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Glossary

D-FDU Distributed Fault Detection Unit

DF-Thread A dataflow thread

D-TSU Distributed Thread Scheduler Unit

ECC Error Correction Code

EDC Error Correction and Detection

FM Frame Memory

Leading Thread Represents the forerunning threatidn
Double Execution approach

L-FDU Local Fault Detection Unit

L-TSU Local Thread Scheduler Unit

MAPE Acronym for Monitoring, Analysing,
Planning, and Executing

NoC Network-on-Chip

Node Group of cores and additional
TERAFLUX hardware units

SPSC Single Producer Single Consumer

TDMA Time Division Multiple Access

Trailing Thread Represents the trailing thread thie
Double Execution approach

QoS Quality of Service
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Executive Summary

This deliverable reports on the research carrigdrothe context of DoW Task 5.4 (project months
36 -51) ‘System Integration Analysis, Measurement and Tunin@f the Reliability Systent:

* We integrated optimistic and pessimistic Double dex®n, two redundant thread execution
mechanisms, in the TERAFLUX architecture.

* We integrated a global error recovery mechanismtim TERAFLUX architecture.

* We quantified the overhead of pessimistic and dptim Double Execution and local and
global error recovery in the TERAFLUX architecture.

» We quantified the overhead of heartbeat messagethenNoC and developed a fault
localization scheme in the interconnection networkmultiple link faults.

* MSFT integrated their fault tolerant operating systconcept into the architecture.

Hence, all goals of WP5 for the fourth year werkieved.
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1 Introduction

In the Deliverables D5.1, D5.2, and D5.3 we presgiigbncepts to improve the on-chip reliability for
a future parallel architecture. These conceptappied at different levels: the core level, No&ele

and OS level. At core and OS level, we were ableverage the coarse-grained dataflow semantics
in order to implement efficient fault detection (e Execution) and recovery mechanisms (thread
restart recovery). On NoC level we exploited hesatbmonitoring to incorporate a network-on-chip
fault localization mechanism.

This Deliverable D5.4 focuses dBystem Integration Analysis, Measurement and Tuninthe
Reliability System

In detail Task 5.4 requests:

“In this Task the developed techniques are integgtanore tightly into the overall architecture. To
evaluate the benefits and the performance of tlupgsed methods, the system is measured with
specific benchmarks and applications. The develdpethiques will be tuned and optimized for fault
detection capability and minimal space and runtioverhead. Further verification of the reliability
features is performed through pilot studies.”

On the core-level, UAU developed optimistic andgimsstic Double Execution variants to improve
the runtime overhead induced by the redundant dhes@cution of Double Execution. Optimistic
Double Execution also demanded for an additionabwery mechanism. Therefore, we extended the
node recovery mechanisms proposed in Deliverabl® Bbsupport a coordinated global checkpoint
mechanism. Finally, we integrated optimistic andgmistic Double Execution and local and global
thread recovery in the TERAFLUX simulator [1] [2leveloped in WP7. Based on this integration,
we were able to quantify the overhead induced bymigtic and pessimistic Double Execution, as
well as the overhead induced by the coordinatethajjlaheckpoint mechanism. Finally, we also
investigated the recovery overhead for a systerh ith@onstantly suffering from a high rate of
transient faults.

On NoC-level, UAU deepened the investigation froearytwo (Deliverable D5.2) of the impact of
message based fault tolerance mechanisms on dplicaessages. We could show that under
different traffic patterns (applied to applicatioressages) the proposed Staircase routing straéegy c
significantly relax the impact of Heartbeat messagéhin the NoC. Furthermore, we examined the
capabilities of the fault localization techniqueveldped in year three (Deliverable D5.3) regarding
multiple faults within the NoC. We identified praphatic fault patterns (distributed in space and
time) of multiple faults, which prevent succesdhullt localizations and give a quantitative resudt
the portion of these patterns compared with alkiiibs patterns.

On OS-level, MSFT focused on their distributediatde operating system to manage the dataflow
thread execution. They integrated their work alsdhe COTSon simulator, which implements a
shared memory model for highly-parallel architeefwrith acquire/release consistency.
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1.1 Fault Tolerance Concept

Since most of the optimizations and evaluations la@meed on mechanisms reported in earlier
deliverables and publications [3] [4], this sectimeludes a short recap of the background work
described in the Deliverables D5.1, D5.2 and DE®&: the reader’s convenience, we start with a
summary of the previously introduced on-chip fatdterance concepts. For a more detailed
discussion of these concepts please refer to thedbebles D5.1, D5.2, and D5.3.

1.1.1 Monitoring of Cores and Interconnect by perio  dic Heartbeats

1.1.1.1Fault Monitoring by periodic Heartbeats

In order to transmit fault information from the edocal FDUs (L-FDU) to the distributed FDU
(D-FDU), we proposed special status messages (esas), carrying health state information of the
respective processor core. To gain the core statoisnation, the L-FDU may read the performance
counter registers, as they are available in curx86t cores. Once gathered the information, the L-
FDU generates a message and stores the gathewmrdhatibn in it. Before sending this status
message to the affiliated D-FDU, the L-FDU has tmtwntil it gets a certain time slot. These time
slots are meant to separate heartbeat messagés thighinterconnection network. The reason for the
separation lies in the D-FDU, since a missing et message indicates the loss of a processor core
(without the distinction of a broken core or a discected core).

1.1.1.2Fault Localization on NoC-Level

The fault localization within the interconnectioetwork is also based on the periodic heartbeat
messages. Together with a deterministic routingtefly and a prioritization method (Quality of
Service, Qo0S), we are able to calculate the estdnatrival times of all heartbeat messages. The
precise arrival time is used to check whether atbeat message was transmitted correctly (in terms
of its route through the network), or not. Whenessage is delivered late, we can infer that it neds
transmitted via the intended route, which indicdtes there is a faulty element somewhere on this
route. In this first step, we assume all the nekwawmponents corresponding to this route to be
suspicious. On the other hand, if a heartbeat rgesisadelivered in time, we may rehabilitate former
suspected elements corresponding to this routendbis for all heartbeat messages and their routes
through the network, we are able to localize pmedgissingle faults within the interconnection
network. For a detailed presentation we refer gagler to Section 3.1.1 of Deliverable D5.3.

1.1.2 Leveraging Dataflow for Fault Detection and R ecovery

As stated before, the fault detection and recowveechanisms exploit the TERAFLUX dataflow
execution model.

1.1.2.1Fault Detection by Double Execution

The concept of fault detection is implemented bgurelant execution of dataflow threads, called
Double Execution. The basic Double Execution meidmaris able to support special and temporal
redundancy. Double Execution leverages the data#xecution semantic to provide efficient
solutions forthread duplicationinput replication andoutput comparison
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Thread Duplication. Since dataflow threads are side-effect free amdi t es are only assigned
once before the thread starts (for the T* instarddis. D6.2, D7.4 and [16]), only thentinuationof

a thread needs to be copied for Double Executighinvia node. The dataflow execution model
thereby eases the dynamic duplication of the tlséadDouble Execution.

As Double Execution uses the dataflow threads @&mundant execution, the input data of the
redundant dataflow threads must be consistentlcegpd.

Input Replication The execution of a dataflow thread only dependstoithread frame. Since the
thread frame is immutable after the synchronizatonnt has reached zero, both redundant threads
are allowed to read the input data from the sameathframe, because data inconsistencies between
redundant threads induced by race conditions otwwoenttread andtwite operations are
impossible.

TSU PE 1 PE 2 D-FDU

Time

. intid=tschedule(sc);

id=3;

int id=tschedule(sc);

9‘ \ id=3:‘! !

Figure 1: Input replication for tschedule instruction.

However, beside the input data from the thread dram redundant dataflow thread can issue
t schedul e instructions to dynamically create subsequentattise In Deliverable D5.3, we have
described a technique to guarantee consistentithibesafor redundant threads (see Figure 1).

Synchronization and Output Comparison.Double Execution threads are synchronized for tesul
comparison on thread level. Therefore, the syncéhadion frequency depends on the executed
application and the length of the dataflow threddsorder to reduce the synchronization overhead,
CRC-32 signatures of the redundant threads’ wete are created and compared. Faults can only be
detected, when the thread pairs synchronize, wirielns that the average fault detection latency
directly depends on the application's average ldatahread length.

Optimizing Double Execution Based on the original Double Execution concepg further
developed two different Double Execution variamiBich have influence on the recovery mechanism
and the containment of errors in the architecture:

» Pessimistic Double Executigressimistically assumes that faults are frequedtracovery is
often triggered.

* Optimistic Double Executiotries to optimize the fault-free case by an opticommit of
the dataflow threads.

Deliverable numbem5.4

Deliverable nameSystem Integration Analysis, Measurement and Tunig of the Reliability
System

File name: TERAFLUX-D54-v8.doc Page 12 of 60



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1.1.2.2Recovery

In the Deliverables D5.2 and D5.3, we developetiraad restart mechanism and a node recovery
mechanism, which both make use of the dataflow i@t model.

Thread Restart RecoveryThe functional semantic of the execution modelvents dataflow threads
from accessing the global memory beforettdest r oy instruction (for the T* instructions s. D6.2,
D7.4 and [16]) is called by a thread. This enaliesD-TSU to directly control all memory accesses,
which are able to manipulate the global systenestatcordingly, the dataflow thread boundaries can
be seen as inherent execution checkpoints.

Based on the side-effect free execution model, wiscsupported by the TERAFLUX architecture
through the core-local write buffers and the spattvgly created continuations (see Deliverable
D5.3), the D-TSU can restart dataflow threads tover from faults.

Optimizing Recovery Although the thread restart recovery is transpat@ithe application level, the
programmer, and the compiler, its recovery capgbi restricted to the length of the dataflow
threads of the application. This means, long latdaalt detection mechanisms are not supported by
the thread restart recovery. Furthermore, optimiBtouble Execution makes it impossible to use
thread restart recovery. Therefore, we proposentla nheckpoint mechanism in Deliverable D5.3. In
this Deliverable we extended node checkpointing toordinated global checkpointing mechanism
which supports global checkpointing of the TERAFLystem across nodes.

1.2 Document structure

In Section 2 we present pessimistic and optimigtisions of Double Execution of dataflow threads.
Additionally to the thread restart recovery, we atid®e a global recovery mechanism for the
TERAFLUX system. Section 2 also includes quanti&atiesults regarding the induced overhead of
these mechanisms.

Section 3 presents extended work on the fault iiatbn mechanism, including an investigation of
the impact of prioritized heartbeat messages upplication messages, an extensive investigation on
multiple faults within the interconnection netwodnd an extension to our previously started network
topology consideration from a fault tolerance peciipe.

Section 4 describes the operating system faurdoce mechanism across different TERAFLUX
nodes.

1.3 Relation to other deliverables

» The monitoring concept, the heartbeat message qnist@nd the D-FDU MAPE cycle are
part of Deliverable D 5.1.

» The Double Execution principle and fault tolerantdware extensions are described in the
Deliverables D5.2 and D5.3.

» The described recovery mechanisms are also usateinfTERAFLUX abstraction layer
described in D6.4.

» Deliverable D7.5 describes the example executioarobptimistic and pessimistic Double
Execution run for one TERAFLUX node for the Fibocidzenchmark.
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1.4 Activities referred by this deliverable

This deliverable refers to the research carried ioufask 5.4 — System Integration Analysis,
Measurement and Tuning of the Reliability System also concerns the fulfillment Milestone
M5.4.
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2 Core-Level Fault Tolerance in TERAFLUX

This section starts with a description of pessiimiahd optimistic Double Execution. Furthermore, a
global recovery mechanism will be described andlffjnevaluation results of the execution overhead
are given.

2.1 Fault Detection

Compared to prior redundant execution mechanistike, [6] [6] [7], Double Execution (see
Deliverables D5.2 and D5.3) makes extensive usae@fTERAFLUX dataflow execution principle.
As described, dataflow execution is leveraged ficient solutionsof input replication redundant
thread synchronizatignand output comparisonBeside the advantages inherent to loosely-coupled
redundant execution mechanisms, Double Executi@s thot require permanent coupling between
redundant execution units, reducing the performateggadation when an odd number of processing
elements is permanently broken and provides supgodynamic time and spatial execution.

