
Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 1 of 50

SEVENTH FRAMEWORK PROGRAMME
THEME

FET proactive 1: Concurrent Tera-Device
Computing (ICT-2009.8.1)

PROJECT NUMBER: 249013

Exploiting dataflow parallelism in Teradevice Computing

D2.4 –Final report, including the set of reference applications ported to the
TERAFLUX platform

Due date of deliverable: 31st March 2014
Actual submission: 19th may 2014

Start date of the project: January 1st, 2010 Duration: 51 months

Lead contractor for the deliverable: BSC

Revision : See file name in document footer.
Project co-founded by the European Commission

within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)
Dissemination Level: PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 2 of 50

Change Control
Version# Date Author Organization Change History
1 06.03.2014 Tomasz Patejko, Rosa

M. Badia
BSC Initial version

2 03.04.2014 Tomasz Patejko, Rosa
M. Badia

BSC First Version

3 10.04.2014 Tomasz Patejko, Rosa
M. Badia

BSC Peer reviewed version

4 07.05.2014 Roberto Giorgi UNISI Review

Release Approval
Name Role Date
Tomasz Patejko Originator 06.03.2014
Rosa M. Badia WP Leader 30.04.2014
Roberto Giorgi Project Coordinator for formal deliv erable 10.04.2014

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 3 of 50

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 7

1 INTRODUCTION ... 8

1.1 DOCUMENT STRUCTURE .. 8

1.2 RELATION TO OTHER DELIVERABLES .. 8

1.3 ACTIVITIES REFERRED BY THIS DELIVERABLE .. 8

2 REFERENCE APPLICATIONS .. 9

2.1 ADDRESSING REVIEWERS RECOMMENDATION .. 10

3 TRANSLATION SCHEME BETWEEN PROGRAMMING MODELS: OPENSTREAM AND STARSS (INRIA, BSC)12

3.1 INTRODUCTION .. 12

3.2 IMPLEMENTATION .. 12

3.3 EVALUATION ... 14

4 APPLICATION PORTING ... 16

4.1 APPLICATIONS PORTED TO STARSS (BSC).. 16

4.1.1 FMRadio .. 16

4.1.2 Graph500 – graph search problem ... 19

4.1.3 Labyrinth (Lee-Routing) .. 22

4.1.4 FFT1D – numeric application .. 25

4.1.5 SPECFEM3D – scientific application .. 27

4.2 APPLICATIONS PORTED TO SCALA (UNIMAN) ... 31

4.3 INDUSTRIAL APPLICATIONS (THALES WITH THE COLLABORATION OF INRIA AND BSC) .. 33

4.3.1 The Pedestrian Detection application ... 33

4.3.2 The Radar application ... 43

4.3.3 Discussion ... 47

5 CONCLUSIONS ... 49

REFERENCES .. 50

LIST OF FIGURES

FIGURE 1 TRANSLATION OF STARSS TASK PRAGMA ... 13

FIGURE 2 TRANSLATION OF STARSS TASKWAIT PRAGMA .. 14

FIGURE 3 TASK SCALABILITY FOR MATRIX MULTIPLICATION AND CHOLESKY BENCHMARKS .. 15

FIGURE 4 BODY OF THE MAIN LOOP OF SEQUENTIAL FMRADIO APPLICATION ... 16

FIGURE 5 BODY OF THE MAIN LOOP OF PARALLEL FMRADIO APPLICATION .. 17

FIGURE 6 FMRADIO SPEEDUP FOR DIFFERENT GRAIN SIZES... 18

FIGURE 7 TRACE WITH TASK EXECUTION OF PARALLEL FMRADIO FOR GRAIN SIZE 8 FOR 16 THREADS. EACH ROW REPRESENTS THE

ACTIVITY OF A THREAD, WITH DIFFERENT COLORS REPRESENTING DIFFERENT TASKS. THE X-AXIS REPRESENTS TIME. 18

FIGURE 8 PSEUDOCODE OF QUEUE-BASED PARALLEL BREADTH FIRST SEARCH ALGORITHM ... 19

FIGURE 9 PSEUDOCODE OF ARRAY READ-BASED PARALLEL BREADTH FIRST SEARCH ALGORITHM ... 20

FIGURE 10 PERFORMANCE RESULTS OF GRAPH500 FOR DIFFERENT GRAPH SIZES ... 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 4 of 50

FIGURE 11 PSEUDOCODE OF LABYRINTH (LEE ROUTING) ALGORITHM WITH OMPSS REGIONS ... 22

FIGURE 12 SPEEDUP RESULTS FOR OMPSS LABYRINTH FOR VARYING DATA SIZES .. 23

FIGURE 13 EXECUTION TRACE WITH TASK DEPENDENCIES FOR A BOARD OF SIZE 1024X1024 AND NUMBER OF PATHS 4096 FOR 16

THREADS. EACH ROW REPRESENTS THE ACTIVITY OF A THREAD, WITH DIFFERENT COLORS REPRESENTING DIFFERENT TASKS. THE

X-AXIS REPRESENTS TIME. ... 24

FIGURE 14 TRACE WITH PARALLEL TASK EXECUTION FOR BOARD OF SIZE 1024X1024 AND NUMBER OF PATHS 4096 FOR 16 THREADS.

EACH ROW REPRESENTS THE ACTIVITY OF A THREAD, WITH DIFFERENT COLORS REPRESENTING DIFFERENT TASKS. THE X-AXIS

REPRESENTS TIME. ... 24

FIGURE 15 PSEUDOCODE OF THE FFT1D ALGORITHM... 25

FIGURE 17 TRACE WITH TASK EXECUTION OF PARALLEL FFT1D FOR THE FIRST CONFIGURATION FOR 16 THREADS. EACH ROW

REPRESENTS THE ACTIVITY OF A THREAD, WITH DIFFERENT COLORS REPRESENTING DIFFERENT TASKS. THE X-AXIS REPRESENTS

TIME. .. 26

FIGURE 16 FFT1D SPEEDUP FOR DIFFERENT PROBLEM SIZES .. 26

FIGURE 18 TRACE WITH TASK EXECUTION OF PARALLEL FFT1D FOR THE SECOND CONFIGURATION FOR 16 THREADS. EACH ROW

REPRESENTS THE ACTIVITY OF A THREAD, WITH DIFFERENT COLORS REPRESENTING DIFFERENT TASKS. THE X-AXIS REPRESENTS

TIME. ... 27

FIGURE 19 TRACE WITH PARALLEL TASK EXECUTION OF OMPSS-INOUT IMPLEMENTATION FOR 16 THREADS. EACH ROW REPRESENTS

THE ACTIVITY OF A THREAD, WITH DIFFERENT COLORS REPRESENTING DIFFERENT TASKS. THE X-AXIS REPRESENTS TIME. 29

FIGURE 20 SPEEDUP FOR DIFFERENT IMPLEMENTATIONS OF SPECFEM3D ... 29

FIGURE 22 TRACE WITH PARALLEL TASK EXECUTION OF OMPSS-COMMUTATIVE IMPLEMENTATION FOR 16 THREADS. EACH ROW

REPRESENTS THE ACTIVITY OF A THREAD, WITH DIFFERENT COLORS REPRESENTING DIFFERENT TASKS. THE X-AXIS REPRESENTS

TIME. .. 30

FIGURE 21 TRACE WITH PARALLEL TASK EXECUTION OF OMPSS-CONCURRENT IMPLEMENTATION FOR 16 THREADS. EACH ROW

REPRESENTS THE ACTIVITY OF A THREAD, WITH DIFFERENT COLORS REPRESENTING DIFFERENT TASKS. THE X-AXIS REPRESENTS

TIME. .. 30

FIGURE 23 EXAMPLE OF OUTPUT PRODUCED FROM THE PEDESTRIAN DETECTION APPLICATION ... 33

FIGURE 24 CASCADING ALGORITHM .. 34

FIGURE 25 THE PEDESTRIAN DETECTION APPLICATION PARALLELIZED ACROSS TILE AXIS WITH OMPSS .. 35

FIGURE 26 THE PEDESTRIAN DETECTION APPLICATION PARALLELIZED ACROSS CASCADING AXIS WITH OMPSS 36

FIGURE 27 THE PEDESTRIAN DETECTION APPLICATION PARALLELIZED ACROSS FILTER AXIS WITH OMPSS 37

FIGURE 28 THE PEDESTRIAN DETECTION APPLICATION PARALLELIZED ACROSS SCALE AXIS ... 37

FIGURE 29 TRACE OF THE PARALLELIZATION ACROSS SCALE AXIS FOR THE REFERENCE IMAGE ... 38

FIGURE 30 SCALE AXIS VS. "BALANCED" SCALE AXIS PARALLELIZATION APPROACHES .. 39

FIGURE 31 THE PEDESTRIAN DETECTION APPLICATION PARALLELIZED WITH OPENMP ... 40

FIGURE 32 TRACE OF THE “BALANCED” PARALLELIZATION ACROSS SCALE AXIS FOR THE REFERENCE IMAGE 40

FIGURE 33 PORTS SPEEDUP OVER COTS CONFIGURATIONS .. 41

FIGURE 34 OPENSTREAM PORT SPEEDUP OVER THE TERAFLUX PLATFORM ... 42

FIGURE 35 THE RADAR APPLICATION KERNEL PIPELINE .. 43

FIGURE 36 PERFORMANCE OF NON-DEBUGGED RADAR APPLICATION ... 44

FIGURE 37 PERFORMANCE OF DEBUGGED RADAR APPLICATION .. 44

FIGURE 38 SPEEDUP OF SEQUENTIAL VERSION OF THE DATAFLOW PORT ON X86 MACHINES ... 45

FIGURE 39 SPEEDUP OF SEQUENTIAL VERSION OF THE DATAFLOW PORT ON THE TERAFLUX PLATFORM 46

FIGURE 40 SPEEDUP OF PARALLEL VERSION OF THE DATAFLOW PORT ON X86 MACHINES ... 46

FIGURE 41 SPEEDUP OF PARALLEL VERSION OF THE DATAFLOW PORT ON THE TERAFLUX PLATFORM .. 47

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 5 of 50

LIST OF TABLES

TABLE 1 LIST OF REFERENCE APPLICATIONS ... 9

TABLE 2 IMPACT OF THE SCALE STEP PARAMETER ON PERFORMANCE SCALABILITY ... 42

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 6 of 50

List of contributors to the writing of the document.

