Thread local
storage, Owner-Writable, Code memory and Trangaaitimemory.

The abstraction layer was designed to hide thetsfiaduced by hardware faults from the application
layer. The collaboration between WP5 and WP6 Imabled TERAFLUX to tolerate faults at all
levels of the system. Dynamic scheduling, suppast fransactions and virtual memory
implementation are other features supported bylis¢raction layer.

Overall, WP6 has achieved all of its goals and ha&lge added work that was not envisioned at the
proposal such as the Hardware (FPGA) development.
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