In the remainder of this sectiompessimisticand optimistic Double Execution mechanisms are
introduced to either optimize for fast recovery fast redundant thread execution. Finally, both
Double Execution variants are qualitatively compangth redundant execution schemes for control-
flow based multi-cores, regarding their input reglion, thread synchronization, and output
comparison techniques and the implications forrthee in massively-parallel architectures.

2.1.1 Sphere of Replication for Double Execution

Thesphere of replicatiomlefines the hardware region, where faults cangbected by a redundant
execution mechanism. Input data that enters therepghust be replicated in a consistent way for both
execution instances. Likewise, data that leavesphere of replication must be checked for faults,

otherwise faults cannot be detected at a lateesthgxecution.

Inter-Node

- Secured by ECC

- Additional fault detection
components

- Dataflow support

 Node 4f—f— Node 5=t= Node 6|
NoC

Node 1 p=t=Node 2 == Node 3

Intra-Node Input Procssng Element

= S
Crossbar

| PE1 || PE2 | ~ [ PEn

Figure 2: Sphere of Replication for Double Execution.
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Figure 2 shows the sphere of replication for tramsiintermittent, and permanent faults used fer th
enhanced fault tolerant TERAFLUX architecture.

Each sphere is restricted to one processor carerporating all core-local hardware components, i.e
the core itself, the private cache, the frame mgnieM), and the L-FDU. However, therite buffer
must be safeguarded by ECC, since the write sattbfead is kept in this buffer after the signature
has been created. Hence, a fault in the write bafter the CRC-32 signature was created cannot be
detected by Double Execution.

For the rest of the system, i.e. interconnectiawaiks, off-chip memory, and the memory controller,
we assume that efficient information redundancy hmaetsms, like ECC or EDC, are employed.
Furthermore, we assume that the D-TSU and the D-Fb& safeguarded by special hardware
designs.

2.1.2 Pessimistic Double Execution

Pessimistic Double Executida a variant ofDouble Executionwhich pessimistically assumes that
faults occur frequent and recovery operations rbadfriggered often. As a consequerféessimistic
Double Executiottries to reduce recovery costs at the expensedoindant execution performance.

TSU PE 1 PE 2 D-FDU

Time

. start
1) // Leading
. start

2]

Trailing

finisheg

-

Figure 3: Pessimistic Double Execution.

2.1.2.1Execution Principle

Figure 3 shows, hoWwessimistic Double Executiavorks:

1. Thread start: The leading thread is immediately started, wheora is available and ready
for execution. The trailing thread is started, wkisnext core in the node becomes available.
The time between the start of the leading threatitha trailing thread is callestart slack
Since threads are started on their availabilitg stirt slackis determined by the utilization of
the node.
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2. Thread execution: During execution, the core of the trailing thréadfers allt wri t e (and
twritep) instructions in its write buffer. Simultaneoudlye L-TSU creates a CRC-32
signature of alt wri t es (andt wri t eps) instructions, incorporating the target thread ID,
the target address, and the data. The L-FDU oliefiding thread’s core also creates a CRC-
32 signature of al wri t es (andt wr i t eps); however, after signature creation the
twitestwiteps)of the leading thread are discarded. Since thayrailing thread
bufferst wri t es, the leading thread’s core can immediately sdeedaiting threads, when
the leading thread has finished. Other write opematto the thread local storage (heap or
stack) do not need to be buffered or incorporatetie signature, since they will be
automatically overwritten after recovery.

3. Thread end When a thread has finished execution, indicate@ bdest r oy instruction,
the core's L-FDU sends the CRC-32 signature tdt@U. Since the results of the leading
thread are not buffered by its core, the core imédiately ready to execute the next dataflow
thread. In contrast, the trailing thread's core Imafdered the results in the write buffer and
must wait until result comparison to be able to notithem to global memory.

4. Result comparison:The D-FDU, which has been notified by the D-TSWuattduplication of
the redundant continuation, waits for the signauoé both the leading and the trailing
threads, compares them and informs the D-TSU aadwiiting trailing thread about the
result.

5. Thread commit or recovery: In case of a non-faulty execution of both thredtie, PE
redirects the buffered writes of the trailing thldea the TSU, which commits them to the
global memory and reduces the synchronization soahthe succeeding dataflow threads.
Finally, the D-TSU subsequently deletes the coatioms of the leading and the trailing
thread. If a fault was detected, the D-TSU inssube D-TSU to flush the core-local write
buffer with the write set of the leading thread atiscards all continuations created by the
faulty thread.

2.1.2.2Performance Overhead

Beside the doubled core utilization inherent toraellundant execution schemes, the overhead of
Double Execution compared to a conventional data#igecution is influenced by two factors:

A longer thread execution timgslack and signature verification) and tioke time of the trailing
thread (in case the leading thread finishes |&tm the trailing thread).

2.1.2.2.1 Longer Thread Execution Time

For the global progress of the systePessimistic Double Executidmehaves like a conventional
dataflow execution, since only the trailing threadllowed to commit its results to global memory.
However, compared to conventional dataflow exeaytibe time between start (of the leading thread)
and commit (of the trailing thread) is longer tHana non-redundant dataflow execution. The longer
execution time is affected by two factors: Tdtart slackand thecomparison latencyoth lead to a
deferred commit of the trailing thread, and hemclhger thread execution time.

2.1.2.2.2 Idle Time of the Trailing Thread
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While the core of the leading thread is immediatelgased for subsequent threads dftist r oy

has been retired, the trailing thread has to bufferresults of the dataflow execution in its write
buffer. During result comparison, the core of tteeling thread cannot execute subsequent dataflow
threads, since the core's write buffer would beewtise overwritten. Therefore, the core of the
trailing thread is blocked for further dataflow ¢hds until the D-FDU has finished the result
comparison and the core’s write buffer has beenaitied.

The blocking time is minimized, when the leadingetid always finishes execution before the trailing
thread. In this case, the core is only blockedotber leading threads until the D-FDU has compared
the results and confirmed a fault free executioB{dSU, which triggers the commit of the redundant
execution.

2.1.2.3Error Containment

Since pessimistic Double Execution buffers the cataional results of the trailing thread in the
core-local write buffer, possible errors cannotdistributed to the global system state, i.e. tlubal
memory, which can be accessed by all cores of yetem. In other words, error propagation for
pessimistic Double Execution is contained by thbesp of replication. As no global memory is
written until pessimistic Double Execution ensutks fault-free execution by comparison of the
signatures, the global system state does not mebd tecovered. Furthermore, since communication
between threads is only allowed, when dataflowatsecommit their results, no faults are propagated
until the fault-free execution is guaranteed. Th&ans that only the core must be recovered inafase
a faulty thread execution.

2.1.3 Optimistic Double Execution

To eliminate the performance overhead introduceith \wessimistic Double Execution for longer
thread execution time and the core’s idle time @anidcrease the parallelism of Double Executios, th
D-FDU can dynamically decide to uSptimistic Double ExecutiorHence, the D-FDU may analyze
that faults are very rare events and most threadsbe executed without suffering from a fault.
Accordingly, there is no need for a fast and sinmpt®very mechanism, but for an efficient redundant
execution. In this case the D-FDU can choOgéimistic Double Executioto speed up the fault free-
case of Double Execution.

2.1.3.1Execution Principle
In detail, Optimistic Double Executioworks as follows:

1. Thread start: Similar to Pessimistic Double Execution, the rathmt threads are started on
core availability.

2. Thread execution: During execution, the leading thread's core bsffatl twrite
operations in its core-local write buffer. Simukaasly, the L-TSU creates a CRC-32
signature of alt writes (andtwiteps). The L-TSU of the trailing thread’s core also
creates a CRC-32 signature oftallr i t es, however, thet(w i t es) of the leading thread
are discarded immediately after signature creation.

3. Thread end: When the leading thread has finished executiaticated byt dest r oy, the
L-FDU sends the CRC-32 signature to the D-FDU. Hamhore, the core executing the
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leading thread immediately commits the resultsléi@ memory without waiting for the D-
FDU to compare both signatures and the synchraaizabunts of the succeeding threads are
decremented. Unlike in pessimistic Double Execytitie D-TSU can immediately start
threads, when their synchronization count has ezhekro without waiting for the redundant
threads.

4. Result comparison:The D-FDU waits for the signatures of both thelleg and the trailing
threads and compares them.

5. Thread commit or recover: In the case of a non-faulty execution, the D-T@ld proceed as
usual. If a fault was detected, the FDU must tnighe global system recovery, described in

Section 2.2.
TsuU PE 1 PE 2 D-FDU
Time
start
Leading
° // start
Trailing
2]
commit Signature
© Signature
correct Comparison
(5]
N e N S

Figure 4: Optimistic Double Execution with reduced waiting time.

2.1.3.2Performance Overhead

Compared to the pessimistic variant, optimistic BleuExecution increases the utilization of
additional parallelism, since unchecked threads atewed to commit their results and to
optimistically spawn succeeding threads. Furtheeasult checking can be deferred to a later point
in time without reliability implications. The direcommit of the leading thread completely elimisate
the core blocking and hence the idle time.

In other words, optimistic Double Execution may ueel the performance overhead induced by
Pessimistic Double Executiohe increased thread execution time is reducedge she leading
thread is allowed to immediately commit to the gllobystem state without waiting for the trailing
thread. As a consequence, the trailing threads does not need to be blocked to wait for signature
comparison by the FDU, since the results have drbaen committed by the leading thread.

2.1.3.3Error Containment

The anticipated commit of the leading thread, mak@®ssible that erroneous results have already
been written to the global system state and magolasumed by subsequent threads. As such, errors
may be spread over the whole system until detection
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Since errors can be at any address in the distédoshared memory after detection, the recovery
mechanism must recover the complete global memeomysa DF-thread boundaries. In Section 2.2,
we propose an efficient global system recovery raeidm for single-node and multi-node
TERAFLUX systems, based on the coarse-grained Idataéxecution model, which can be used
together withoptimistic Double Execution

2.2 Recovery

The TERAFLUX dataflow execution model does not opitgvide advantages for fault detection, but
also for recovery from faults.

In this section, we will describe a global recovemgchanism, which exploits the coarse-grained
dataflow execution model. Since we must assume fthdt rates in future systems will raise, we
propose a hierarchical fault recovery approachs Theans, that we expect that some components,
like the cores’ pipelines and the local cachesnawee often affected by faults. In this sense, weais
local recovery mechanisms at core level, which @igplthe functional semantic of the dataflow
execution model to restart threads. This enablesthér cores to make forward progress without
global synchronization and wasting fault free compians due to recovery actions. On the other side,
some faults may have longer detection latencies the shortest thread runtime. Furthermore, some
faults may affect components, which are not covénedhe sphere of recovery of the thread restart
mechanism. For instance, intermittent faults wittine D-TSU, may lead to wrong scheduling
decisions or synchronization counts of the systBorthermore, in some cases longer checkpoint
intervals are required, e.g. to store the globsiesy state on a fail-safe storage. As a conseqgueece
developed coordinated node local checkpointing,ctvhis based on the TERAFLUX dataflow
execution.

The optimistic Double Execution mechanism in pattc requires a global recovery mechanism,
since a dataflow thread is allowed to commit pdgsfhulty results to the main memory without
waiting for the redundant thread to compare theltges

2.2.1 Global Error Recovery

Global Error Recovery in TERAFLUX implements a atioated node-local backward error recovery
scheme for a highly parallel architecture. Henbhe, TERAFLUX system periodically creates global
checkpoints, which describe a global state of ffstesn. Coordinated means that the node’s D-FDUs
coordinate the point in time, when a checkpoint b created, while node-local means that after the
nodes have agreed on a checkpoint, each D-FDlreidlte a checkpoint of its node.

2.2.1.1Node Checkpoints

The coordinated global checkpointing uses the ratdekpointing already described in Deliverable
D5.3. This Section presents a recap of node chaapg.