Rosa M. Badia, Tomasz Patejko,
Rahul Gayatri and Nacho Navarro

BSC
Daniel Goodman, Salman Khan, Behram Khan,

Paraskevas Yiapanis, Mikel Lujan and Ian Watson
University of Manchester

Feng Li and Albert Cohen
INRIA

Daniel Gracia, Sylvain Girbal
THALES

© 2009 TERAFLUX Consortium, All Rights Reserved.
Document marked as PU (Public) is published in Italy, for the TERAFLUX Consortium, on the www.teraflux.eu web site
and can be distributed to the Public.
The list of author does not imply any claim of ownership on the Intellectual Properties described in this document.
The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors
or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of
the information contained in this document.
This document is furnished under the terms of the TERAFLUX License Agreement (the "License") and may only be used or
copied in accordance with the terms of the License. The information in this document is a work in progress, jointly
developed by the members of TERAFLUX Consortium ("TERAFLUX") and is provided for informational use only.
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets owned
by or licensed to TERAFLUX Partners. The partners reserve all rights with respect to such technology and related materials.
Any use of the protected technology and related material beyond the terms of the License without the prior written consent
of TERAFLUX is prohibited. This document contains material that is confidential to TERAFLUX and its members and
licensors. Until publication, the user should assume that all materials contained and/or referenced in this document are
confidential and proprietary unless otherwise indicated or apparent from the nature of such materials (for example,
references to publicly available forms or documents).
Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited without
the prior written consent of TERAFLUX or such other party that may grant permission to use its proprietary material. The
trademarks, logos, and service marks displayed in this document are the registered and unregistered trademarks of
TERAFLUX, its members and its licensors. The copyright and trademarks owned by TERAFLUX, whether registered or
unregistered, may not be used in connection with any product or service that is not owned, approved or distributed by
TERAFLUX, and may not be used in any manner that is likely to cause customer confusion or that disparages TERAFLUX.
Nothing contained in this document should be construed as granting by implication, estoppel, or otherwise, any license or
right to use any copyright without the express written consent of TERAFLUX, its licensors or a third party owner of any
such trademark.
Printed in Siena, Italy, Europe.
Part number: please refer to the File name in the document footer.

DISCLAIMER
EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUX SPECIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS, DATA
OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 7 of 50

Executive Summary
This document is the fourth deliverable of WP2, Benchmarks and Applications. The objective of this
work package is to understand the runtime behavior of applications in order to establish a guideline in
the design of the other components of the computing system in TERAFLUX. As TERAFLUX
explores the design of highly parallel tera-device systems, a key step in the project is to understand
the fundamental requirements of highly parallel applications and their implications on all layers of a
computing system that supports a data-flow programming and execution model – from the
programming model itself, down to extensions to commodity architecture.

The deliverable describes the results of the fourth year of the project in task T2.3. The activities
performed in task T2.3 relate to the porting of applications to the project programming models. The
deliverable gives a final report on reference applications ported to TERAFLUX platform. The
deliverable gives detailed explanation on applications ported in the fourth year. Additionally, the
deliverable presents implementation of the translation scheme from StarSs to OpenStream
programming model and reports on performance evaluation of translated applications.

Of special interest is the section 4.2, where implementations of the industrial applications in several
programming models are discussed and its performance evaluated in real platforms and in the
TERAFLUX platform with up to 1024 cores. This evaluation demonstrates that with the parallel
processing the TERAFLUX platform is able to achieve very promising gains, showing its capability
to compute in parallel the different bursts, especially as the number of bursts of the input increases.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 8 of 50

1 Introduction
This is the fourth deliverable of WP2, Benchmarks and Applications. While during the first two years
of the project the objective was to understand and characterize the behaviour of the applications, the
last two years of the project focused on the porting of the project reference applications to the project
programming models.

While during year 1 the partners participating in WP2 defined the characterization methodologies and
metrics to be used in the project applications, in year 2 the project partners performed extended
characterization of these applications. In year 3, project partners continued the porting of the project
applications to the programming models considered in the project1.

The table in next section contains the final list of reference applications ported to TERAFLUX [12]
programming models; more than 30. This deliverable reports on the more interesting aspects of the
applications’ porting performed during the last reporting period. The reader is referred to previous
deliverables of the WP2 (especially D2.3) where previous results on porting applications were
reported.

1.1 Document structure
The document is organized as follows: Section 2Reference applications lists the reference application
of the project. Section 2.1 gives an overview of a translation scheme between StarSs and OpenStream
programming models. Section 4 reports the more interesting aspect of porting applications to the
project programming models. Finally, Section 5 presents some conclusions.

1.2 Relation to other deliverables
This deliverable has relation with D2.2 and D2.3.

1.3 Activities referred by this deliverable
This deliverable refers to the activities performed task T2.3 during the fourth year of the project. the
activities performed task T2.3 during the fourth year of the project.

1 Although the porting was initially planned for years 3 and 4, this activity started earlier.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 9 of 50

2 Reference applications
Deliverable D2.3 presented the list of reference applications to be ported to the project programming
models. The applications are listed below, and for each of them there is the Status column that reports
on the status of the applications.

The status can be:

• In progress: the partners are working on the porting of this application
• Available: the porting finished and the application is available in the project application

repository.

Table 1 List of reference applications

Benchmark Responsible
partner

Programming model Status

Matmul BSC
INRIA
UCY
UNIMAN

StarSs
OpenStream
DDM
Scala + TM

Available
Available
Available
Available

Radix Sort INRIA OMP Available
Barnes-Hut BSC StarSs Available
Cholesky BSC

UCY
INRIA

StarSs
DDM
OpenStream

Available
Available
Available

Sparse LU BSC
INRIA
UCY

StarSs
OpenStream
DDM

Available
Available
Available

FFT2D BSC
INRIA

StarSs
OpenStream

Available
Available

SPECFEM3D BSC StarSs Available

N Queens BSC StarSs Available

Lee’s Routing
(Labyrinth)

UNIMAN
BSC
INRIA
UNIMAN +
UCY

Scala +TM
StarSs
OpenStream
DDM + TM

Available
Available
In progress
Available

Kmeans UNIMAN
BSC

Scala + TM
StarSs

Available
Available

Ssca2 UNIMAN Scala + TM Available
STAMP – Vacation UNIMAN Scala + TM Available
Travelling Salesman UNIMAN Scala + TM Available
MapReduce - wordcount UNIMAN Scala + TM Available
MapReduce sorting UNIMAN Scala + TM Available
Pregel – Pagerank UNIMAN Scala + TM Available

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 10 of 50

Benchmark Responsible
partner

Programming model Status

Pregel – Single Source
Shortest Path

UNIMAN Scala + TM Available

FFT 1D INRIA
BSC

OpenStream
StarSs

Available
Available

Fmradio INRIA
BSC

OpenStream
StarSs

Available
Available

Picture-in-picture INRIA
INRIA

OpenStream
Heptagon [11]

Available
Available

Ad-hoc software radio INRIA
INRIA

OpenStream
Heptagon

Available
Available

Conv2d UCY DDM Available

IDCT UCY DDM Available

Trapez UCY DDM Available
Graph 500 BSC

UD
StarSs
Codelet

Available
Available

Go (Montecarlo Tree
Search)

UNIMAN Scala + TM Available

Flux
(object tracking)

BSC StarSs Available

GROMACS BSC StarSs Available

PEPC BSC StarSs Available

WRF BSC StarSs Available
STAP (Radar) Thales

BSC
INRIA

Seq. code
StarSs

Available
Available
Available

Viola & Jones
(Pedestrian detection)

THALES
INRIA

Seq. code
OpenStream

Available
Available

HPL Linpack BSC StarSs Available

2.1 Addressing reviewers recommendation
In the reports of the third review, the following recommendation was given for the future work:

The reviewers also emphasize the importance of porting of at least three reference applications not
characterized in Task 2.2 to the selected programming models in order to maintain the rigorous
methodology that the Consortium agreed on in Task 2.3.

According to this recommendation, the consortium decided to focus their effort in the following three

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 11 of 50

applications that were not characterized in task T2.2: FFT1D (see section 4.1.4), FMRadio (see
section 4.1.1), and Graph500 (see section 4.1.2).

