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Executive Summary

This document is the fourth deliverable of WP2, &enarks and Applications. The objective of this
work package is to understand the runtime behafiapplications in order to establish a guidelime i
the design of the other components of the compusygfem in TERAFLUX. As TERAFLUX
explores the design of highly parallel tera-de\dgstems, a key step in the project is to understand
the fundamental requirements of highly parallelli@ptions and their implications on all layers of a
computing system that supports a data-flow progremgnand execution model — from the
programming model itself, down to extensions to cwdity architecture.

The deliverable describes the results of the foyghr of the project in task T2.3. The activities
performed in task T2.3 relate to the porting of lejapions to the project programming models. The
deliverable gives a final report on reference apgpions ported to TERAFLUX platform. The

deliverable gives detailed explanation on applaeti ported in the fourth year. Additionally, the
deliverable presents implementation of the tramsiatscheme from StarSs to OpenStream
programming model and reports on performance etratuaf translated applications.

Of special interest is the section 4.2, where imglistations of the industrial applications in selvera
programming models are discussed and its perforem@valuated in real platforms and in the
TERAFLUX platform with up to 1024 cores. This evation demonstrates that with the parallel
processing the TERAFLUX platform is able to achieeey promising gains, showing its capability
to compute in parallel the different bursts, esplgcias the number of bursts of the input increases
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1 Introduction

This is the fourth deliverable of WP2, Benchmarkd A&pplications. While during the first two years
of the project the objective was to understand @ratacterize the behaviour of the applications, the
last two years of the project focused on the pgrtifithe project reference applications to the gubj
programming models.

While during year 1 the partners participating iP2\defined the characterization methodologies and
metrics to be used in the project applicationsyéar 2 the project partners performed extended
characterization of these applications. In yeagsr8ject partners continued the porting of the gxbj
applications to the programming models considengté project

The table in next section contains the final listaference applications ported to TERAFLUX [12]
programming models; more than 30. This deliverabfgorts on the more interesting aspects of the
applications’ porting performed during the lastadimg period. The reader is referred to previous
deliverables of the WP2 (especially D2.3) wherevimes results on porting applications were
reported.

1.1 Document structure

The document is organized as follows: Section 2RRefse applications lists the reference application
of the project. Section 2.1 gives an overview trfaaslation scheme between StarSs and OpenStream
programming models. Section 4 reports the morerasteng aspect of porting applications to the
project programming models. Finally, Section 5 prés some conclusions.

1.2 Relation to other deliverables
This deliverable has relation with D2.2 and D2.3.

1.3 Activities referred by this deliverable

This deliverable refers to the activities perfornmiask T2.3 during the fourth year of the projebe t
activities performed task T2.3 during the fourtlayef the project.

1 Although the porting was initially planned for ye& and 4, this activity started earlier.
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2 Reference applications

Deliverable D2.3 presented the list of referencglieg@tions to be ported to the project programming
models. The applications are listed below, andgfmh of them there is the Status column that tepor

on the status of the applications.

The status can be:

* In progress: the partners are working on the pguinthis application

» Available: the porting finished and the applicatimnavailable in the project application

repository.
Table 1 List of reference applications
Benchmark Responsible | Programming model | Status
partner
Matmul BSC StarSs Available
INRIA OpenStream Available
UcyYy DDM Available
UNIMAN Scala+ TM Available
Radix Sort INRIA OMP Available
Barnes-Hut BSC StarSs Available
Cholesky BSC StarSs Available
UcyYy DDM Available
INRIA OpenStream Available
Sparse LU BSC StarSs Available
INRIA OpenStream Available
UcyYy DDM Available
FFT2D BSC StarSs Available
INRIA OpenStream Available
SPECFEM3D BSC StarSs Available
N Queens BSC StarSs Available
Lee’s Routing UNIMAN Scala +TM Available
(Labyrinth) BSC StarSs Available
INRIA OpenStream In progress
UNIMAN + | DDM + TM Available
ucy
Kmeans UNIMAN Scala+TM Available
BSC StarSs Available
Ssca2 UNIMAN Scala+TM Available
STAMP — Vacation UNIMAN Scala+TM Available
Travelling Salesman UNIMAN Scala+TM Available
MapReduce - wordcount  UNIMAN Scala+TM Available
MapReduce sorting UNIMAN Scala+TM Available
Pregel — Pagerank UNIMAN Scala+TM Available
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Benchmark Responsible | Programming model | Status
partner
Pregel — Single SourgeUNIMAN Scala+TM Available
Shortest Path
FFT 1D INRIA OpenStream Available
BSC StarSs Available
Fmradio INRIA OpenStream Available
BSC StarSs Available
Picture-in-picture INRIA OpenStream Available
INRIA Heptagon [11] Available
Ad-hoc software radio INRIA OpenStream Available
INRIA Heptagon Available
Conv2d ucy DDM Available
IDCT ucy DDM Available
Trapez UcCy DDM Available
Graph 500 BSC StarSs Available
uUbD Codelet Available
Go (Montecarlo Tree UNIMAN Scala+TM Available
Search)
Flux BSC StarSs Available
(object tracking)
GROMACS BSC StarSs Available
PEPC BSC StarSs Available
WRF BSC StarSs Available
STAP (Radar) Thales Seq. code Available
BSC StarSs Available
INRIA Available
Viola & Jones THALES Seq. code Available
(Pedestrian detection) | INRIA OpenStream Available
HPL Linpack BSC StarSs Available

2.1 Addressing reviewers recommendation

In the reports of the third review, the followingcommendation was given for the future work:

The reviewers also emphasize the importance ofngpof at least three reference applications not
characterized in Task 2.2 to the selected progrargmiodels in order to maintain the rigorous

methodology that the Consortium agreed on in Ta3k 2

According to this recommendation, the consortiurtiadied to focus their effort in the following three
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applications that were not characterized in taskRTEFT1D (see section 4.1.4), FMRadio (see
section 4.1.1), and Graph500 (see section 4.1.2).