The D-TSU can establish a checkpoint of its nodtége after each thread’s commit. To create the
checkpoint, the D-TSU determines the start andagltiiesses of the current frame memory region in
the node memory (We assume that the D-TSU can sitbeglobal address space, where the frame
memory regions are mapped). Furthermore, the D-Tfdtes a backup of its current context and
stores it in the stable external main memory (& subsections for the evaluation).
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After the checkpoint has been established all spE#tw it es to the checkpoint's memory
region will be logged. This means, the D-TSU maimdaa log of all changes to the thread frames
within the checkpoint’s memory region. Newly allted thread frames must not be recovered and are
created outside of the checkpoint’s frame memories.

When a fault is detected, the D-TSU recovers toldse checkpoint by restoring the frame memory
log and its backup context.

Maintaining a new global checkpoint is done by updpthe start and the end addresses of the current
frame memory region and storing the current D-T®btext in the stable main memory. Finally, the
log of the previous checkpoint is discarded. Comagan global checkpoint mechanisms, with this
mechanism, we do not explicitly have to track tommunication between the cores. Additionally, we
only need to keep a backup of the current frame angmegion, instead of maintaining a log of the
complete main memory.

2.2.1.2Coordinated Global Checkpoint

Creating a global checkpoint of the whole systemcasnposed of two steps. First, all nodes
synchronize to agree that a global checkpoint lvéltaken.

Therefore, all nodes complete the dataflow writeraions currently in flight and forbid subsequent
threads to commit their results to the distribudbdred memory. Second, when all nodes have agreed
on the checkpoint, each node starts to create a-loodl checkpoint. After this has been done, the
system can proceed with the thread execution.

To create a checkpoint, the system complies wighfétiowing checkpoint protocol to coordinate a
new global checkpoint (see Figure 5):

* Synchronise
1. Synchronise with all D-FDUs
= D-TSUs finish their outstanding commits
2. ACK from all D-FDUs
* Create Node Checkpoint
3. Send messages to start checkpoint
= All nodes create node checkpoints
= During checkpoint creation local nodes can proosgdout committing to
main memory
4. ACK that the new checkpoints have been created
* Resume Execution on all Nodes
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Figure 5: Establish Global Checkpoint for 4 Nodes.

When the D-FDU has detected a fault, it triggets &lobal Error Recovery. The global recovery
works in the same way as the global checkpoint angisim:

e Synchronise
1. Synchronise with all D-FDUs
2. D-TSUs stop their execution
3. ACK from all D-FDUs
* Restore Node Checkpoint
1. Send messages to restore prior checkpoint
2. All nodes rollback their state
3. ACK from all D-FDUs that node recovery has beeisfied

« Resume Execution on all Nodes
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2.3 Quantitative Results

In this section, we present quantitative resultsdigtimistic and pessimistic Double Execution and
local and global recovery mechanisms.

2.3.1 Simulation Methodology

The simulation results were obtained from the TERBK simulator. We extended the TERAFLUX
simulator to support optimistic and pessimistic BleuExecution and thread restart recovery and
global checkpointing. We used 4 Benchmarks, whicerewcompiled with the TERAFLUX
OpenStream compiler:

» Cholesky (256x256 Matrix, Block Size: 8x8)
* Fibonacci (31, cut off: 19)

* Seidel (256x256 Matrix, Block Size: 8x8)

» Sparse LU (256x256 Matrix, Block Size: 8x8)

Furthermore, we hand-coded a matrix multiplicat{@60x160 Matrix, Block Size: 16x16), which
also uses the T*-instruction set extension (see@&2, 7.4 and [16]).

Finally, we show results that the redundant exeautipproach is able to scale with the number of
nodes in the system.

2.3.1.1System Configurations

We evaluated different single-node and multi-nodefigurations of the fault-tolerant TERAFLUX
architecture.

2.3.1.2Baseline Node Configuration Parameters

The baseline node configuration has 1, 2, 4, 8p82 cores, respectively. Each core is operaitng
1GHz and consists of an out-of-order pipeline vitetages, a maximum instruction window size of
128 and a maximum fetch and commit width of 2 indions per cycle. The private cache hierarchy
of each core is comprised of separate 64kB L1untbn and data caches and a 256kB unified L2
cache. A special frame cache, which is exclusivedgd to store thread frames, is optional. The
assumed memory bus latency is 30 cycles, whilartemory latency is 150 cycles. Table 1 depicts
the parameters of the baseline machine in mord.deta
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Table 1: Baseline Node Configuration

Parameters Values

Cores 1,2,4,8,16,3

Core Parameters Out-of-Order, Pipeline length: 5, Fetch Width: 2
Commit Width: 2, Instruction Vindow: 12¢

L1 I- and D-Cache (private per core) Size: 64kB, Line Size: 64, Sets: 2,
Hit Latency: 1 cycle

Unified L2-Cache (private per core) Size: 256kB, Line Size: 64, Sets: 16,
Hit Latency:13 cycles

Frame Memory (FM) (private per core) Size: 64kB, Line Size: 64, Sets: 2,
Hit Latency: 1 cycle

Memory Bus Latency(L2/FM to memory) 30 cycles

Memory Latency 150 cycles

2.3.1.3TERAFLUX specific parameter

For the TERAFLUX specific parameters we assume thati t es to write buffer take 3 cycles,
while t wr i t es to local main memory take 30 cycles, in aver&ge.the inter-nodeé wri t es, we
assume 150 cycles.

Table 2: TERAFLUX-specific Parameters

Parameters Values

twrite inter-node Latency 150 cycles
twrite Latency (write buffer) 3 cycles
twrite Latency (commit to memory) 30 cycles
tschedule Latency 40 cycles
tdestroy Latency 40 cycle

We simulated single node configurations with 14,28, 16, and 32 cores.

We also simulated different multi-node configuraawith 16 cores from one to 8 nodes in order to
determine the scalability of our fault tolerancéutons.

2.3.2 Fault-free Execution

This Section presents the overhead for pessimastit optimistic Double Execution and optimistic
Double Execution in combination with node checkgian

2.3.2.1.1 Execution Overhead for Double Execution

It is inherent to all redundant execution approactieat they consume twice of the resources
compared to a non-fault-tolerant execution. Siriie bverhead is inevitable, we compare Double
Execution in relation to a non-fault tolerant extsmu with half of the cores.
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The Execution Overheadescribes the fraction of increase in executiaretiin case of no-faults)
compared to a non-fault-tolerant execution withf ledl the cores. Figure 6 shows the results for
single-node execution for pessimistic Double Executlt can be seen that the overhead for
pessimistic Double Execution without global chedkpog induces an overhead between 2% and
23% compared to a non-fault tolerant execution Wil of the cores. Furthermore, the results depict
that the overhead remains constant even when ties per node are scaled-up.

As described in Section 2.3, the main overheadéssimistic Double Execution is induced by the
increased idle time for the result comparison @ BYFDU. This is also the reason for the higher
overhead for Seidel, Cholesky, and Sparse LU, dimese benchmarks have a high number of inter-
thread dependencies, which prevent subsequentdthiteaget started until the trailing thread has
committed.
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Figure 6: Execution Overhead of pessimistic Double Execution compared to non-redundant execution with
half of the cores per node.
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Figure 7 depicts the overhead for optimistic DouBkecution. Compared to pessimistic Double
Execution, the execution overhead can be reducedlifdoenchmarks. In particular, Cholesky and
Seidel can now better utilize the node. This resiiim the effect that Cholesky and Seidel are not
able to fully utilize the cores over the compleieaition time (cf. Table 3), due to parts with low
parallelism. However, the idle cores can be usethbyptimistic Double Execution, since the trajlin
threads have no data dependencies and must neverfawanput results. Instead, they can be
immediately scheduled for execution, whenever & ¢mcomes available for execution. The Seidel
kernel, by contrast, is not able to fully utilizeet node, due to the small workload. As a result,
optimistic Double Execution is also not able tdyfultilize the nodes with higher core counts. Irsth
case, the speedup of optimistic Double Executiomaigs low.
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Figure 7: Execution Overhead of optimistic Double Execution compared to non-redundant Execution with
half of the cores per node.
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Table 3 shows the node utilization for pessimiatid optimistic Double Execution. It can be seem tha
optimistic Double Execution increases the nodezation for all benchmarks. The increased node
utilization comes from the reduced idle time, whisteliminated by Double Execution. Furthermore,
the Cholesky and Seidel benchmark are not ablelty dtilize the node, which in turn leads to a

negative overhead, since Double Execution canhesarider-utilized cores for the redundant threads.

Table 3: Node Utilization of pessimistic and optimistic Double Execution (no-faults)
e S A N N
Pes. Opt. Pes. Opt. Pes. Opt. Pes. Opt. Pes. Opt.
Cholesky 94% 99% 88% 98% 87% 96% 82% 92% 74% 80%
Fibonacci 99% 99% 99% 99% 99% 99% 99% 99% 99% 99%
\E (8] 99% 99% 99% 99% 99% 99% 98% 99% 97% 97%
Seidel 97% 99% 93% 99% 93% 99% 92% 98% 90% 96%

Sparse LU 97% 99% 98% 99% 98% 99% 95% 97% 89% 90%

Table 4 depicts the speedup of optimistic Doubleedttion for all benchmarks compared to
pessimistic Double Execution.

Table 4: Speedup of optimistic Double Execution compared to pessimistic Double Execution (no-faults).

I I N I

Cholesky 9% 17% 16% 18% 14%

Benchmark/Cores

Fibonacci 0% 1% 1% 2% 4%
Matmul 0% 4% 7% 5% 7%
Seidel 6% 13% 15% 16% 16%

Sparse LU 1% 0% 3% 7% 7%

2.3.2.2Node Checkpointing Overhead

As mentioned in Section 2.1.3, optimistic Doubles&ixtion cannot use thread restart recovery, since
possible faulty results may be committed to themnmaémory before the fault can be detected by the
D-FDU. Therefore, we use node checkpointing indage of optimistic Double Execution to recover
from faults. However, node checkpointing inducedittahal overhead, when a checkpoint is created,
since the D-TSU finishes all thread commits andig@né subsequent threads from committing.
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Figure 8: Overhead of speculative optimistic Double Execution with node checkpointing at an interval of
10,000 cycles compared to non-redundant Execution.

Figure 8 shows the overhead for speculative opticni3ouble Execution in combination with node
checkpointing at an interval of 10,000 cycles. Cared to the non-redundant execution, the overhead
is between 10% for Fibonacci and over 200% for Matultiplication. The main reason for high
overhead in the case of Matrix Multiplication igthigh number of wr i t es in the benchmark. This
increases the possibility of core idle times dueheckpoint creation. By contrast, Fibonacci, which
has a low communication to computation ratio, shéove overhead for node checkpointing. The
reason for the lower overhead in the 32-cores ramiees from the low utilization in the regular
dataflow case.

Table 5 shows the overhead of optimistic Doubledd®en and node checkpointing at an interval of
10,000 cycles compared to pessimistic Double Exatwtithout node checkpointing. Based on these
results, it can be seen that node checkpointinglean to high performance degradation for most
dataflow benchmarks in case of checkpoint interg&ls0,000 cycles or below.

We therefore conclude that optimistic execution niatyoduce a high overhead for short node
checkpoint intervals.
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Table 5: Overhead of optimistic Double Execution compared to pessimistic Double Execution without node

checkpoints.

1.2% 92% 6.2% 1.2%
1% 1.3% 1.8% -2.8%
50% 101.8% 165% 40.5%
0.9% -57% -3.8% 11%
5% 16.2% 5.5% 6.6%

2.3.3 Execution under Faults

Since we must assume increasing fault rates irrduparallel architectures, we also simulated the
overhead induced by a very high transient fau#t cdt0.01 faults per second.
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Figure 9: Overhead of pessimistic Double Execution in the case of a fault rate of 0.01 faults per second
compared to non-faulty pessimistic Double Execution.
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Figure 9 shows the execution overhead for pessamidduble Execution using the thread restart
recovery. It can be seen that faults lead to amheasl of between 1% and 38 %. The high overhead
of Matrix Multiplication comes from the long unifor dataflow threads of Matrix Multiplication,
which lead to wasted execution time in the casa tifread rollback. Additionally, the results show
that faults have lower performance impact in nogdiéh more cores. This comes from the fact that
parallel architectures can exploit more possible idsources in the case of a thread restart.