Additionally, the partners also agreed to port and do analysis on four applications that were previously
characterized in task T2.2: Lee routing (Labyrinth, see section 4.1.3), Specfem3D (see section 4.1.5),
STAP (Radar, see section 4.3.2) and Viola Jones (Pedestrian detection, see section 4.3.1). The reason
is that these applications are significantly more relevant than others that the consortium may work and
will allow to do relevant analysis and comparison, in order to publish the results.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 12 of 50

3 Translation scheme between programming models:
OpenStream and StarSs (INRIA, BSC)

Deliverable D2.3 presented a translation methodology from StarSs regions to OpenStream streaming
constructs. In this section we report on progress on implementing the translation algorithm, and show
initial performance results.

3.1 Introduction
The OpenStream compiler [2, 3] is an entry point to the TERAFLUX compilation toolchain:
applications parallelized with TERAFLUX programming models need to be translated manually or
automatically to code annotated with OpenStream directives. We use StarSs memory regions [1] as a
case study for translation to OpenStream. OpenStream and StarSs have different features with regard
to how data used for computation are represented and how data dependencies are handled:

• OpenStream's basic unit of computation is a dataflow stream whereas StarSs applications use
dynamic memory regions specified by the programmer for communication between tasks

• OpenStream requires explicit task dependencies to maintain correctness of parallel execution
whereas data dependencies of StarSs tasks are inferred at runtime

Translation from StarSs code to OpenStream requires the programmer to identify data dependencies
between StarSs tasks and to encode them with OpenStream streaming constructs. [2] introduces a
methodology of how StarSs-OpenStream translation can be carried out at compile time. The idea
behind automatic StarSs-OpenStream translation is to encode StarSs memory regions as a set of
streams that contain versions of memory locations accessed by tasks. The most recent versions in the
set of streams are calculated by a modified StarSs dependence resolver, and determine live data
identified by the StarSs memory regions at the given point of application execution. The set of
streams is attached to each OpenStream task, and is used by OpenStream runtime to determine data
dependencies between tasks and to synchronize concurrent memory accesses.

3.2 Implementation
We have developed a source-to-source translator that carries out StarSs-OpenStream translation at
compile time. Our implementation translates code that uses OmpSs [9], a programming model that
extends OpenMP with features from the StarSs programming model.

The key components of the translator are a StarSs pragma parser and an OpenStream code generator.
The parser parses StarSs pragmas, and identifies memory regions and their directionalities further
used to calculate their live versions. The code generator generates calls to the StarSs dependence
resolver and OpenStream task pragmas with the set of version streams. Generated code is further
passed to the OpenStream compiler.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 13 of 50

Figure 1 and Figure 2 show translated OpenStream code with corresponding StarSs programming
constructs: task pragma with regions and taskwait pragma. When translator encounters StarSs

task pragma (Figure 1), it extracts information about the regions and their respective directionalities,
and generates the appropriate code (OpenStream code in lines 2-14). The code declares streams and
initializes region descriptors with collected information, which will be used by the dependence
resolver at runtime to handle data dependencies; a generated call to the dependence resolver is shown
in line 15 in Figure 1. The generator also generates OpenStream task pragmas so the body of the

StarSs code
1. #pragma omp task in(in_a[0:SIZE-1], in_b[0:SIZE- 1])\
 out(out_c[0:SIZE-1])
2. void MatrixMultiply(float *in_a, float *in_b, fl oat *out_c)
 {
3. //Matrix multiplication code
 }

Generated OpenStream code

1. void MatrixMultiply (float *in_a, float *in_b, f loat *out_c)
 {
 //declaration of version streams
2. int streams_peek[MAX_CONNECTIONS]__attribute__ ((stream_ref));
3. int num_peek;
4. int streams_in[MAX_CONNECTIONS] __attribute__((stream_ref));
5. int num_in;
6. int streams_out[MAX_CONNECTIONS] __attribute__ ((stream_ref));
7. int num_out;
 //Information about regions and directionaliti es
8. region_descriptor_t reg_desc[3];
9. reg_desc[0].type = INPUT;
10. reg_desc[0].id = in_a;
11. reg_desc[1].type = INPUT;
12. reg_desc[1].id = in_b;
13. reg_desc[2].type = OUTPUT;
14. reg_desc[2].id = out_c;

 //Call to OpenStream dependence resolver
15. resolve_dependences(reg_desc, 3,
 &streams_peek[0], &num_pee k,
 &streams_in[0], &num_in,
 &streams_out[0], &num_out) ;
16. int peek_view[num_peek][1];
17. int in_view[num_in][1];
18. int out_view[num_out][1];
 //OpenStream task pragma
19. #pragma omp task peek(streams_peek >> peek_vie w[num_peek][0])\
 input(streams_in >> in_view[n um_in][1])\
 output(streams_out << out_vie w[num_out][1])
 {
20. //Matrix multiplication code
 }
 }

Figure 1 Translation of StarSs task pragma

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 14 of 50

task could be run in parallel when the generated OpenStream code is executed (lines 19 and 20).

On occurrences of StarSs taskwait pragma (StarSs code in Figure 2), the translator generates calls
to two OpenStream functions that flush and restore correct version streams (lines 1 and 3,
respectively, in OpenStream code in Figure 2). These two functions ensure correct synchronization

between OpenStream producers and consumers when the barrier is encountered.

Currently the StarSs-OpenStream translator handles the following StarSs pragma use cases:

• Function definitions
• C compound statements

• Function declarations with external linkage

3.3 Evaluation
The current prototype uses the dependence resolver that compares regions’ start addresses, which
makes it unusable for applications with tasks that access overlapping regions. The benchmarks were
executed on a single node with 2 Intel E5649 (6-Core, 12M cache, 2.53 GHz) processors.

We used two benchmarks to evaluate performance of the translated applications: Cholesky and Matrix
Multiplication. Both benchmarks were parallelized with the OmpSs programming model. In the
OmpSs implementations tasks access blocks of data to perform local computations. The tasks are
synchronized by data dependencies among pieces of memory expressed as OmpSs task regions, which
do not overlap. Codes translated to OpenStream use OpenStream runtime for task scheduling and
dependency resolver based on GNU C tree. Figure 3 shows speedup for different number of tasks for
both benchmarks executed for 12 threads. Both benchmarks attain from 6-fold to 11-fold speedup for
increasing number of tasks OmpSs and OpenStream runtimes need to handle.

StarSs code

1. #pragma omp taskwait

Generated OpenStream code

1. openstream_resolver_flush_versions();
2. #pragma omp taskwait
3. openstream_resolver_restore_versions();

Figure 2 Translation of StarSs taskwait pragma

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 15 of 50

Figure 3 Task scalability for Matrix Multiplication and Cholesky benchmarks

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 16 of 50

4 Application porting

4.1 Applications ported to StarSs (BSC)

4.1.1 FMRadio
In the fourth year of the project we implemented a version of the parallel FMRadio application using
the OmpSs programming model [9, 10]. In this section we give an overview on the parallel
implementation of the application, and report on performance evaluation and analysis.

The sequential version of FMRadio application is composed of a set of filters that perform
computations over the signal samples. The filters are executed sequentially in a loop iterating of the
stream of samples. The main application loop of sequential FMRadio is shown in Figure 4.

The iteration of the main loop starts by passing sample i to the first filter as its input data. Each filter j
iterates over its input data j and performs calculations that result in output j that is passed further to
the next filter j+1 as an input j+1. The algorithm resembles a pipeline where each filter j works on the
data produced by filter j-1, and passes the output to filter j+1 . In addition, each filters maintains the
history of its previous computations i-l, 1 < l < N, that is needed for its execution i.

Figure 4 Body of the main loop of sequential FMRadio application

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 17 of 50

The parallel main loop of the application is shown in Figure 5. The parallelization strategy assumes
encapsulating each filter j into an OmpSs task that can be run in parallel. Task synchronization is
maintained through flow dependence between tasks j-1 and j. Each set of filters executed in iteration i
runs in parallel and performs local computations that do not depend on computations from iteration i-
1. Such parallelization scheme requires no loop-carried dependencies between tasks. The computation
histories maintained by the filters introduce such dependencies and in practice serialize the execution
of tasks. The dependencies on the computation histories are relaxed by precomputing the necessary
data before the main loop starts executing and by redundantly calculating the histories by tasks at each
iteration of the main loop.

Figure 6 shows the speedup results for executions of FMRadio for varying grain sizes. The grain size
is a parameter that is passed to the application and it indicates a size of the samples each filter will
process. By varying the grain size values we can change the size of OmpSs tasks. The measurements
were taken for grain size values ranging from 2 to 12. The application was run on a node with two
processors Intel SandyBridge-EP E5-2670/1600 (20M cache, 8-core, 2.6 GHz) and memory 8x4GB
DDR3-1600 DIMMS (2GB/core). The best speedup achieved by parallel FMRadio is 13-fold for
grains of sizes 8 and 10 for 16 threads. As can be seen in the figure, excellent results can be obtained
for grains between 8 and 10.

Figure 5 Body of the main loop of parallel FMRadio application

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 18 of 50

An image from an execution trace that shows tasks’ execution appears in Figure 7. We can see that
tasks from different FMRadio’s main loop iterations run in parallel, whereas tasks processing the i th
sample are serialized by flow dependence on the results of their computations.

 filter tasks

Figure 7 Trace with task execution of parallel FMRadio for grain size 8 for 16 threads. Each row represents the activity of a
thread, with different colors representing different tasks. The x-axis represents time.