Figure 10 depicts the overhead of optimistic DouBbeecution. Due to side-effects in some
benchmarks, we were only able to simulate Matrix Itilication and Sparse LU for node
checkpointing and optimistic Double Execution. Apected, the recovery of Matrix Multiplication
leads to high execution overhead of over 20%. ®laerhead is mainly induced by the long dataflow
threads of Matrix Multiplication in combination witthe node recovery leading to more wasted
execution cycles by also recovering fault free ddse
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Figure 10: Overhead of optimistic Double Execution in the case of a fault rate of 0.01 faults per second
compared to non-redundant execution without faults.

2.3.4 Multi Node Behavior

Fault Detection Mechanisms for parallel architeesumust be also efficiently scalable with the
number of cores in the system. Since both DoubkcEiXon variants restrict redundant execution to
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one node and only the trailing or the leading trisaallowed to commit its results, the inter-node
communication is not influenced by the Double Exierumechanisms. However, the high inter-node
commit latency may result in under-utilized corgiace cores are blocked as long as the write buffer
is written to thread frames of waiting threads iffiedent nodes. This may lead to long idle times, i
the case of numerous inter-nader i t es. Please note that we assume inter-node writedgate our
simulations of 150 cycles, as shown in Table 2. $Meulated optimistic and pessimistic Double
Execution on 1 to 8 nodes, where each node hasofids.c This means, we simulated Double
Execution on systems from 16 cores to 128 cores.

w
1

Typ
e Optimistic
A Pessimistic

= Regular

Speedup to single-node Execution
N

-
N
N
0 -

Nodes

Figure 11: Scalability of pessimistic and optimistic Double Execution for 1 to 8 nodes. Each node comprises
16 cores.

Figure 11 shows the scalability of the regular fiietaexecution, pessimistic and optimistic Double
Execution of Matrix Multiplication normalized to d¢hexecution on one node. Since Matrix
Multiplication uses numerousw i t e operations for the write-back of the submatricegs the result
matrix, Matrix Multiply suffers from higher idlerties in this case.
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Nevertheless, it can be seen that both Double Execuariants are able to scale in the same way as
the regular dataflow execution.
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3 NoC-Level Fault Tolerance in TERAFLUX

In this section we will show improvements and egtens to the work previously reported in the
Deliverables D5.2 and D5.3 and in [8]. In the poex work, we already discussed by means of an
analytical approximation the impact of a fault déiten mechanism based status message with respect
to application messages (done in D5.2). In additmiithat, we designed and implemented a fault
localization mechanism, which only uses the tintiepavior of the status messages from the message
based fault detection as an indicator for faultthiwi the interconnection network (done in D5.3).
Furthermore we started in the Deliverable D5.3ief monsideration of different network topologies
and on how they are suitable from a fault tolergrespective.

Given this previous work, we extended our investige by a quantitative evaluation by means of
network throughput, delay, and jitter regarding thgact of the status messages for the fault
detection/fault localization techniques. We presamdl discuss the results from that evaluation in
Section 3.1. Although, we already demonstratedfuhetionality of the fault localization technique
for the interconnection network, we extended thdtfenodel from single faults to multiple faults
within the interconnection network. This includesextensive investigation on fault patterns, which
may prohibit a precise fault localization of anyagi faults within the network. Therefore, we in@ud
spatial and temporal distributions for the faulttgans (Section 3.2). The section concludes with a
discussion on an extension of the assumed networkhip topology towards a toroidal topology in
Section 3.3.

3.1 Impact of HB Messages on App. Messages

The maximum load that can be handled by a netwak & strong influence on the overall
performance of a processor. An undersized intereciion network can quickly lead to long periods
in which a processor is idle while waiting for apense message that is stuck in the network. Such
waiting periods for application messages can beliiethby the prioritized processing of heartbeat
messages. Since the heartbeat messages havehhbstipgority in the network, it is expected that i
takes more time on average for an application ngesstp travel the path through the network. These
waiting periods are — if the response time of thmmunication partner itself is ignored — basically
dependent on the metrics throughput, latency atter.jiThe definitions and explanations of the
evaluation metrics are based, unless otherwiseateti, on [9] [10].

3.1.1 Metrics of interest

The throughput describes the maximum amount of data that a n&twan receive and process.
Emitting more data than the maximum throughputh® network will effectively lead to network
saturation. That is, more messages are injectdtetnetwork, than messages that drain from itné o
keeps the injection rate at this level, the messiagjgery will suffer very high latencies and cdaca
lead to deadlocks.

Thelatency is defined as the period of time that is heedadatmsmit a full message. The period starts
at the creation of the first part of the messag@etsending coteand ends with the full reception of
the last part of the message. At low network loditis,data can be transmitted almost without delay

! Even before actually injecting the message ta#tesork
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and therefore latency is dominated only by the edsitprocessing pipeline and the delay of the
interconnections between the routers. If the loadhe network, however, reaches the maximum
throughput, it is possible that the latency innleéwvork greatly increasés

Both metrics depend essentially on two factors. it factor is the injection rate at which the
messages are generated during a simulation. Tketiog rate is thus the temporal distribution of
message generation in the simulation. The secontbrfas the actual used traffic pattern. It
determines the communication pairs of the processms. The traffic patterns are thus the spatial
distribution of the messages in the simulation hBattors have a great impact on both, the maximum
throughput and the latency. Some traffic patteth®nvahigher injection rates before the network
saturates and consequentially a higher maximunugfimout than others.

Jitter is an important indicator to determine the unifalate of message processing by the network.
Applications that expect a constant and unifornadéteam may being stalled from high jitter values,
as parts of the expected messages do not arrieeafipecific period of time. Especially execution
models similar to a pipelined execution are pran&igh jitter values. The effects are noticeabte, a
the high jitter values may stall the entire progred a program in a certain pipeline stage. An
example, in which the user experiences a fairlckyhigh jitter, is the video decoding. High jitter
values, can easily result to the famous "pictudd@r”, which stalls the motion picture playback
temporarily.

3.1.2 Evaluation Methodology

All NoC results were obtained from an extended iveref the NOXIM simulatot. The simulations
cover different experimental setups regarding tee af heartbeat messages and using different
routing strategies. The setup ranges from:

» Baseline measurements without heartbeat messages.
* With heartbeat messages

o XY routing strategy

0 Staircase routing strategy

The application messages are always routed witiX'theouting strategy through the network.

The simulated scenario was the communication strecdf a processor with 25 cores. The cores
themselves only act as a sender and a receiverlendg@or application messages, we applied two
different traffic patterns, which are Hot-Spot aRdndom [11] [9]. Additionally several injection
rates ranging from 0.00001Flits/Core/Cycle to theughput saturation point have been used. The
actual execution of a program is not supportedianmobt part of the evaluation. However, as part of
the evaluation the processor cores take diffex@daswhich are partly defined by the traffic patter

» Acting as FDU: One core takes the role of the FDid @ends out heartbeat messages
implementing the poll-method to gather the statdsrmation from the cores. Furthermore,

2 For simulation purposes we sized the injectioféayusf a processor core to infinite. That theomticleads at
extreme high injection rates to an infinite latenejue.
3 http://noxim.sourceforge.net/
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the FDU core is configured with a proper TDMA-ScleenNo other communication is
allowed for this type of core.

» Asynchronous communication: The processor coresuwroa application messages, but they
do not answer them directly. This can be used taulsite loads for different execution
models, such as pipelining and fork join executimydels.

* Synchronous communication: The processor coresucamspplication messages and answer
them. This simulates the behavior of a client-semsecution model or the access to other
devices on the chip, such as memory controlleri&ddontroller.

In addition, all processor cores answer the heattimessages from the FDU with their own heartbeat
messages.

From the interconnection point of view, each preoesore is connected to one router and uses it to
communicate with other components on the chip. Tbees and routers are coupled by a bi-
directional link with the router, which allows allfduplex communication between the core and
router. The same coupling has also been establisiteithe link between the routers, wherein the
topology of the connected router corresponds toradgeneous two dimensional mesh.

A router internally connects each link in a demunxt which redirects the incoming messages based
on a packet flag into two input buffers. The reafamthe two input buffers is the spatial isolation
among application messages and heartbeat messageguaed by the fault detection techniques. In
addition, the routing logic is applied at the aatiof a message. Since the routing logic of the XY
strategy and the Staircase strategy is relativghtweight, it can be assumed that it returns dseilt

of the message routing function within the samevoek clock cycle.

The flow control is based on a two staged wormtssgéching, which has been extended for the
usage of Quality of Service (QoS). The arbiter dinétly checks the contents of the buffer for high
priority messages (heartbeat messages) and resdriles same time the I/O interface of the router's
internal crossbar. In the second stage, this psosaepeated for the lower priority messages. Wgai

it can be assumed that the channel arbitrationtla@dictual traversal of messages are completed in
one network clock cycle. Thus, for the simulatidraaouter pipeline, the router needs two network
clock cycles to process a heartbeat message. Afiplcmessages need, due to their variable size of
2-4 flits, 4-8 network clock cycles. However, thissumes that the message is not blocked by another
message due to concurrent access to the same bokput

The traffic pattern for the application messagesveoarried out with a number of different injection
rates as a simulation parameter. This injectiore redntrols the network load varying from
0.00001Flits/Core/Cycle to the theoretical maximoetwork throughput for a given traffic pattern.
The aim of the different injection rates is to detme the saturation point of the network. To
determine this point of the network configuratitie taverage throughput was observed. A stagnating
throughput by simultaneously increasing injectiates signals that more flits are generated than the
network is capable to deliver and thus the netvgatirates. Beyond the saturation point, increasing
injection rates also generate sharply rising mestatgncies. At this point the messages are loaded
the upload buffer of the processor core straigterafreation and stay there until the connectetkerou
can process them from there.

Deliverable numbem5.4

Deliverable nameSystem Integration Analysis, Measurement and Tunig of the Reliability
System

File name: TERAFLUX-D54-v8.doc Page 35 of 60



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

As indicated before, a full buffer would cause #ender not to create new messages and thus
changing actual the traffic pattern. Thereforerdimitely large buffer for the sender was implenssht

to ensure the consistency of the traffic pattermsBolution may be unrealistic in the real world;
however, it is a viable solution for simulation pases [9] [10].

In addition to the traffic patterns for applicatiaressages, a closely staggered TDMA-Scheme was
used to generate different network loads with thergized heartbeat messages. The scheme x1
produces the narrowest heartbeat pattern, thusieggsbe highest load on the links nearby the FDU.
In addition, the schemes x2 (load halved) and wadlquartered) have been used as less closely
staggered patterns.

3.1.3 Quantification

3.1.3.1Throughput of Application messages

As already described, the throughput of a spetififfic pattern is an important indicator of the
effectiveness of a communication network. The thhput shows with stagnant values that the
saturation point of the network has been reached tlaerefore the upper limits for the subsequent
analysis of latency and jitter. A total of threeise of experiments were performed for each traffic
pattern, where two of them include heartbeat messemuted with XY (Rv) or the staircase strategy
(RsT), respectively. The third series of experiments warried out without heartbeat messages and
serves as a baseline for comparison.

In order to put the different traffic patterns argaimemselves in relation, the injection rates were
normalized in relation to the respective networlpamty*. Figures 12 and 13 summarize the
simulation results in terms of throughput for theffic patterns Random and Hot-Spot. For better
illustration and comparison, the injection ratesravéX-axis) normalized to the respective traffic
pattern. On the Y-axis the amount of draining fiisr network clock cycle and processor core is
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Figure 12: Throughput of application messages otigh Figure 13: Throughput of application messages

) under traffic pattern Random. under traffic pattern Hotspot.
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shown.

The traffic pattern Random shows a constant staghaoughput after reaching the saturation point.
This is also referred to as a stable network reggrcaturation. Looking at the throughput
performance under Hot-Spot traffic pattern, one @laserve a clear drop in the throughput of 0.08 to
0.07, but stabilizing again with rising injectioates. The drop in throughput is due to the fact tha
about 60% of the total communication must be pseeslirectly on the connecting lines, which are
already heavily burdened by the heartbeat messAdégionally, there is no fairness in the treatmen
between the heartbeats and the application messaget® the prioritization of heartbeat messages.
Considering both facts explain the loss of throughperformance. Since for the traffic pattern
Random all communication pairs are determined byn#ormly distributed probability, also the
network load is uniformly distributed. This ensutks network stability after reaching the saturatio
point.

3.1.3.2Latency of Application messages

In addition to the ability to transmit as many naggss as possible in parallel, the speed at which a
single flit is handled by the network is also i to the performance of the network. In the absen
of heartbeat messages the expected average la@ntyis network configuration is ideally at 12
cycles [10]. Figure 14 and Figure 15 show the resultthefsimulation with respect to the latency of
application messages. In addition, the x-axis hatogarithmic scale for the sake of better
representation. Even with the use of closely staghbeartbeat messagesx(xdnd x1y; there is no
significant difference between the baseline sinoaind those with heartbeat messages. While this
observation was mainly expected at lower injectates, the uniform development of latency close to
the saturation point of the network is unusual. tAése injection rates significant backlogs of
application messages is expected and heartbeatagessshould have an obvious impact on
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Figure 14: Application message latency under Figure 15: Application message latency under
traffic pattern Random. traffic pattern Hotspot.

A= Pipeling lengt - (H,,, + Drain) + 1, with H_, as average path length in Hops
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application messages.

The reason for this uniform development of lateway be answered by the router internal input
buffers. The size of the input buffer equals theximam length of the application messages. Thus,
this means that a blocked message can be helelgrty the input buffer of a router and thus the
message occupies only the resources of a singterrothereby, the overall likelihood for backlogs
decreases, even for injection rates close to ttugagen point. For the sake of completeness iukho
be mentioned that further (equally prioritized)twa channels may reduce the effect of backlog for
application messages even with larger messagehiengt

3.1.3.3Jitter of Application messages

The study of jitter is carried out differently. Alg with the traffic pattern and the injection rate

also put the path length into consideration. Theulte of the investigation are based on the
measurement of the maximum delay, which an appdicatnessage was exposed during the
simulation. Therefore, the measured transmissitenty and the path length of a message were
determined. With the help of the path length [, measured latency can be adjusted and thus gives
the duration of the delay in which the messagedcoot make any progress in the network. Finally,
the maximum delay was determined for all path lesgt

Referring to the results we mention beforehandtedsages with a mean path length of 3-6 hops are
more affected by the delays than the messages paith lengths of 1-2 hops and 7-8 hops. That
statement holds also for all traffic patterns. Téfiect has two reasons. The first aspect of tfiece

is the time a message spent in the network. Messake short paths (1-2 hops) stay a short time in
the network. Hence, on average, the probabilitynoftiple delays through heartbeat messages is
lower for application messages with short patha thith longer paths. The second aspect is the route
through the network. Application messages with ¢ pength of 7-8 hops are indeed a longer time
within the network. However, the XY routing stragegenerates paths that run along the edge of the
network. In this area, the presence of Heartbeasaues is fairly low.

The Figure 16, Figure 17, and Figure 18 plot thepeetive values of maximum delay for the traffic
pattern Random with different injection rates asdemding sorted by the path lengths. The x-axis
divides the results in the respective path lendiimsthe y-axis the maximum delay is shown, wherein
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Figure 16: lJitter at 0.0001 for
traffic pattern Random.
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Figure 17: Jitter at 0.001 for traffic
pattern Random.
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Figure 18: Jitter at 0.01 for traffic
pattern Random.
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a delay having a value = 0 corresponds to the ildgahcy without any delays for the given path
length.

At low injection rates, a constant value of the immaxm delay is observable for simulations without
heartbeat messages. Hence, it is obvious, thatetweork is evenly loaded with application messages.
The slight reduction of latencies starting fromadhplength of 7 hops can be explained by the above-
mentioned routes messages with longer path lengths.

Significantly longer delays, however, are obser@gkl,, and x1; from the results of the simulations
with heartbeat messages. If the XY routing stratisgysed for heartbeat messages, the maximum
delay for application messages is about 60% hitifaar in the reference simulation without heartbeat
messages. By using the Staircase routing stratiegylelays increase at most to about 40%.

With an increasing injection rate also the amounapplication messages in the network increases.
This results in frequent collisions of applicatioressages with each other, whereby the maximum
delay also in the reference simulation increashis dan be easily observed on the basis of Figare 1
The maximum delay increases from 6 clock cyclesitalock cycles. Furthermore, it can be seen that
the values for simulations with heartbeat messatgegspt scale to the same extend as it is theafase
the simulation without heartbeat messages. The maxi delay recorded from the simulation with
heartbeat messages is 20% (XY strategy) and 13%ir¢&se strategy) higher compared to the
reference simulation. This relative degradationhef maximum delay is due to the mutual collisions
of the application messages. That means the dbky@me more dominated by the increasing rate of
mutual collisions of application messages.

Just before the saturation point of the networkyrdhis neither a significant difference between the
simulation including heartbeat messages, nor fosehwithout heartbeat messages (Figure 18). This
means the proportion of collisions between appbcatmessages and heartbeat messages has
decreased to a minimum and thus does not contributee apparent maximum delays.

As mentioned above, the traffic pattern Randormdeed a good measure for simulating networks
with uniform load distribution, but a purely randdoad distribution rarely corresponds to a real
application-driven communication pattern. In orttetake this fact into account, the synthetic patte

Hot-Spotwas added, and used in the simulation under tine sanditions as previously Random. The
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Figure 19: Jitter at 0.00001 for Figure 20: Jitter at 0.001 for traffic Figure 21: Jitter at 0.01 for traffic
traffic pattern Hot-Spot. pattern Hot-Spot. pattern Hot-Spot.

result with respect to the maximum delay is ploite#ligure 15.

Deliverable numbem5.4

Deliverable nameSystem Integration Analysis, Measurement and Tunig of the Reliability
System

File name: TERAFLUX-D54-v8.doc Page 39 of 60



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The Hot-Spot traffic pattern used for applicatiorssages presents a notably scenario and produces
different results compared to the former measurésnegarding the convergence of values at higher
injection rates. As we already pointed out, thatrutual collisions of application messages atdrigh
injection rates become a dominant factor for tloerded maximum delays, we now observe different
results. The duration of the delays for the apfiica messages due to collisions with heartbeat
messages grows stronger with the increasing iojecttes, than previously observed. The reasons for
that different behavior are the locations of thiéedént hot spots and the respective 60% probgbilit
that an arbitrary processor core selects one didhaspot cores as a destination. These locatiens w
chosen so that they lie exactly on the axis offib&). Therefore, application messages using the XY
routing strategy are forced to move through theeseof the network. Since the probability is very
high to be blocked by a heartbeat message, theeme of heartbeat messages to application
messages is preserved even at high injection rabes scenario also shows no significant differance
for the delays using the different routing stragsgfor heartbeat messages. This was, however,
expected in this test case, as the application agesswere deliberately routed through the center of
the network and thus the delays for both routimgtegies could be predicted to be quite similar.

3.1.3.4Quantification Summary

The results of the evaluation regarding the impddteartbeat messages on application messages by
applying the different TDMA schemes show that, warage, no significant impact is produced by the
heartbeat messages to application messages (sée G:alverview of throughput, latency, and
maximum delay for application messages). The aeethgoughput and latency of the application
messages are also in the presence of heartbeaagaesa the network at the level of the simulations
without heartbeat messages.

A closer inspection of application messages witpeet to their maximum delays, however, shows
that these delays can be reduced by the use @témease routing strategy. Table 1 summarizes all
relevant results regarding the maximum delays gliegtion messages. Using the Staircase routing
strategy for heartbeat messages and given thetpatftern decreases the maximum delays up to 25
30% compared to the XY routing strategy. AlImostititzal are the maximum delays for the traffic
pattern Hot-Spot. Here the difference betweenweerbuting strategies is below one percent, which
is due to the fact that around 60% of all traficouted through the FDU near routers.

The thesis and the analytical approximation fronivi@eable 5.2, which states that a more uniform
distributed load of heartbeat messages throughSth@case routing strategy can have a relaxing
effect on the maximum delays of application messaggs underpinned.

Table 6: Overview of throughput, latency, and maximum delay for application messages

Traffic Avg. Throughput Avg. Latency Max. Delay

Pattern w/o ‘ Rxy | Rst w/o ‘ Rxy | Rst w/o Rxy Rst
Random 20% 12 cycles 0% 63,3% 38,3%
Hot-Spot | 35% 40% 13 cycles 0% 21,30  21,6%

6 Percentage values of the theoretical maximumroiighput for this traffic pattern.
" Percentage values of the maximum delays baseedpeiseline measurement without heartbeat messages.
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3.2 Fault Localization with Multiple Faults within the NoC

As shown in the Deliverable D5.3 and [12] our irigegtion regarding the fault localization includes
single faults within the 2D mesh based intercorineatetwork. However, several studies show that
multiple faults in the hardware are not seldom [[i3]] [15]. Therefore, we stressed the localization
technique with multiple faults within the intercaation network and determined if this condition has
an effect on the localization accuracy. The sttests reveal that there are some specific faulepet
that are able to either mask other faults or cregtbantomfault. In the last case, a specific fault
pattern produces some sort of blind spot, whichaléult appear, although the fault is actually not
present at this point in the interconnection nekwor

In this section, we will firstly describe the intiggtion methodology and next to that we group the
problematic fault patterns, which have a negatmedct to the localization accuracy. The section
closes with a quantification of the amount of thelpematic fault patterns based on different node
sizes.

3.2.1 Investigation Methodology

For this investigation we combined fault patterngshwemporal and spatial properties. For this
purpose we firstly differentiate between the simodtous and successive appearance of faults. The
need to differentiate the temporal property of@tfaomes from the fact that the FDU starts itsdea

for local maxima within the status matrix of suspis network components after a complete TDMA
round has finished. In combination with the spapiadperties the temporal patterns deliver different
results regarding the localization accuracy.

To have a clear definition for the temporal pattemse define two or more faults to be simultaneous,
if both/all faults appear in the same TDMA rofin@uccessive faults are defined for any other
temporal appearance.

The spatial patterns consist of two faults thatehbgen applied to the interconnection network. We
applied the faults in a systematic manner by pegnalltpossible fault pairs. After each applied faul
pair, we analyzed the resulting status matrix afltfanetwork components from the FDU and
compared it with a hypothetical estimated matrik.bbth matrices match, the fault pair is
unproblematic. If they differ from each other, veeiid a problematic fault pair. In order to analyze
the reason for the inaccuracy, we also investigatesl status matrix of suspicious network
components During the investigation of the status matrixsofspicious network components, we
were able to identify recurrent fault placementqrais. Each pattern leads to its own inaccuracy for
the localization method. We then categorized thit§zand grouped them according to their spatial

property.

From the problematic patterns with two faults, cterpatterns can be easily generated by combining
the different patterns to new ones. The more coxpkgterns are then also problematic for our

localization method. For that reason we omittechjgations with a higher number of faults, since

this does not change the results in the localinacuracy.

8 That is, after all cores have sent their Heartbémdsages including all different routing stratsgis described
in D5.3.
9 This matrix holds the "suspicious values" for eaetwork component after a complete monitoring thun

Deliverable numbem5.4

Deliverable nameSystem Integration Analysis, Measurement and Tunig of the Reliability
System

File name: TERAFLUX-D54-v8.doc Page 41 of 60



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.2.2 Applying fault pairs to the NoC

As described above, the following discussion dgtishes the temporal pattern between
simultaneously and successively. The analysis thiereinitially begins with the application of

simultaneous faults and discusses the spatialrpait&vhich have been identified as problematic.
Subsequently, the discussion is repeated with céspesuccessive faults and the results are disduss

3.2.2.1Simultaneous faults in the NoC

The search for problematic patterns with simultaiséo occurring faults yielded three groups, in
which the spatial patterns could be classified:

1) Faults in the immediate vicinity of the FDU
2) Faults with common partial paths
3) Closely spaced faults

For fault patterns of the grougatlts in the immediate vicinity of the FDlthere are fault masking
effects, in which a fault at a specific locationtle network prevents the localization of othedtiau
The problem here is the proximity of a faulty littkthe FDU. The closer the faulty component is next
to the FDU, the more heartbeat messages are debgytis component. This relatively large number
of affected heartbeat messages creates a blindgagttriangle in Figure 22), which hides any othe
faults within this area.