Figure 6 FMRadio speedup for different grain sizes

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 19 of 50

4.1.2 Graph500 – graph search problem
In the year four of the project we started working on the parallel implementation of the Graph500 [4]
benchmark that uses OmpSs programming model as a parallelization framework. In this section we
give an overview on the algorithms we implemented and present initial performance results.

Graph500 is a benchmark that implements Breadth First Search of a graph resulting in a spanning
tree. It comes with a set of parallel implementations based on e.g. MPI and OpenMP. The graph can
be represented as an adjacency list or in a Compressed Spare Row (CSR) format. The benchmark can
be configured to use a Recursive Model for Graph Mining (R-MAT) or a Kronecker product as its
graph generator.

In our experiments we use the Kronecker method to generate graphs, which are stored in CSR format.
The algorithms we show in this section are Array-Read-Based and Queue-Based [5].

The pseudocode of a Queue-based BFS algorithm is shown in Figure 8. The algorithm uses two
queues, current_frontier and next_frontier , which store, respectively, nodes on the level
i and nodes on the level i+1 of the graph traversal. The constructed spanning tree is stored in a data
structure called visited_nodes . The traversal continues until there are no nodes to visit (line 7).
The set of nodes on the currently visited level i is partitioned among threads (line 8) and each thread
runs a task that visits neighbors of an assigned subset of nodes (lines 9-21). The threads maintain local
queues stored in a data structure called local_queues , where neighbors of nodes visited on level i
are stored. The neighboring nodes will form a frontier on the level i+1 . Nodes in the thread’s local

1. def queue_bfs(graph, root) =

2. current_frontier, next_frontier

3. local_queues(threads_number)

4. visited_nodes

5. next_frontier.push(root)

6. visiter_nodes(root) = VISITED

7. while !next_frontier.empty?

8. for nodes <- current_frontier.partition(thr eads_number)

9. #pragma omp task

10. lq = local_queues(my_thread_id)

11. for cn <- nodes

12. for n <- graph.neighbors(cn)

13. if !visited_nodes.visited?(n)

14. if visited_nodes.atomic _cas(n, NOT_VISITED, VISITED)

15. lq.push(n)

16. if lq.full?

17. next_frontier.s ync_push(lq)

18. lq.clear

19. if !lq.empty?

20. next_frontier.sync_push(lq)

21. lq.clear

22. #pragma omp taskwait

23. swap(next_frontier, current_frontier)

24. next_frontier.clear

 Figure 8 Pseudocode of Queue-based parallel Breadth First Search algorithm

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 20 of 50

queue are moved to the next_frontier queue at the end of traversal (lines 19-21) or when the
thread’s local queue is full (lines 16-18 and 19-21).

Tasks do not maintain data dependencies. Although they access in parallel the visited_nodes
data structure to mark nodes that have been visited, they are synchronized through test-test-and-set
pattern (lines 13 and 14). Also, in the implementation accesses to a queue current_frontier are

synchronized. Each thread modifies the queue’s tail using atomic operation fetch-and-add . The

local_queues queues are modified locally by each thread so there is no need to manage data
dependencies for these data structures.

The pseudocode of Array Read-based BFS is shown on Figure 9. As it was a case for Queue-based
BFS, the algorithm uses the visited_nodes data structure. It defines the levels data structure,
which stores levels of nodes that were visited. The nodes on the level i form a current frontier (line 13
and 22). The nodes of the graph are partitioned and distributed among threads (line 10). Each thread
runs an OmpSs task that checks whether a node forms a current frontier (line 13). Then it visits
neighbors of the node (lines 15-19). If the neighbouring node has not been previously encountered, it
is marked as visited and will form a frontier on the level i+1 (line 16-19). The algorithm runs until
there are no nodes to visit (lines 9, 19 and 21).

The Array Read-based BFS uses the levels data structure that stores current frontier. The data
structure is partitioned among threads and allows local computations without creating data
dependencies between tasks. So the algorithm does not introduce an overhead of concurrent accesses
to queues with current and next frontiers present in Queue-based BFS.

1. def array_read_bfs(graph, root) =

2. visited_nodes

3. levels(graph.nodes_number)

4. threads_completed(threads_number)

5. visited_nodes(root) = VISITED

6. level = 1

7. levels(root) = level

8. finished = false

9. while !finished

10. for nodes <- graph.nodes.partition(threads_ number)

11. #pragma omp task

12. for n <- nodes

13. if levels(n) != level

14. continue

15. for ng <- graph.neighbors(n)

16. if visited_nodes.visited?(n g)

17. if visited_nodes.atomic _cas(ng, NOT_VISITED, VISITED)

18. levels(ng) = level + 1

19. threads_completed(m y_thread_id) = false

20. #pragma task wait

21. finished = threads_completed.logical_an d
22. level++

Figure 9 Pseudocode of Array Read-based parallel Breadth First Search algorithm

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 21 of 50

Figure 10 shows performance results for OmpSs Queue-based and Array Read-based implementations
of Graph500. We compared our results with sequential and OpenMP implementations. The
application was run on a node with two processors Intel SandyBridge-EP E5-2670/1600 (20MB
cache, 8-core, 2.6GHz) and memory 8x4GB DDR3-1600 DIMMS (2GB/core). The size of a graph is
depicted by scale; the number of vertices in a graph is 2scale. The performance metric used in the
measurements is the number of traversed edges per second (TEPS). Due to memory limitations of our
environment we could only run the application for scale of up to 22.

BFS is an irregular parallel algorithm and makes an interesting case for work distribution among
tasks. At the early and late levels of traversal tasks are very small due to the small size of a frontier
and the low number of nodes to visit, which are of small degree. There is no overlap of task creation
with task execution; very little parallelism is available. In the middle levels of traversal the frontier of
the BFS is larger, and the number of nodes to visit increases. Tasks become bigger and can be
scheduled and executed in parallel.

Although OmpSs implementations are competitive with OpenMP implementations, for graphs used in
our experiment there is not enough available parallelism due to uneven work distribution. Threads
stay idle waiting for OmpSs tasks to execute.

Figure 10 Performance results of Graph500 for different graph sizes

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 22 of 50

4.1.3 Labyrinth (Lee-Routing)
In deliverable D2.3 we presented a methodology for decomposing sequential code into parallel
OmpSs tasks with Tareador [10]. As a running example we used Lee-routing algorithm. In this
deliverable we present further performance improvements of the algorithm.

As it was stated in deliverable D2.3, a main grid is divided recursively into smaller subgrids; each task
creates two subtasks that try to route paths within their respective subgrids. The algorithm takes a
divide-and-conquer approach in order to route given set of paths between points on the board. In the
current incarnation of the algorithm each subgrid is expressed as an OmpSs region of the main grid.
OmpSs regions allow us to relax dependencies on the main grid and limit them to its parts where tasks
perform routing.

Figure 11 shows pseudocode of expansion and traceback phases. The code for halving main grid and
spawning children tasks has not been changed and we omit it.

Each expansion task (lines 11-15) computes a path on a part of the main grid. A subgrid expansion
tasks work on is encoded as an OmpSs region of the main grid (in clause in task pragma, line 11).
Whenever expansion for a given pair of points is successful, the pair is inserted into the
pair_grid_list data structure (line 14), that is further used by the traceback task. Dependencies
on pair_grid_list between expansion tasks are relaxed through OmpSs concurrent pragma,

and the accesses to the list are synchronized by the OpenMP critical pragma (line 14).

The traceback task (lines 16-21) marks successfully expanded paths and it accesses only a part of the
main grid. The updates on the grid are limited to the subgrid expansion has been previously performed
on, so there is no need for synchronization on the entire grid. The dependence on a subgrid is

1. #pragma omp task in(grid) in(work_list) in(grid)

2. // Compute paths

3. def router_task(grid, work_list) =

4. //Divide grid into subgrids and

5. //create two children tasks that will route paths w ithin the subgrids

6. //…

7. path_grid_list = allocate_list

8. for((src, dest) <- my_work_list))

9. expansion_queue = allocate_queue

10. local_grid = copy_grid(grid)

11. #pragma omp task concurrent(path_grid_list) in(grid [lowerY:uppperY][lowerX:upperX])

12. //expansion task

13. if(expand(local_grid, expansion_que ue, src, dest))

14. #pragma omp critical

15. list_insert(path_grid_list, (sr c, dest))

16. #pragma omp task out(grid[lowerY:upperY][lowerX:upp erX]) concurrent(path_grid_list)

17. //traceback task

18. for((src, dest) <- path_grid_list)

19. path = traceback(grid, src, dest)

20. if(not_empty?(path))
21. update(grid, path)

Figure 11 Pseudocode of Labyrinth (Lee routing) algorithm with OmpSs regions

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 23 of 50

expressed as an OmpSs out clause with the subgrid encoded as an OmpSs region (line 16). The same
subgrid forms an antidependence between expansion tasks and a traceback task that synchronizes
execution of these tasks. Furthermore, as expansion and traceback tasks are synchronized through
dependences on a subgrid, there is no need to synchronize accesses to path_grid_list between
instances of these two tasks.

The speedup results are shown in Figure 12. The application was run on a node with two processors
Intel SandyBridge-EP E5-2670/1600 (20MB cache, 8-core, 2.6 GHz) and memory 8x4GB DDR3-
1600 DIMMS (2GB/core). The application was executed for two data sets: board of size 512x512 and
with 512 paths to route, and board of size 1024x1024 with 4096 paths. Measurements for both data
sizes were calculated against sequential execution of the application.