To illustrate this problematic pattern, we showFigure 22 a part of the network, in which two links
are assumed to be faulty (marked aarfd §). In Figure 23 we show the corresponding statusixna
of suspicious components. The black shadowed valigsn the matrix indicate the suspicious
components gathered after a complete monitoringd®Su

The following search for all local maxima withinighmatrix would reveal:fas a faulty component.
But f, would not be identified as a faulty component. #iddally, as one can observe, the black
shadowed values span a triangle shaped area aveethAny fault within that area will be masked
by the fault {.

Another factor is that all heartbeat messagesfsamtwithin the blind spot are updated in the TDMA
scheme and the expected arrival times are the@jbogtad according to the fault ft is therefore also

Figure 23: Corresponding matrix of suspicious network

. . components.
Figure 22: Blind spot due to fi.

10 please note that the gray rectangles in Figurar@Zor illustration purposes only and do not iatkcthat the
faults have been already localized. The rectarmstry to assist the orientation.
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not possible by subsequent monitoring rounds teafetdditional faults from within the blind spot.
This makes this fault pattern critical.

(55) (5%) (o%) (00) (o) (o) (52)
(50) (59) (50) (W0) (%) (05) (53)
(33) W) (®12) (22) (v2) (535) (73)
(%) (T G @) Cm G (70)

Figure 24: Resolved blind spot by moving the FDU to a different core.

A cost-effective solution to this problem is to {eé FDU migrate from their current processor dore
another core, if the FDU consists of software. Bshould be noted, however, that the monitoring of
processor cores has to be stopped in the firsepglaorder to prevent a deadlocked FDU. After the
last heartbeat messages of the current monitoongd has arrived at the FDU, the state of the FDU
is frozen and transferred to another core. In¢hie, the contents of the status matrices arerdesta
because by migrating the FDU to another core dlsmges the distances of the processor cores to the
FDU and thus the arrival times.

How fast this problematic fault pattern can be ke=ib is shown in Figure 24, which shows the
resulting matrix after a complete round of monitgti The applied fault pattern is the same as
previously described. This time, however, the FCdd been shifted to a place in the network to the
top and right. The faulfy is thus no longer in close proximity to the FDWahe effect of the blind

spot has already vanished down enough that botts fate easily locatable by searching for the local
maxima in the matrix.

0 0) (o8) (o) (o
(42) (% 2 Cimd) (i)
19 (9 (WY Cim
3 () () (

Figure 26: Corresponding matrix of suspicious
Figure 25: Blind spots due to f1 and fa. network components.

Similar to the pattern above, th€lbsely spaced faultscan also create blind spots. Again, faulty
components produce a, albeit very small, blind .spbe effect can be observed in two different
flavors:

1) The faulty components are to each ofhea straight line
2) The faulty components are located in a particulaster quadrantutually orthogonal
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Figure 25 shows the two flavors of the fault patten the basis of two fault pattern examples:
fi e fr andf; < fa. In Figure 26, the resulting state of the suspisimatrix is illustrated. Again,

this matrix does not contain all local maxima cep@nding to the faults, which prevents a precise
localization of the two faults fand ¢.

While the blind spot occurs in all patterns whoselty components arein’ straight liné, the
orthogonally orientedault patterns are only problematic if the patteas a specific orientation to the
FDU. The orientation of this problematic pattermdklitionally depending on a particular quadrant of
a Cluster. Which orientation in each quadrant sbf@matic, is summarized irror! Reference
source not found. The table contains the four quadrants of one ERIdter (gray rectangles in the
first column), each with the FDU (black square)tire center. For the orthogonal patterns the
transmission directions of the heartbeat messagedistinguished additionally. This shows that only
those links of the routers are affected that withréen the path of a heartbeat message its destinat
The position within a quadrant, however, is irreletv The effect always occurs when one of these
orthogonal patterns is applied according to the network. fre faults of the flavorih a straight
line" there is no distinction of the quadrants. Thiteefis independent with respect to the position
and orientation of the cluster and preventing ip ease the localization of the fault with the highe
distance to the FDU.

Basically, this localization issue has the samigcetity as the patterniri the immediate vicinity of the
FDU". Here, a fault creates a blind spot and prevmsuccessful search for any faults in that blind
spot, too. As faults are masked again, this grewgtso classified as critical.

Table 7: Different problematic fault pattern regarding location and orientation

Quadrant Orthogonal In a straight line

SRS
@
o
:
;
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Figure 28: Corresponding matrix of suspicious
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Figure 27: Phantom fault due to f1 and fa. network components.

“Faults on common partial pathgreate illusions and cause that some network corapts are
wrongly classified as faulty. That is what we aaltphantom fault It is the exact opposite of fault
masking by the previous pattern. As described enDeliverable D5.3, the normal operation of the
localization technique rehabilitates falsely suspgmetwork components by using different routing
strategies for heartbeat messages. However, thss vidth multiple faults if all of the following
conditions are met:

* There are two heartbeat messages from the samesgayccore that use despite different
routing strategies some common partial paths.

* In the network there are two faults that lie on a@fidhe two actually disjoint paths of the
heartbeat messages.

» One common partial path is located between theisgmiocessor core and the faults.

If these properties are satisfied, the partial paith the higher distance to the FDU cannot be
rehabilitated and createspftiantom fault Figure 27 illustrates this in an example scendricthe
given network, two links at the poigfi and f; are assumed to be faulty. The processor coreeat th

routerR ¢ ¢; sent two heartbeat messages with different rougiregegies.

The figure shows the resulting paths of the messagedashed lines. In this example, the routing
strategies XY (coarse dashed line) and Staircagéngp provide (fine dashed lines) on the links

W N
Rize) = Risq) and Rig3) = R(33) the two common partial paths of the correspondiegrtbeat
messages. In Figure 28 the suspicious matrix ustitited after a complete monitoring round. After
searching the for the local maxima, additionallyth® faults f and f;, another fault on link
W
Rice) = Risg is determined (The value “2” in the button-rightricer of the matrix is a local
maximum). The latter fault is thugplantom faultwhich actually does not exist.

The group tommon partial patiishas, however, a weak impact on the localizatidithough the
results shown in the example lead to a wrong dleatibn of a network component, this has no

W
impact on the actual performance of the networke Tihk Rz g — Risg) will still be used by the

router to transmit messages of all types. OnlyRB& internal representation of the network is iis th
case not 100% accurate and includes a pessimgsiigrgption about the state of the interconnection
network. There is also the possibility that a miigra of the FDU to another processor core changes
the paths of the affected heartbeat messageshasa@arrects the misdiagnosis.
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Figure 29: Example scenario for the implication of successive occurring multiple faults

3.2.2.2Successive faults in the NoC

If the faults occur successively in the networle #ffect of a blind spot or phantom fault is partly
vanished. The effect of successive faults is tatsd below. The discussion on how this temporal
pattern affects the spatial pattern is quantifrethe next section.

The example scenario for two successive faultsroiocuin an FDU cluster is illustrated in Figure.29
From a timing perspective the scenario is dividdd two phases. Each phase consist of a complete
round of monitoring including the transfer of afl lmeartbeat messages, the analysis of the arrival
times, and the adjustment of the TDMA scheme. is ¢ixample, the paths of the heartbeat messages
result from the Staircase routing strategy. Addiidy the protocol of the artificial delay is aypgi

for blocked heartbeat messages and the final patidicated by the dashed arrows.

In phase #1 the faulf. is applied to the network. The dashed arrows show the protocol of the
artificial delay affects the arrival of the headbenessages of the processor cafas,), Cissy and

Cse) by a detour.

In the analysis of the first phase, the differemival times of these messages are evaluated and th
fault £, is localized™. Since the paths of the affected heartbeat messaifefollow this route to the

FDU in the long run, the TDMA scheme is adjustedoadingly to ensure the mutual isolation of the
heartbeat messagdésThis resets also the matrix of suspicions comptnand phase # 2 can start
over. In the following phase # 2, a further fauft.{ is applied to the network. Here again, the

protocol of the artificial delay is triggered andtour the heartbeat messages. But this time at the
RouterR s 5. Although the heartbeat messages are delayetiisrcase, however, the FDU expects

this delay by the formerly performed adaptatiothef TDMA scheme. The resulting status matrix is

11 As shown in Deliverable D5.3 single faults carldmalized precisely.
2 The mutual isolation requirement is also parthef Deliverable D5.3 and ensures that heartbeatagesio
not interfere with each other.
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Figure 30: Status matrix after phase #2 for Figure 31: Status matrix after phase #2 for
simultaneously occurred faults. successively occurred faults.

shown in Figure 30. Since all values of the madii@< 0, there is no evidence for the FDU that the
messages were delayed by the fipit

Critical to the occurrence of a dead spot like,thiswever, is the order in which the faults occur.
Consider a reversed order of occurrence for batitsffrom the example above. This reordering
results in a status matrix at the end of phasesi@wn in Figure 31. The black shadowed positive
value indicates the position of the faylt after the search for local maxima. The reasontlier

successful localization in this case is that wité help of the heartbeat message&9f; andCyg),

the faultf,» could be initially localized in phase # 1. The sedpuent occurrence #fin phase #2 now
affects only on the delay of heartbeat messages Q4. Since the heartbeat message< afy

arrived without a delay beforehand, the fafiltan now also be located.

Although the paths of the heartbeat message givéimei scenario above were formed by the staircase
strategy, the masking effect is not limited to thasiting algorithm. In fact, similar patterns cam b
generated with the same result for all four ofriing algorithms used here.

3.2.3 Quantification

At the conclusion of the study of multiple faulitswill be shown, how many of the fault patterns ar
considered to be problematic regarding the fawaliaation method. Thus, the performance of the
localization for multiple faults is shown quantit@ly. The basis of quantification consists on
counting the respective problematic fault patterflse results presented here correspond to the
percentage of the three problematic spatial fawltigs discussed above. In addition, three different
cluster sizes (5 x 5, 7 x 5 and 7 x 7) are apphdte quantification and summarized in Table 8.

One positive point is that the identified critidault pattern in the immediate vicinity of the FDU
occurs in about 1.5% of all fault patterns, inWaast case. Taking into account the order in whingh
faults occur, this value decreases further to @4.2Significantly higher is the percentage of theltfa
pattern ‘tlosely spaced faultsn the network. The compact shape of this spai#tern, and the two
different forms ‘orthogonal and “in a straight liné result in 6.5% (simultaneous) and 1.6%
(successive) of all patterns in a problematic patte

The spatial patternfdults with common partial pathstands out with two special properties. Firstly,
since this pattern requires a minimum distance éetwthe two faults when placing them, there is a
case of small cluster sizes, without a chance &epthe pattern. If the minimum distance is not
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satisfied, the pattern will turn intelbsely spaced faultsSecondly, the pattern is only problematic if
the faults occur simultaneously in the network. Boccessive faults of thghantom fault however,
does not occur at all.

Summarizing all problematic fault patterns showat thbout 2.4% of successively occurring fault
patterns lead to fault masking or phantom fault If simultaneous occurrence is assumed, the
proportion of problematic faults pattern increagesabout 10%. Nevertheless with increasing cluster
sizes a continuous reduction in the percentagkeottitical fault pattern can be observed. In adidljt

it should be noted that simultaneous faults inrteevork are indeed possible, but it can be expected
that the probability of multiple faults of successinature in the network is much more likely. This
assumption is supported by the consideration ofctngses of faults. Apart from wear-out faults
caused by physical effects, it can be assumedtibaeduction of feature sizes yield more permanent
faults, but these faults, however, are more distédd over the chip and in time.