The algorithm scales for varying number of data sets. It achieves 10-fold speedup for board of size
512x512 with 512 paths to route, and 8-fold speedup for board of size 1024x1024 with 4096 path to
route.

Figure 12 Speedup results for OmpSs Labyrinth for varying data sizes

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 24 of 50

Figure 14 shows a timeline with task execution for 16 threads. Single_expansion tasks, that
perform expansion between points on the board, run in parallel. They maintain input dependencies
between each other on respective subgrids, and their accesses to pair_grid_list data structure
are handled by OpenMP critical pragma. Traceback tasks execute after the expansion tasks
finished. Synchronization is maintained by antidependence on the subgrid expansion and traceback
are performed on. Dependencies between expansion and traceback tasks can be seen in

 child_task single_expansion solve traceback

Figure 13. The lines in the figure indicate dependencies between tasks. We can see that no

Tasks

 child_task single_expansion solve traceback

Figure 14 Trace with parallel task execution for board of size 1024x1024 and number of paths 4096 for 16 threads.
Each row represents the activity of a thread, with different colors representing different tasks. The x-axis represents time.

Tasks

 child_task single_expansion solve traceback

Figure 13 Execution trace with task dependencies for a board of size 1024x1024 and number of paths 4096 for 16 threads. Each row represents
the activity of a thread, with different colors representing different tasks. The x-axis represents time.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 25 of 50

dependencies between expansion tasks are found by the OmpSs runtime. The only dependencies that
need to be resolved during execution are those between expansion and traceback tasks.

4.1.4 FFT1D – numeric application
In the year four of the project we used OmpSs as a parallelization framework for FFT1D benchmark.
The implementation is based on the parallel algorithm that uses SMPSs [8] for parallelization. In this
section we give an overview on the algorithm and present results of performance measurements for
the code using OmpSs.

FFT1D implements the Fast Fourier Transform over an array of complex double precision floating
point numbers and it uses 6-step Fast Fourier Transform algorithm [6]. The input and output data are
unidimensional, but the algorithm operates over them as a bidimensional matrix. The 6 steps are
divided into 3 transposition operations, 2 FFT operations over all rows and a multiplication of all the
elements by twiddle factors. The benchmark uses FFTW library for FFT operations.

The pseudo-code of the algorithm is shown in Figure 15. Each step of the algorithm is implemented as
an OmpSs task. Each tasks accesses blocks of matrix A, which are represented as OmpSs regions.
Representing data as an OmpSs region allows OmpSs tasks running in parallel to overlap
computations; data dependencies between tasks that access overlapping regions are tracked and
resolved by the OmpSs runtime. Tasks transpose_block and transpose_swap (line 4, 6, 20

and 22) implement an in-place matrix transpose operation and task fft1d (lines 9 and 17) calls
FFTW library to perform in-place FFT operation.

1. void fft(complex A[N_SQRT][N_SQRT])

2. // 1. Transpose

3. for (long i = 0; i < N_SQRT; i += TR_BS)

4. transpose_block(A[i][i])

5. for (long j= i + TR_BS; j < N_SQRT; j += TR _BS)

6. transpose_swap(A[i][j], A[j][i])

7. // 2. First FFT round

8. for (long j = 0; j < N_SQRT; j += FFT_BS)

9. fft1d(A[j][0])

10. // 3 & 4. Twiddle and Transpose

11. for (long I = 0; I < N_SQRT; I += TR_BS)

12. twiddle_transpose_block(i, A[i][i])

13. for (long j = I + TR_BS; j < N_SQRT; j +=TR _BS)

14. twiddle_transpose_swap(i, j, A[i][j], A [j][i])

15. // 5. Second FFT round

16. for (long j = 0; j < N_SQRT; j += FFT_BS)

17. fft1d(A[j][0]);

18. // 6. Transpose

19. for (long I = 0; I < N_SQRT; I += TR_BS)

20. transpose_block(A[i][i])

21. for (long j = I + TR_BS; j < N_SQRT; j += T R_BS)
22. transpose_swap(A[i][j], A[j][i])

Figure 15 Pseudocode of the FFT1D algorithm

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 26 of 50

The speedup results of parallel FFT1D are shown in Figure 17. The application was run on a node
with two processors Intel SandyBridge-EP E5-2670/1600 (20MB cache, 8-core, 2.6GHz) and memory
8x4GB DDR3-1600 DIMMS (2GB/core). The measurements were carried out for the following
configurations:

Tasks

 FFT1D trsp_blk zz_initializeBlock tw_trsp_swap
 trsp_swap tw_trsp_blk FFT1D_2

Figure 16 Trace with task execution of parallel FFT1D for the first configuration for 16 threads. Each row represents the activity of a thread,
with different colors representing different tasks. The x-axis represents time.

Figure 17 FFT1D speedup for different problem sizes

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 27 of 50

1. 16384 elements, block size of 512 and transposed block size of 256
2. 8192 elements, block size of 128 and transposed block size of 1024

For both configurations the application scales well attaining 12-fold speedup in both cases against the
sequential application.

Figure 16 and Error! Reference source not found. show parallel execution traces of FFT1D for both
configurations. The traces show that FFT1D performs computations in steps. Tasks within each step
are executed in parallel. In both cases the execution is dominated by tasks trsp_swap and
tw_trsp_swap, which swap blocks of the matrix. Both tasks swap elements of the block in place and
their size depends on the size of transposed blocks.

4.1.5 SPECFEM3D – scientific application
In the deliverable D2.2 we characterized CPI stack of SPECFEM3D benchmark. In the deliverable for
the fourth year of the project we conveyed measurements and performance evaluation of the
benchmark.

SPECFEM3D is a benchmark that implements spectral element method that is used for numerical
calculations for 3-D wave propagation. Implementation that is presented in this section uses OmpSs
for parallel execution.

As it was shown in deliverable D2.2, tasks covering most of the execution time are executed in the
serial time loop in the following order:

1. gather – localizes and maps points in the local mesh into mesh elements from a global
mesh

Tasks
 FFT1D trsp_blk zz_initializeBlock tw_trsp_swap
 trsp_swap tw_trsp_blk FFT1D_2

Figure 18 Trace with task execution of parallel FFT1D for the second configuration for 16 threads. Each row represents the activity
of a thread, with different colors representing different tasks. The x-axis represents time.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 28 of 50

2. process_element – performs local calculations on a single 3D spectral element

3. scatter – sums computations on spectral elements into the global mesh
The first two tasks can be run in parallel as they locally perform accesses and calculations. The third
task, scatter , updates a global mesh of points that can be shared among neighboring spectral
elements, so the accesses to each point need to be serialized. OmpSs provides three clauses, which can
be used within task pragma, that provide task serialization:

• directionality clauses (in , out , inout) – allow OmpSs to build task dependency graph at
runtime and to schedule tasks based on their data dependencies

• commutative clause – allows OmpSs to execute tasks out-of-order in a serialized manner.
The clause preserves data dependencies between tasks

• concurrent clause – relaxes data dependencies between tasks. The burden of providing
correct task synchronization is put onto a programmer

Figure 20 shows SPECFEM3D speedup results for three implementations of scatter task that use
the aforementioned methods of synchronization. The application was run on a node with two
processors Intel SandyBridge-EP E5-2670/1600 (20M cache, 8-core, 2.6GHz) and memory 8x4GB
DDR3-1600 DIMMS (2GB/core). OmpSs-inout and OmpSs-conmmutative implementations use,
respectively, inout and commutative clauses. OmpSs-concurrent implements relaxed accesses

through the concurrent clause; synchronized accesses are provided by OpenMP atomic pragma.

In all three cases application attains a 2-fold to 3-fold speedup for 16 threads. The difference in
performance between concurrent implementation and the other two is attributed to synchronization
overhead related to OpenMP atomic pragma. The scatter tasks of OmpSs-concurrent
implementation cover more execution time compared to the tasks’ codes of OmpSs-inout and OmpSs-
commutative implementations (Figure 22, Figure 19, Figure 21). OmpSs-inout’s scatter tasks are
scheduled onto the single core and in practice run sequentially, whereas OmpSs-commutativ’s
scatter tasks are scheduled to and executed by different cores. The difference in scheduling

policies for commutative tasks and tasks with inout clause comes from that inout tasks are executed
in the order they were created; commutative tasks can be executed out of order.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 29 of 50

Tasks

 process_element update_acc_vel clear compute_max
 scatter gather update_disp_vel

Figure 19 Trace with parallel task execution of OmpSs-inout implementation for 16 threads. Each row represents the activity of a thread, with
different colors representing different tasks. The x-axis represents time.

Figure 20 Speedup for different implementations of SPECFEM3D

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 30 of 50

Tasks

 process_element update_acc_vel clear compute_max
 scatter gather update_disp_vel

Figure 21 Trace with parallel task execution of OmpSs-commutative implementation for 16 threads. Each row represents the activity of a thread,
with different colors representing different tasks. The x-axis represents time.

Tasks

 process_element update_acc_vel clear compute_max
 scatter gather update_disp_vel

Figure 22 Trace with parallel task execution of OmpSs-concurrent implementation for 16 threads. Each row represents the activity of a thread, with
different colors representing different tasks. The x-axis represents time.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 31 of 50

4.2 Applications ported to Scala (UNIMAN)
This section highlights some of the benchmarks that have been ported to the Scala programming
language. Within TERAFLUX we have developed two novel libraries which provide transactional
memory and dataflow execution in Scala.

MUTS http://apt.cs.manchester.ac.uk/projects/TERAFLUX/MUTS/

DFScala http://apt.cs.manchester.ac.uk/projects/TERAFLUX/DFScala/

The DFScala library provides the functionality to construct and execute dataflow graphs. The nodes in
the graph are dynamically constructed over the course of a program and each node executes a function
which is passed as an argument. The arcs between nodes are all statically typed. An example of a
function using DFScala and implementing Fibonacci follows:

Expanded Version

def fib(n :Int , out:Token[Int]){

if(n <= 2)

out(1)

else {

var t1 = DFManager.createThread(

(x:Int, y:Int, out:Token[Int]) => {out(x + y)}

)

var t2 = DFManager.createThread(fib _)

var t3 = DFManager.createThread(fib _)

t2.arg1 = n - 1

t2.arg2 = t1.token1

t3.arg1 = n - 2

t3.arg2 = t1.token2

t1.arg3 = out

}

}

Concise Version

def fib(n :Int):Int = {

if(n <= 2)

1

else

fib(n-1) + fib(n-2)

}

The concise version can be used without having to change anything in Scala and it is clearly more
productive. The applications that we are going to consider are Matrix-Matrix multiplication, 0-1
Knapsack, LeeTM, KMeans, Monte-Carlo Tree Search for playing Go, and Parallel Scala Collections.
Matrix-Matrix multiplication and 0-1 Knapsack represent problems that can be solved without the
need to use shared state. KMeans is drawn from the Stamp Benchmarks. The Go playing A.I.
application represents a more dynamic environment and is a real world application. Go uses Monte
Carlo Tree Search to determine the best move to play in a game of Go. This involves generating trees
of combinations of moves for which a score is obtained and transactions are used to protect the shared
state. The following graph presents the speedup results for these benchmarks on system with two 6
core AMD Opteron sockets.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 32 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 33 of 50

4.3 Industrial applications (THALES with the collaboration of INRIA
and BSC)

This section discusses the study of porting to the OpenStream and OmpSs dataflow programming
paradigms of two applications used in THALES solutions and their evaluation on x86 multi-core
solutions and the TERAFLUX platform.

The objective of THALES was threefold:

1. Evaluate the porting (complexity, effort required) of applications with parallelization
opportunities to dataflow programming paradigms using OpenStream and OmpSs.

2. Evaluate the performances achieved by these solutions on commercial of-the-shelf (COTS)
solutions (e.g., x86 multicores) when compared to more common programming
parallelization solutions, like OpenMP.

3. Evaluate the performances achieved by the dataflow version on a massively parallel machine
like the TERAFLUX platform with up to 1024 cores.

When porting, THALES wanted to take advantage of the capabilities of the parallelization solutions
(OpenMP, OpenStream and OmpSs) to parallelize the applications, without discarding completely the
legacy code. For that purpose we avoided extreme reorganizations of the legacy code or alternative
algorithms for the same tasks, as the proposed programs already contained enough dataflow and non-
dataflow parallelization options as discussed in previous deliverables (see D2.1, D2.2 and D2.3).

The results of this study are presented in the following sections. Sections 4.2.1 and 4.2.2 respectively
present the porting of the Pedestrian Detection and Radar applications and the evaluation of the ports
against OpenMP solution and on different machines (including the TERAFLUX platform). Finally,
Section 4.2.3 discusses non-quantifiable metrics about the possible usage of the dataflow paradigms
on industrial solutions.

4.3.1 The Pedestrian Detection application
The Pedestrian Detection application was previously described in D2.1, D2.2 and D2.3. It’s based on

Input image Output image

Figure 23 Example of output produced from the Pedestrian Detection application

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 34 of 50

the Viola-Jones cascading algorithm [7]. The application basically takes as input an image (possibly
with people on it) and detects the people present on it. In addition it takes two other input parameters:

• The classifier with the filters used by the cascading algorithm implemented in the application
to determine if there is a person in the input image.

• The scale step which determines the tiles scales to be analyzed. Typical scale ranges go from
1.01 to 1.2 in current real time implementations of the application.

The application outputs a copy of the input image with the detected people surrounded with white
boxes. An example of the output generated from a given image, with a scale step of 1.01 and a basic
classifier, can be seen in Figure 23. As can be observed not all the people from the input image are
detected; the quality of the detection actually depends on the quality of the classifier and the scale
applied.

Figure 24 shows the classical implementation of the cascading algorithm used for this study. In
addition to the filtering of the tiles at the different scales with the cascading algorithm, the application
performs a reduction on tiles belonging to the same scale for which detection was positive. Effectively
as the tiles overlap each other the cascading algorithm tends to detect multiple tiles for the same
person and the reduction allows merging them into a single detection.

Figure 24 Cascading algorithm

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 35 of 50

4.3.1.1 Porting to parallel and dataflow paradigms
This section presents the efforts developed to achieve a parallel and dataflow implementation of the
Pedestrian Detection application with good performance on x86 multicore machines and the
TERAFLUX platform (ISA agnostic, but first evaluated on x86 cores). For this study two of the
dataflow programming solutions were considered: OmpSs (BSC) and OpenStream (INRIA). One goal
of the study was to achieve performance without a heavy modification of the initial application, by
simply adding the parallelization and dataflow primitives of OmpSs and OpenStream.

A first thing to notice is that the Pedestrian Detection application presented few opportunities to apply
dataflow principles at coarse level, i.e. between the different kernels that compose the application.
Effectively the filtering task is done independently for each of the scales analyzed, and even the
filtering of the different tiles on a scale is done independently. The only dataflow operation occurs
when on a given scale the filtering operations have finished indicating the tiles on which a pedestrian
was detected on a matrix, and the reduction task process the matrix to merge detected tiles. Thus, the
only dataflow potential of the application was represented by this matrix, which we refer to as the
detection matrix.

In D2.3 we presented four different directions for the parallelization of the application filtering task
(scale, tile, filter and cascading axes in Figure 24). It is important to note that those cascading axes are
typically implemented incrementally. Thus, when parallelizing at the tile, filter and cascading axes,
the implementation also includes the scale axis parallelization. Our experiments demonstrated that
parallelizing at these axes without parallelizing at the scale axis degraded the performance whereas
speedup was achieved when using parallelization at the scale axis.

4.3.1.1.1 Parallelizing across the tile, the cascading and the filter axes
The tile axis parallelization proved to be very simple to implement by using the OmpSs and the
OpenStream programming paradigms (as was also the case when using OpenMP). The code snippet in
Figure 25 shows the tile axis parallelization applied to the Pedestrian Detection application when
using OmpSs:

Figure 25 The Pedestrian Detection application parallelized across tile axis with OmpSs

// process scale
for (irow = 0 ; irow < num_rows ; irow++) {
 for (icol = 0; icol < num_cols; icol++) {
// parallelize tile processing
#pragma omp task output (detectionMatrix[irow][icol])
 {
 good = runFilterStageOnTile(tile[irow][icol], 0);
 for (istage = 1; good && istage < num_filter_ stages; istage++) {
 good = runFilterStageOnTile(tile[irow][icol], istage);
 }
 detectionMatrix[irow][icol] = good;
 }
 }
}

#pragma omp task input ([irows][icols]detectionMatr ix)
{
 // reduce task
}

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 36 of 50

The OpenStream version was not much different, but differed on its dataflow approach and was more
easily implemented. However when executing this version, we observed the creation of a large
number of small threads. The first filters (i.e., filter at stage 0) discarded most of the tiles making most
of the threads execute for a very short amount of time, causing a huge overhead, and thus degrading
the performance.

Likewise, the parallelization of the cascading axis proved to be very straightforward as depicted by
code snippet in Figure 26, but we observed important slowdowns when performing this
parallelization:

Effectively the cascading axis parallelization option executes all the filters for a given tile, increasing
with another dimension (number of filter stages) the size of the streamed data (detectionMatrix)
and leaving extra work to the reduction task. This approach proved to be worse than the tile
parallelization because the amount of work on a filter was too small. Additionally it increased the size
of the data being streamed.

Finally, for the filter axis parallelization approach we were forced to slightly modify our code and
exploit some of the features of the OmpSs and OpenStream dataflow programming paradigms by
streaming the detectionMatrix not only between the filter task and the reduction task, but also
between the different filter stages as depicted in the code snippet in Figure 27.

The approach also provided worse performance than the sequential version, as it creates a large
amount of threads that have little or no work to perform and that have to stream the
detectionMatrix between each other.