Table 8: Quantification of Patterns

Simultaneous Successiv
5x5 75 =7 5x5 x5 7
LV. 5 1,449 0,713 0,355 0,725 0,357 0,177
C.P.P¥ 6,522 6,061 5,674 1,631 1,515 1,419
C.S.FE¢ - - 3,901 - - -
Sum 7,971 6,774 9,929 2,356 1,872 1,596

B .V.: Faults in thd mmediateVicinity of the FDU.
14 C.P.P.: Faults witiCommonPartial Paths.
15 C.S.F.Closely SpacedFaults.
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4 OS-Level Fault Tolerance in TERAFLUX

An operating system prototype facilitating reseamrh various parallel, distributed and reliable
execution algorithms, supporting data flow prinegplon multi-core and many-core (1,000-10,000+)
shared-memory devices. Specifically, the operasggtem supports distributed execution of an
application over the device using dataflow threatdsyas designed to handle core soft (transient)
errors and can handle node hard-failures such tthetapplication can transparently continue
execution as the work that was pending on the darlede is recovered and performed by the
remaining nodes. The operating system does nobrektrong consistency of the shared-memory but
only a weak, acquire/release, consistency modedssmumed on all communication mechanisms
between nodes.

Please note that what follows has been all expetiafly implemented and made available in the
public COTSon repository (branches/tflux-test/tfeagle D7.5 section 11 for usage details.

4.1 Basic Architecture

While this future machine has all of the thousaoidsores on a single die, it is unlikely that thean

all be efficiently managed using the same hardveauek software architecture like the ones used on
contemporary processors. To name a few reasonsh wiuthe hardware support that exists today

does not scale well as core number increases rf@mtain cache coherency across all cores), and
traditional operating systems that were designedaféew cores also do not perform well as the

number of cores increases. Since the workload ofagiag this massively parallel chip is impossible

for a single kernel, another level of abstract®needed: a single-chip distributed operating syste

4.1.1 Clustered Architecture

The cores are divided into small groups, nodeschvishare communication links and hardware
elements, such as caches and interconnect to shefréhe chip. The nodes can all be symmetric or
heterogeneous, so there can be several types ef nath different hardware capabilities. Each node
runs its own kernel/microkernel that is responsilolemanaging its cores, local memory and other
resources, schedule tasks and collaborate withother nodes. A possible architecture could be
similar to those that operate on contemporary sopeputers and include (Figure 32):

* Front-end nodes that are responsible for user adtiens, they run a general-purpose
operating system such as Linux. They delegate thapatational and communication
workload to the other nodes.

* /O nodes responsible for communication with thdwoek, storage or other hardware
devices, they can run a specialized kernel forphgbose.

» Compute nodes that run only computational tasks power-efficient manner. These nodes
can have a very basic kernel and have no accdse toutside world, so all communication
and system operations are performed by the nodesngia full kernel.

The volatile memory is also partitioned, either gibglly or logically, into private per-node memory
regions and a globally addressable shared mentoigsabsumed that a hardware based coherency is
maintained between over each node's private mersag) as in current general-purpose processors,
but only a weaker consistency model is supporteat thve shared memory, which is more likely to
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exist on such a system. A plausible consistencyeiimd shared memory is acquire/release, meaning
a reader must explicitipcquire a region of the memory to see its latest versaom a writer must
releasea region it modified, before the changes are igsiim subsequent acquires. This is in line with
the initial proposal in this project (cf. D7.1).

Node 1 Node 2 Node 3

Globally accessible,
non-coherent

Shared memory I

Private memory I cache-coherent

Figure 32: Logical system view.
4.2 Operating System Goals

4.2.1 Execution Model

The TERAFLUX operating system is aimed to suppoighhtask parallelism. To maximize
parallelism, application execution is divided imb@any tiny threads; thread execution is governed by
the dataflow model. DF-threads include the follogvproperties:

» Scheduled to run only when all their inputs arelyea

* Have no side effects until completed in a non-faaianner.

* When completed, the results are published andepertients are notified.
» On error or core/node failure they can be safedyanted.

4.2.2 Fault Tolerance
Furthermore, the operating system must maintaiabiéity facing potential faults:

» Cores can permanently fail.
* Whole nodes can temporary or permanently fail.
e Cores can suffer from soft (transient) errors.

4.3 Runtime Environment

4.3.1 Memory Arrangement

Each node has a memory region assigned to it, whicmly accessible from within the node. This
space holds the local kernel structures and itsmenservices, as well as the needed environment to
support the execution of dataflow tasks (e.g. stale&aps, scheduler information). Each node also ha
a part of the shared memory under its control. Tagion can be read from and written to by all
nodes. The shared region of each node holds thenaoination channels to the other nodes, and vital
information on the threads running on that nodeicwiis needed for recovery in the case of node
failure (this is in-line with the TERAFLUX architagal template defined in 6.2, more on this later).
Since this region is not consistent across all spded explicit synchronization operations are aded

to work with it (acquire/release), no atomic instrans such as compare-and-swap can be used by
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several nodes on the same memory location. Thisngndhat conventional synchronization
mechanisms modern operating systems rely on tchsgnize between several cores, like spin-locks,
cannot be placed in the shared memory as a meaysdtbronize between nodes. These limitations
pushed the solution to use static allocations fstiared memory wherever possible. To simplify and
accelerate development, dynamic allocations aleusttd in a few cases. In those cases only the
owner node of the shared region is allowed to at®wand de-allocate memory, thus avoiding the
problems and overhead of multiple nodes synchrtiniza

4.3.2 Inter-node Communication

Since the shared memory is inconsistent acrossshaael requires explicit acquire and release calls
to communicate through it, standard (library) dsttactures could not simply be placed in it to pass
information between nodes. Custom structures wesdenthat account for the inconsistency and
acquire/release semantics.

4.3.2.1Block Transfer Layer

In the beginning of each node's shared region esiastatically allocated for communication buffers
of datafrom all the other nodes. There is one slice of mendedicated for each node, each slice is a
buffer for a FIFO “ring buffer” of small memory litks of fixed size (Optimal size can be found from
typical message size, currently 64 bytes). Eacl loaffer is only written to by one “remote” node,
and only read by the local node — it is a one-waymunication channel between them. Since each
node has one input buffer for all other nodes amel loopback buffer to itself, there are a totahof
buffers in the shared memory, which create a comptgaph of bi-directional communication
channels among the nodes.

With the assumption that each channel is only amito by one node and read by one node (SPSC), it
was made lock-free over the inconsistent memonyguappropriate acquire and release calls.

Node Memory

Dynamic allocation pool
(Allocation performed only by the local kernel)

Holds DF threads code, shared buffers,
node health information, etc.

Shared Critical data backup
Enables recovery from node failure

Input queue from node N

Input queue from node 2
Input queue from node 1

Accessible only by the local kernel.
] Holds:

Private - |« DF thread frames

Kernel structures

Figure 33: Memory Arrangement
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4.3.2.2Messaging Layer

Messages are packetized to fixed size frames amtdoser the queue to the destination node. Each
node polls on the input queues from the other nagesprocesses the pending messages. Primary
messages:

» ThreadLoad: Contains the actual thread binary &xete or its identifier, inputs information
and shared memory requirements.

* ThreadWrite: Contains the destination address (Quamibn of the thread ID and input
offset) and its value.

» Heartbeat: Notifying that the source node is atimd contains state information used for load
balancing.

4.3.3 Node Failure Tolerance
The system was designed to be able to maintairectoaperation of the operating system and the
running applications in case of node failure.

4.3.3.1Message Recovery

The buffers holding the messaging channels are ikephared memory and can be accessed if the
node crashed, for recovering the pending messagtbandling them on a different node. Two main
steps should be noticed that enable messages rgcove

* When a node processes a message it received sindbeemove it from the input queue until
it performed the required operation.

» The processing of messages that are critical forecb operation (like thread-writes and
scheduling requests) involves carefully updatiregghared context backup region of the node
with the new information.

The combination of these steps allows the recouénll messages that were pending in the crashed
node, and also of the message that was being pexteghen the node failed. Special care must be
taken however when processing the first recoveredsage, as it might have already committed its

full or partial results to the backup store befioneas removed from the message queue. The backup
region was structured with this in mind, so theases are easily detected and resolved to avoid
corruption and repeated operations.

4.3.3.2Context Backup

A node maintains the collection of its pending amaning thread descriptors in the shared memory,
each descriptor contains the thread identifieralyirto execute, inputs state etc. - everything eded
to describe the thread. This acts as the backegpde the node failed, and allows the recoverylof al
the threads that belonged to that node. A threadrgigor also has room for the input values the
thread requires, so thread-write messages updatdetitination descriptor with new information until
all inputs are received. This backup is simply pycof the ThreadLoad messages the node received
but not yet completed. As mentioned regarding ngesseecovery, while processing a ThreadlLoad or
ThreadWrite message we first carefully update thekbp in shared memory, before removing the
message from the queue, so critical informatiomeiger lost if the node suddenly stops at any point.
The node chosen to recover the abandoned threadsnoply process the ThreadLoad messages from
the backup, or (only if all the inputs were receéiaready) forward them to another node completely
as-is. All of the messages still waiting in the geehat were not yet processed could be approfyriate
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processed by the recovery node. Note that if thevery node chose to forward a thread elsewhere,
this thread will already have all its inputs avilitaand is ready for execution, thus it is not expe
that there will be any pending messages regardingi the recovery node could not handle.

These mechanisms ensure that the latest staté tbfedds can always be recovered from a crashed
node, combining the information from the descriptstore and the pending messages queues, no
matter at which point a node crashed.

4.3.3.3Detection & Recovery from Node Failures

A simple distributed watchdog mechanism was madi#etect offline nodes and initiate the recovery
process. Each node sends heartbeat message®tioealhodes periodically. Concordantly, a service
running in each node periodically checks that atheat was recently received from all other nodes.
When a crashed node is detected, a chosen nogsigaed to take over the pending work of the dead
node. The recovery node loads the thread descsipbat were kept in the backup segment of the
node, and process the pending messages from thequopues. This node maintains control over the
available resources of the disabled node, like nmgrand communication channels, so they are kept
utilized by the system to minimize performance lo&dditionally to the life sign the heartbeat
message represents, each node also appendsattositagworkload, temperature, fault rate etd)st
information is used by other nodes to have smartkeduling policies and load balancing. Currently
only two extra parameters are included with thesage, which are the number of threads the node
holds (considered in load balancing), and the tihee message was sent (can be used to measure
latencies). Other useful measurements can easdylted.

4.3.4 Thread Execution Procedure
The process can be described in the following hegkl stages:

* A scheduling request is created, specifying thre@dk (by name or actual binary to execute),
the number inputs to wait for and the regions obgl memory it needs to access.

* The request is submitted to the local scheduleigiwtiecides what node should be assigned to
execute the thread based on load-balancing andrperhce considerations. It can use the local
node state, information collected from heartbeats gpace and time locality of other threads
with similar properties. Currently only a simplgatithm is implemented; it tries to launch the
threads on the local node until it reached a spgecithreshold on the number of existing
threads, above which it will pick another node, ethowns the lowest number of threads (this
workload information gained from heartbeats), thade might still be itself. Of course many
other algorithms can be investigated. The scheddgigns a system-wide identifier to the new
thread.

» The scheduling request is sent to the assigned fwaahebe loop-back), as a message over the
shared-memory communication channels.

* When the target node receives and starts to prdbessiessage it will first copy the thread
information to its backup store in shared-memorgfole removing the message from the
gueue. Thus the thread information is protecteohfb@ing lost or corrupted in case of a failure
during its processing.

» The node will create a local realization of theetttt in its local memory, and add it to the list of
pending threads. It will wait there until all iteputs were also received by ThreadWrite
messages.
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When a ThreadWrite message is processed, the adstinthread descriptor in the shared
memory is first updated with the new informatiorhid, again, is done before the message is
removed from the queue, so the new data is notelesh if the node crashed after a thread
received some of its inputs but not yet executed.