// process scale
for (irow = 0 ; irow < num_rows ; irow++) {
 for (icol = 0; icol < num_cols; icol++) {
 for (istage = 0; istage < num_filter_stages; is tage++) {
#pragma omp task output (detectionMatrix[istage][ir ow][icol])
 detectionMatrix[istage][irow][icol] =
 runFilterStageOnTile(tile[irow][icol], is tage);
 }
 }
}

#pragma omp task input ([num_filter_stages][num_row s][num_cols]detectionMatrix)
{
 // reduce task
}

Figure 26 The Pedestrian Detection application parallelized across cascading axis with OmpSs

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 37 of 50

4.3.1.1.2 Parallelizing across the scale axis and the “balanced” scale axis
As for the parallelization across the cascading and tile axes, the parallelization across the scale axis
proved to be straightforward as depicted in the code snippet in Figure 28:

// process scale
#pragma omp task output ([num_rows][num_cols]detect ionMatrix)
for all irows & all icols � detectionMatrix[irows][icols] = true;

for (istage = 0; istage < num_filter_stages; istage ++) {
#pragma omp task \
 input ([num_rows][num_cols]detectionMatrix) \
 output ([num_rows][num_cols]detectionMatrix)
 for (irow = 0 ; irow < num_rows ; irow++) {
 for (icol = 0; icol < num_cols; icol++) {
 if (detectionMatrix[irow][icol])
 detectionMatrix[irow][icol] =
 runFilterStageOnTile(tile[irow][icol], is tage);
 else
 detectionMatrix[irow][icol] = false;
 }
 }
}

#pragma omp task input ([num_rows][num_cols]detecti onMatrix)
{
 // reduce task
}

Figure 27 The Pedestrian Detection application parallelized across filter axis with OmpSs

…
#pragma omp task
foreach iscale on scales {
 // compute num_rows and num_cols on given scale
 // process scale

 // filter task
#pragma omp task output ([irows][icols]detectionMat rix[iscale])
 {
 for (irow = 0 ; irow < num_rows ; irow++) {
 for (icol = 0; icol < num_cols; icol++) {
 good = runFilterStageOnTile(tile[irow][icol],0);
 for (istage = 1; good && istage < num_filte r_stages; istage++) {
 good = runFilterStageOnTile(tile[irow][ic ol], istage);
 }
 detectionMatrix[irow][icol] = good;
 }
 }
 }

 // reduce task
#pragma omp task input ([irows][icols]detectionMatr ix[iscale])
 {
 // reduce task code
 }
}

#pragma omp taskwait
… // generate output image

Figure 28 The Pedestrian Detection application parallelized across scale axis

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 38 of 50

This implementation provided tasks with enough work to justify the creation of threads and, as
expected, provided interesting speedups (see Section 4.2.1.2). However we observed that there were
some cores that were unused before others as depicted in Figure 29.

The reason for such unbalanced core usage was due to two different reasons:

1. In some of the scales more tiles are detected as positives making the filtering task more time
consuming than others, as more filtering stages are executed.

2. Initial scales generate smaller tiles and thus more tiles to analyze. The effect is especially
important when comparing initial scales with the last scales.

We have little room for action to resolve the first issue, as we cannot know a priori in a scale how
many positives there will be. However, the second cause can be addressed by splitting the filtering
task depending on the number of tiles to be analyzed. We call this approach the “balanced” scale axis
parallelization approach, see bottom of Figure 30. The parallelization across the scale axis creates a
thread for each scale, see mapping v0 in the figure; while the “balanced” parallelization creates a
relatively large number of threads for the smallest scale (smaller tiles) and reduces the number of
threads as the scale increases (larger tiles), see mapping v1 in the figure.

We implemented the “balanced” scale axis parallelization approach with both OpenStream and
OmpSs, and observed that thanks to this approach all the cores presented a more homogeneous
execution time usage on the reference image; see Figure 32. However, as we will see in Section
4.3.1.2 this proved to be a worthless solution when used over a large dataset.

Figure 29 Trace of the parallelization across scale axis for the reference image

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 39 of 50

4.3.1.2 Evaluation
This section presents the evaluation of the Pedestrian Detection application ports on different target
architectures. The evaluation starts with the evaluation of the ports against current commercial off-
the-shelf (COTS) multi-cores (Intel and AMD) and follows with an evaluation of the scalability of the
parallelized application on the TERAFLUX platform using the OmpSs port with OWM.

The Pedestrian Application was ported to OpenStream and OmpSs using the two parallelization
options discussed in Section 4.3.1.1.2. For comparison purposes the application was also ported to
OpenMP using the parallelization across the scale axis approach, and removing the dataflow
operations by a taskwait pragma, as can be seen in the code snippet in Figure 31.

The five implementations were compared against the initial non-parallelized version of the application
on 3 different target machines:

• Dual-core Intel i7 (2c in Figure 33)
• Four-core Intel i7 (4c in Figure 33)
• 16-core AMD Opteron (16c in Figure 33)

Figure 30 Scale axis vs. "balanced" scale axis parallelization approaches

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 40 of 50

Figure 32 Trace of the “balanced” parallelization across scale axis for the reference image

…
#pragma omp task
foreach iscale on scales {
 // compute num_rows and num_cols on given scale
 // process scale

 // filter task
#pragma omp task
 {
 for (irow = 0 ; irow < num_rows ; irow++) {
 for (icol = 0; icol < num_cols; icol++) {
 good = runFilterStageOnTile(tile[irow][icol],0);
 for (istage = 1; good && istage < num_filte r_stages; istage++) {
 good = runFilterStageOnTile(tile[irow][ic ol], istage);
 }
 detectionMatrix[irow][icol] = good;
 }
 }
 }

#pragma omp taskwait

 // reduce task
 {
 // reduce task code
 }
}

#pragma omp taskwait
… // generate output image

Figure 31 The Pedestrian Detection application parallelized with OpenMP

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 41 of 50

Figure 33 shows the average performance speedup achieved with each of the ports on each of the
platforms using as input 97 different images and 1.01 as scale step. As can be observed in the figure
all the ports achieve a speedup that is close to the number of cores, just being slightly lower for all but
the OpenStream balanced port in the 16-core configuration. There seems to be no gain on using the
OpenStream or the OmpSs programming paradigms over OpenMP for the 2- and 4-core
configurations, but the dataflow paradigms clearly achieve slightly better speedups on the 16-core
machine, thus showing a better scalability as the number of processors increases. The balanced ports
showed little speedup difference when compared to non-balanced ports. While there are input images
that seem to take advantage from the balanced implementation, others show slowndowns.
Additionally, the speedup varies depending on the number of cores. At the end the average speedups
of balanced and non-balanced ports are very close and the balanced version presents little interest
given the extra complexity they added in the source code. Finally, the OpenStream and the OmpSs
versions seem to perform similarly and on par or better than more mature solutions as OpenMP.

On the TERAFLUX platform we evaluated the speedup scalability of the OpenStream with OWM
(Owner Writeable Memory, cf. D7.1, D3.5) support port against a non-parallelized execution on the
same platform. Only the parallelization across scale axis was considered, as the added complexity of
the balanced solution was not providing any improvement in average. The OWM support was used to
avoid the transmission of the large read-only inputs each of the tasks requires: the image and the
classifier. Without the OWM support the threads would flood the interconnect with requests to
retrieve the inputs, which would impair any speedup, especially as the number of threads increases.
OWM avoids this flooding by creating local copies of those inputs. Various configurations of the
TERAFLUX platform were considered, from 1 to 32 nodes of 32 cores, thus effectively simulating 32
to 1024 cores configurations. Figure 34 shows the average performance speedup achieved on each of
the configurations using the default input and 1.01 as scale step. As can be observed the achieved
speedup doesn’t scale with the number of cores for the given inputs.

Figure 33 Ports speedup over COTS configurations

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 42 of 50

The reason for the lack of scalability is the ability of the application to create enough threads that will
run simultaneously. However the application is able to create more threads if it is given bigger images
or if smaller scale step are provided. For example with a scale step of 1.008 we achieved a 111-fold
speedup on a 128 cores TERAFLUX configuration. Likewise, with a scale step of 1.002 we achieved
a 353-fold speedup on a 1024 cores TERAFLUX configuration. Table 2 shows some of the speedups
achieved when using different scale step (bigger and smaller than 1.01) on different TERAFLUX
configurations.

Table 2 Impact of the scale step parameter on performance scalability

Number of cores Scale step Speedup

32 1.03 24

32 1.02 26

64 1.02 37

64 1.015 47

128 1.015 49

128 1.012 61

128 1.008 111

1024 1.002 353

Figure 34 OpenStream port speedup over the TERAFLUX platform

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 43 of 50

4.3.2 The Radar application

As for the Pedestrian Detection application the Radar application was introduced and discussed in
D2.1, D2.2, and D2.3. The Radar application is a pure data flow application based on a Space-Time
Adaptative Processing (STAP) signal processing technique. It is typically implemented on planes
taking input bursts from the radar device processing the bursts in a pipeline fashion and producing as
output the objects in movement that have been detected, see Figure 35. Additionally there is no state
shared between burst, thus no data dependencies exist other than those in the pipeline.

4.3.2.1 Porting to parallel and data flow paradigms
Unlike for the Pedestrian Detection application the kernel of the Radar application shows a large
number of opportunities to apply the data flow programming paradigms provided by OmpSs and
OpenStream. However, simply applying the data flow programming on the whole kernel may create
an unbalanced solution where the amount of data transferred generated by the different tasks on the
pipeline (see Figure 35) outweighs any gain that may be achieved by the implemented parallelism and
pipelining.

For that purpose we used the Paraver (for the OmpSs porting) and the Aftermath (for the
OpenStream) performance debugging tools to evaluate performance gain of our implementations. We
initiated the porting task by applying the OmpSs and OpenStream data flow pragmas between all the
tasks (including the transposition operations) that can be observed in Figure 35. The resulting
application presented an important slowdown when compared against the sequential implementation.

Figure 36 shows the output of the performance debugging tools over the kernel of the initial porting of
the Radar application. Each line represents one core; in this case the kernel is being executed in a 16
core machine. The white sections display the creation of the kernel tasks, the red sections represent
tasks using most of its execution time spent to perform data transfers, the dark (vivid) blue sections
represent tasks using most of its execution time performing computations, and finally the light blue
sections represent time when the cores are idle. As can be observed most of the computation tasks are

Figure 35 The Radar application kernel pipeline

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 44 of 50

very small and most of the time is spent by data transfers and the cores remain idle during large time
in between the computation tasks. The large data transfers are actually caused by the large amount of
computation tasks created.