When the thread received all of its inputs it isdy for execution. At this point another
scheduling decision can be made to forward theathte be executed on another node, time
passed since the creation of the thread couldtafiedecision on which is the best node to run
on. The ownership is easily transferred when theaith has all of its inputs, because no further
nodes will be concerned on where to send the Thiveiéel messages.

The shared memory regions the thread needs toareackfreshed in local memory (acquired)
and the thread is executed. All of the operatianzeiforms which have side-effects are not
actually performed but are buffered in local memantil the thread completes. If Double
Execution is enabled for the thread, it is launcheide (on different cores), with separate
buffers. When both executions complete, their bafiee compared for equality, if they don't
match the thread is launched again until the rebuffers match. The buffer contains

instructions of three types:
o0 Shared-memory write operations. We normally dondantwto commit speculative

information to the global memory, before the thresd completed and passed the Double
Execution test. Although depending on the applicatiature, these might not damage the
application logic, because the writes will not ¢geg an operation until an appropriate
ThreadWrite will notify of it.

o0 Thread scheduling requests. Scheduling requestaitatl need to return an identifier to
the new thread, which can be used as the targailisfequent ThreadWrite operations or
even their value (allowing the created threadsoimraunicate among themselves). When
this request is handled, a temporary thread idenig immediately returned to the caller
when the request is buffered, not yet the globahtifier that could be used system-wide.
Since we are still unsure that the running threall s@mplete successfully and will
compare identical to the Double Execution threael dan't commit the scheduling request
to the rest of the system until the parent threadpieted. Besides saving the complicated
cleanup work in the case there was an error ltter,also adds no delay in the running
thread execution from invoking the scheduler aratlibalancer to assign a global thread
identifier. Another advantage is that when we waitil we have all scheduling requests
from the thread, we can make more informed decssmm how or where we should run
them, possibly combining the requests.

0 Writes to threads. These are needed to be buffareglo cases: The target thread that is
written to and/or the value, are the result of avimus scheduling request, and are
therefore only temporary identifiers at this poifihe write cannot be performed before the
temporary identifiers are only replaced by thaiafivalue when the thread is finalized and
the scheduler has assigned a global identifietifem. Another reason for caching these
when Double Execution is used is obvious; we aurgof a single result's correctness
and shouldn't publish it before we tested agalesTiouble Execution thread.

When the thread execution completes (and passeDdbble Execution test, if enabled), the

thread is put in a list of completed threads tdihalized, its results from the local buffer need

to be committed system-wide. In turn, the finali@atprocess commits the results from the
buffer as follows:
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o Commit write requests to the shared memomel(@aseoperation).

o Invoke the scheduler for each scheduling requesttiread performed, it will choose a
destination node to run the thread while consideparformance optimizations and load-
balancing, generate a global identifier for the nimead and send the request to the
destination node (possibly local loop-back).

0 Replace temporary thread identifiers submittedhim buffered ThreadWrite instructions
either in the destination field or the value fieMdth the final ones generated in the
previous step and send them.

4.4 Implementation Details

4.4.1 Thread ldentifier

A small dive to the structure of a thread identiieuld help understand how these mechanisms could
be implemented efficiently. A thread identifierG4 bits in size so it can be transferred efficigntl

is bit-mapped to contain the following fields:

* The ID of the node that created the thread.

 The ID of the node that was originally destinedet@cute the thread. This field does not
change even if the thread is later re-assignediifiexent node (for load-balancing reasons or
when it was recovered from a crashed node).

» Source-local unique identifier of the thread. Itigque only among threads that were created
by the node that created the thread (enables glathatifier generation without
synchronization with the other nodes).

» Bits reserved for frame offset in ThreadWrite rexjase Using these bits enables a
ThreadWrite request to only contain two 64-bit wsumaking it efficiently buffered by the
running thread and later transferred if needed. @irtbe values is the combined destination
thread ID and offset within the thread's frame, ané is the actual value to write. One of
these bits is a 'Translate Value' flag, specifyirgether the value associated with the write to
the target thread is a temporary thread identifieturned to a running thread before its
completion. When this flag is turned on the thréadlizing process knows it should translate
the value to write from a temporary thread ideetito the final one that was assigned to this
thread (and clear the flag). Note that the tardget write might also need translation; this is
detected simply by the target node field contairdmgedefined invalid node ID.

4.4.2 Thread Binaries

The threads themselves are dataflow tasks, ussmiifl pieces of code and its static data, can &te ju
a single function. They are not whole programs\atk only as a part of a larger application. To
launch a distributed application over the entirsteyn, not all of it needs to be loaded (and passibl
copied) to all of the nodes. Only a single nodeegquired to load the whole executable (possiblg onl
the front-end node), and the rest of the nodes amly copy/load the code of the threads that they
need to execute, saving a lot of bandwidth andespdren the system contains hundreds of nodes. For

example, the binaries copied to other nodes irFthenacci implementation are no bigger than a few
hundred bytes.

Each thread is compiled as PIC (Position-indepeinctaie) so it can be copied and executed from the
shared memory which can be mapped differently aheede. There are several ways threads binary
code can be created: It can be compiled to be a&pfiom the user executable, or compiled as a part
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of it. If the thread binary is separate from thelaation executable it can be pre-compiled befbee
application is launched or at runtime by a JIT {Jodime) compiler. These combinations are
supported simultaneously.

There are two ways a node can get the thread bihageds to execute a ThreadLoad message it
received, depending on the threads nature, proluaia\of the following is preferable:

» The ThreadLoad message contains the actual binamgxicution. The executing node does
not need to have access to disk or any global ggorghis also means a node can execute
threads from any application without preparatiohisTway is probably preferable if the
threads are small or if many kinds of them are dyinally compiled at runtime.

* Only the binary name is included in the ThreadLoadssage, a node receiving this
information will look in its buffer of previoushalunched threads for the specified thread and
try to load it. If the thread is not in the buftide node assumes it was pre-compiled and tries
to load it from disk. This option is probably betiethreads are only pre-compiled or are
relatively large in size.

Which mode to use is currently determined statictdl each thread but it could be automatically
determined at runtime based on the thread sizéstari.

4.4.3 Fail Tolerant Synchronization Count

The synchronization count field alone is not enot@heconstruct the latest state of a thread after
node failure. Take the simple case of a threadingafor two input values, in the case that a node
failed during the commit phase of a completed tthrisat writes to the waiting thread, but after the
process already sent one value and the target SQle@eased by one. The almost-finished thread
will be recovered and executed again, enteringtimmit phase and sending the first value again. At
that point the SC of the waiting thread will be @@sed to zero and the thread will execute even
though it only received one of its inputs. This lgean cannot be solved with the SC aggregation
alone, so additional information tracking the staifténdividual inputs was added. This responsiilit
was assigned to the receiver, where the added Isgianple and ThreadWrite messages are kept
small. A simple solution was to keep a bitmap déets written within the frame (in units of 64bit),
so a write of 64bits to thieh position in the frame will clear theh bit in the map, only after actually
writing and publishing the new value. This way, theest SC of a thread can always be recovered in
any case of failure, using the 'Original SC' fialdd the bitmap. Repeated writes from rescheduled
threads will not corrupt thread executions sinae riéceiver will see that the destination offseti®it
already cleared and will not decrease the SC ip&ké®e local memory. Note that currently the bitmap
is 64 bits in size, limiting the size of a threadnie to a maximum of 512 bytes, of course a more
flexible solution can be made.

4.4.4 Integration into TERAFLUX

Development was aimed to be able to reliably rundhtaflow threads devised by TERAFLUX. The
system uses the TSUF variant of TSU that implemarsisared memory model of TERAFLUX, with

a shared-memory consistency model similar to aeffelease. The operating system is simulated
over virtual machines, using the COTSon simulakbe host runs a VM instance for each node (with
several cores), each node boots into its own kefitng host allocates a shared memory region, which
the VMs can access over a simulator layer thatémphts the acquire/release semantics.
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Figure 34: Simulation Overview

4.4.4.1Shared-Memory Support

Each node runs the normal LTSU and DTSU but thresponsibilities are limited to a subset of the
original ones, just the hardware support that dedéls shared memory access is relied on by the OS.
They do not communicate to other nodes throughexisting strong-consistency shared structures
hidden in the simulator (e.g. by shared DF thrgqamss), besides the ones that simulate the shared
memory semantics. All communication between nodegone in software at the OS level, using the
shared memory with the weaker consistency mode (Q@¥WMD3.5, D4.7) supplied by TSUF. Thread
management and scheduling is also done in softaraye not relying on TSU mechanismntpdll) for
user threads, or the existence of the user exdedtaed in all nodes (required user DF threadie co
is transferred over OWM). More specifically, tdtheduls are immediately followed bytaonstrain

to the local node, and rwrite/tdecreaseanstructions ever operate on threads from otheesdie.
twrites are mapped to standard MOV operations), thusstehable space of TSU is constrained only
to the local node.

4.4.4.2Service Threads

The OS needs access to the shared memory (sinceesgage queues, thread binaries and thread
descriptors are stored there), so it uses a spdnidlof DF threads internally for some of its seev
threads, created with a similar interface as thetorcreate user DF threads.

These threads are not the normal dataflow thrdedshive no side-effects, have a short life-span an
just need a single OWM acquire/release, some ohthee persistent to the lifetime of the system,
they have side-effects before their completion #wey require a more powerful access to the OWM.
They are responsible to maintain the communicatimannels through the shared memory, poll on
message queues from other nodes and run messages.p@upport for such threads was not
considered in TSUF so some moadifications were mndedeluding the addition of a new T*

instruction, tacquire which receives a pointer to one of the readab@MDregions the thread
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subscribed to and reloads it to guest memory. Tigguction was not needed in “normal" DF
threads, because it is expected that their inpatalaeady present when the thread starts and do no
change while it runs, contrary to an OS messagepptinmead for example. Such a thread needs to
repeatedly acquire the queue regions for new messagd a writer thread may need to write data to
the queue and release several times.

Additionally, to simplify development and possibhcrease performance, it was suggested to allow
acquire and release operations only on a partrefian. The existence of this feature is dependent
the assumed hardware support, but for now at ieasts simple to implement in the simulator. This
feature was useful in many cases, for example vdeating with the shared FIFO buffers, the entire
buffer is stored in a single region, but still diént blocks can be written to and published
independently, saving the overhead of publishingadiified data and the bookkeeping of managing
a region for each (relatively small) block.

Being aware of the dataflow instruction set, we banmore detailed with the contents of a thread
descriptor that is passed in ThreadLoad messagkekeqt in the backup store. A new dataflow thread
is created with additional details, as specifiedhi®/TSUF instructions, those need to be kept thigh
thread information when it is assigned to a noderestored from backup. Besides obviously
specifying the thread routine (as explained befame;either include the thread nafer the actual
binary), also the frame size of the thread, thelyomization count and the OWM region definitions
the thread need to access are included with tieadhdescriptor.

4.4.4 3Dataflow Threads

The user dataflow threads can be one of the twador

* TSUF DF threads, created witbchedule, tsubscribetc. OWM access from user threads is
only supported in this mode, since normal pthrezasnot currently subscribe to it. This
mode enforces a limit on the number of running Bfeads, which is the number of worker
threads that constantly catloll for work.

* Normal pthreads. Since all thread management aneldséing is done in software, in this
case, there is no need for the user threads tanbESWF worker threads. The OS service
threads are still DF threads because they need GMtdss but the user threads are not. To
keep user code exactly the same when switching degtwnodes, the runtime creates an
environment similar to that created by TSUF. Thalmenables the local operating system to
manage the computation resources in the node aack shem among running threads,
making it much more flexible and efficient.

45 Related Research

Research on intra-node reliability mechanisms (§ipally, for a case of core failure that
does not limit the functionality of the remainingres in the node) could most likely be
incorporated and utilized by this system, thus deitnpg the picture by providing both a local
and a global solution. The system could handle eorers and failures more efficiently if
some of the problems are handled within the nodeygmting the node from failing and
affecting the entire system by the global recoy@ncedure.

6 Thread name can obviously be replaced with a mffigient identifier.
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