We iterated over this initial implementation by grouping tasks, maximizing computation time over
idle and data transfer time. Figure 37 presents the final result of the performance debugging task over
the Radar application kernel (the color code is the same than the one for Figure 36). As can be
observed the computation time has been maximized, the data transfer time minimized (they cannot be
observed in the screenshot but they are there), and the idle time almost eliminated. The performance
measurements of this implementation will be presented in the following section.

4.3.2.2 Evaluation
As for the Pedestrian Detection application the ported Radar application was evaluated on four
different machines:

• Dual core Intel i7 (2c in the following figures)
• Four core Intel i7 (4c in the following figures)
• 16 core AMD Opteron (16c in the following figures)
• TERAFLUX platform (with different configurations ranging from 32 cores to 1024)

Three different inputs were used during the evaluation:

• small: consisting of a trace of three bursts of a radar signal (~800KB)
• large: consisting of a trace of nine bursts of a radar signal (~2.6MB)

Figure 36 Performance of non-debugged Radar application

Figure 37 Performance of debugged Radar application

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 45 of 50

• huge: consisting of a trace of seventy five bursts of a radar signal (~21MB)
Finally two different implementations of the Radar application were evaluated:

• Sequential implementation processes the bursts sequentially, but each burst is using the
parallel kernel.

• Parallel implementation processes all the inputs bursts in parallel, each of the bursts using the
parallel kernel.

The Radar application was also parallelized using the OpenMP solution to compare it against the
parallel data flow OmpSs and OpenStream implementations.

Figure 38 and Figure 40 show the performance gains achieved by the parallel implementations on the
Intel and AMD platforms when using the sequential and parallel bursts processing implementations.
As can be observed the sequential processing of the bursts suffers from the initialization and
finalization phases of the kernel, impeding performance gains. The OmpSs version seems to handle
better these phases.

The parallel processing of the bursts implementation shows that the parallel implementations scale
well. Again the OpenMP and OpenStream seem to suffer more than the OmpSs version, as can be
observed by the 4c and 16c machines when using the small and the large inputs. This advantage
disappears when using the huge input, where the computation time clearly takes over the initialization
and finalization phases. Overall the OpenStream and the OmpSs implementation don't show any gain
over the OpenMP implementation when using the huge input in average, but perform better when
using the smaller input sets.

Figure 38 Speedup of sequential version of the dataflow port on x86 machines

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 46 of 50

Figure 39 and Figure 41 show the speedups achieved when running the OpenStream implementation
on six configurations of the TERAFLUX platform with sequential and parallel burst processing
respectively. The first thing we notice is that the sequential burst processing achieves the same
speedup no matter which input set is used. This seems to be due to the support this platform provides
for the creation and destruction of threads, which virtually makes them negligible. However, as
expected, the sequential processing doesn't scale well as the number of cores increase.

Figure 40 Speedup of parallel version of the dataflow port on x86 machines

Figure 39 Speedup of sequential version of the dataflow port on the TERAFLUX platform

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 47 of 50

With the parallel processing the TERAFLUX platform is able to achieve very promising gains,
showing its capability to compute in parallel the different bursts, especially as the number of bursts of
the input increases, as can be observed by the speedups obtained in the 128, 256, 512, and 1024 cores
configurations. We observe a 715-fold speedup on the 1024 cores configuration.

4.3.3 Discussion
The two data flow programming paradigm solutions used in this study (OpenStream and OmpSs)
proved to be efficient solutions, on par with more mature solutions as OpenMP. Their usage heavily
depends on two parameters:

• the nature of the application, being data flow oriented or not
• the target machine, the number of cores and especially the memory subsystem, i.e., shared or

distributed memory
To take advantage of these programming paradigms the application should show some opportunity to
apply the data flow primitives they provide. In our study the Pedestrian Detection application did only
show one opportunity to apply them, the other parallelization options could easily be achieved with
OpenMP. On the other hand, the Radar application provided many opportunities to use the data flow
primitives and their application was very straightforward, i.e., did not require to restructure the
original sources. This is a very important for the industry, where reuse of legacy code is very
important.

OpenStream and OmpSs, proved to be on par with a more mature solution as OpenMP, but in our
study they did not show any advantage over the last when used on shared memory multicore machines
(Intel i7 and AMD Opteron). Having a shared memory subsystem puts a heavy load on a single
element, the memory, and there the data flow programming paradigms don't provide a notable
advantage over OpenMP. However, on a distributed memory solution as is basically the TERAFLUX
platform (even if it provides facilities to port applications that were developed for shared memory

Figure 41 Speedup of parallel version of the dataflow port on the TERAFLUX platform

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 48 of 50

machines) the data flow primitives provide means to transparently distribute the load on the different
memories, thus improving the performance of the final application. Solutions like OWM that we
evaluated on the Pedestrian Detection application further enhance it, by allowing each thread to
retrieve shared data from its local memory without having to share a single memory providing that
shared data.

Two other tools provided by the groups behind these data programming paradigms, which proved to
be very helpful when parallelizing the applications and extracting the most from the application
performance, are Paraver (OmpSs) and Aftermath (OpenStream). These performance debugging tools
are required to understand the options the developers have when parallelizing applications.

The principal problem of these parallelizing paradigms (including OpenMP) is the lack of debugging
tools. Effectively during our porting we encountered numerous runtime errors which were due to bugs
in our implementation (e.g., forgot to include a data dependency in the parallelization pragma).
However, we frequently had no way to determine the source of the bug, and had to resort to
rudimentary solutions, like the usage of printf , to try to find it.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 49 of 50

5 Conclusions
This deliverable gives a final report on porting applications to the project programming models,
including industrial applications: the Pedestrian Detection and the Radar. The deliverable also reports
on implementation of translation scheme between StarSs and OpenStream programming models, and
shows initial performance results. The document also presents research work on overhead of Software
Transactional Memory in task-based programming model.

The project partners have been able to put together a software toolchain that enables to run
applications developed in high level programming models (StarSs) and mapped into the TERAFLUX
platform. The evaluation performed with the industrial applications show that with the parallel
processing the TERAFLUX platform is able to achieve very promising gains, showing its capability
to compute in parallel the different bursts, especially as the number of bursts of the input increases.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D2.4
Deliverable name: Final report, including the set of reference applications ported to the
TERAFLUX platform
File name: TERAFLUX-D24-v4.doc Page 50 of 50

References

[1] J. M Perez, R. M. Badia and J. Labarta, “Handling task dependencies under strided and aliased
references,” 24th ACM International Conference on Supercomputing, June 2010.

[2] A. Pop and A. Cohen, "OpenStream: Expressiveness and Data-Flow Compilation of OpenMP
Streaming Programs," ACM Transactions on Architecture and Code Optimization, January 2013

[3] "OpenStream" [Online]. Available: http://openstream.info/

[4] “Graph500” [Online]. Available: http://www.graph500.org/

[5] S. Hong, T. Oguntebi, K. Olukotun, “Efficient Parallel Graph Exploration on Multi-Core CPU
and GPU,” PACT '11: 20th International Conference on Parallel Architectures and Compilation
Techniques, October 2011

[6] D. H. Bailey, “FFTs in external of hierarchical memory,” Supercomputing ’89: Proceedings of
the 1989 ACM/IEEE conference on Supercomputing

[7] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,”
Computer Vision and Pattern Recognition, 2001. CVPR 2001

[8] J. M. Perez, R. M. Badia, and J. Labarta, “A dependency-aware task-based programming
environment for multi-core architectures,” Proceedings of the 2008 IEEE International
Conference on Cluster Computing, pp. 142-151, September 2008

[9] E. Ayguade, R. Badia, P. Bellens, D. Cabrera, A. Duran, M. Gonzalez, F. Igual, D. Jimenez-
Gonzalez, J. Labarta, L. Martinell, X. Martorell, R. Mayo, J. Perez, J. Planas, and E. Quintana-
Ortí. Extending OpenMP to Survive the Heterogeneous Multi-core Era. International Journal of
Parallel Programming, 38(5-6):440-459, June 2010.

[10] V. Subotic, R. Ferrer, J. C. Sancho, J. Labarta, and M. Valero, “Quantifying the Potential Task-
based Dataflow Parallelism in MPI Applications,” Euro-Par'11: Proceedings of the 17th
International Conference on Parallel Processing

[11] A. Cohen, L. Gérard, and M. Pouzet, “Programming parallelism with futures in Lustre,” In ACM
Conference on Embedded Software (EMSOFT), Tampere, Finland, October 2012

[12] R. Giorgi, R. M. Badia, F. Bodin, A. Cohen, P. Evripidou, P. Faraboschi, B. Fechner, G. R. Gao, A.
Garbade, R. Gayatri, S. Girbal, D. Goodman, B. Khan, S. Koliaï, J. Landwehr, N. Minh L, F. Li, M. Lujàn,
A. Mendelson, L. Morin, N. Navarro, T. Patejko, A. Pop, P. Trancoso, T. Ungerer, I. Watson, S. Weis, S.
Zuckerman, M. Valero "TERAFLUX: Harnessing dataflow in next generation teradevices", Journal of
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO), April 2014, doi:
doi.org/10.1016/j.micpro.2014.04.001