Additionally, the partners also agreed to port dacnalysis on four applications that were previpus
characterized in task T2.2: Lee routing (Labyrirgbe section 4.1.3), Specfem3D (see section 4.1.5),
STAP (Radar, see section 4.3.2) and Viola Jonede@®éan detection, see section 4.3.1). The reason
is that these applications are significantly malevant than others that the consortium may wodk an
will allow to do relevant analysis and comparisongrder to publish the results.
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3 Translation scheme between programming models:
OpenStream and StarSs (INRIA, BSC)

Deliverable D2.3 presented a translation methodofogm StarSs regions to OpenStream streaming
constructs. In this section we report on progressrplementing the translation algorithm, and show
initial performance results.

3.1 Introduction

The OpenStream compiler [2, 3] is an entry pointtite TERAFLUX compilation toolchain:
applications parallelized with TERAFLUX programmimgodels need to be translated manually or
automatically to code annotated with OpenStreamctlires. We use StarSs memory regions [1] as a
case study for translation to OpenStream. Open@teral StarSs have different features with regard
to how data used for computation are representédhaw data dependencies are handled:

» OpenStream's basic unit of computation is a datafiteam whereas StarSs applications use
dynamic memory regions specified by the programimecommunication between tasks
* OpenStream requires explicit task dependenciesaiatain correctness of parallel execution
whereas data dependencies of StarSs tasks anethégrruntime
Translation from StarSs code to OpenStream reqthieprogrammer to identify data dependencies
between StarSs tasks and to encode them with Oman$tstreaming constructs. [2] introduces a
methodology of how StarSs-OpenStream translation bEa carried out at compile time. The idea
behind automatic StarSs-OpenStream translatiow isntode StarSs memory regions as a set of
streams that contain versions of memory locatimtessed by tasks. The most recent versions in the
set of streams are calculated by a modified Staefsendence resolver, and determine live data
identified by the StarSs memory regions at the rgipeint of application execution. The set of
streams is attached to each OpenStream task, arsddsby OpenStream runtime to determine data
dependencies between tasks and to synchronizercentmemory accesses.

3.2 Implementation

We have developed a source-to-source translatorcdraes out StarSs-OpenStream translation at
compile time. Our implementation translates cod# tlses OmpSs [9], a programming model that
extends OpenMP with features from the StarSs pnogniag model.

The key components of the translator are a Star@gna parser and an OpenStream code generator.
The parser parses StarSs pragmas, and identifiemomeegions and their directionalities further
used to calculate their live versions. The codeegmior generates calls to the StarSs dependence
resolver and OpenStream task pragmas with thefse¢rsion streams. Generated code is further
passed to the OpenStream compiler.

Deliverable numberD2.4

Deliverable name:Final report, including the set of reference appbations ported to the
TERAFLUX platform

File name: TERAFLUX-D24-v4.doc Page 12 of 50



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Figure 1 and Figure 2 show translated OpenStrease @ath corresponding StarSs programming
constructstask pragma with regions anskwait  pragma. When translator encounters StarSs
task pragma (Figure 1), it extracts information abd tegions and their respective directionalities,
and generates the appropriate code (OpenStreamirtdides 2-14). The code declares streams and
initializes region descriptors with collected infaation, which will be used by the dependence
resolver at runtime to handle data dependencigenarated call to the dependence resolver is shown
in line 15 in Figure 1. The generator also gensr@&lpenStreantask pragmas so the body of the

StarSs code

1. #pragma omp task in(in_a[0:SIZE-1], in_b[0:SIZE- i)
out(out_c[0:SIZE-1])
2. void MatrixMultiply(float *in_a, float *in_b, fl oat *out_c)

3. //Matrix multiplication code

}

Generated OpenStream code
1. void MatrixMultiply (float *in_a, float *in_b, f loat *out_c)

/ldeclaration of version streams

2. int streams_peek[MAX_CONNECTIONS]__ attribute___ ((stream_ref));
3. int num_peek;
4. int streams_in[MAX_CONNECTIONS] __ attribute__ ( (stream_ref));
5. int num_in;
6. int streams_outfMAX_CONNECTIONS] __attribute___ ((stream_ref));
7. int num_out;

/lInformation about regions and directionaliti es

8. region_descriptor_t reg_desc[3];
9. reg_desc[0].type = INPUT;

10. reg_desc[0].id = in_a;

11. reg_desc[1].type = INPUT;

12. reg_desc[1].id = in_b;

13. reg_desc[2].type = OUTPUT;
14. reg_desc[2].id = out_c;

//Call to OpenStream dependence resolver
15. resolve_dependences(reg_desc, 3,
&streams_peek[0], &num_pee K,
&streams_in[0], &num_in,
&streams_out[0], &num_out)
16. int peek_view[num_peeK][1];
17. intin_view[num_in][1];
18. int out_view[num_out][1];
//OpenStream task pragma

19. #pragma omp task peek(streams_peek >> peek_vie w[num_peek][0])\
input(streams_in >> in_view[n um_in][1]D\
output(streams_out << out_vie w[hum_out][1])

20. //Matrix multiplication code

}
}

Figure 1 Translation of StarSs task pragma
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task could be run in parallel when the generateenSfream code is executed (lines 19 and 20).

On occurrences of Starskwait  pragma (StarSs code in Figure 2), the translatoerates calls
to two OpenStream functions that flush and restcoerect version streams (lines 1 and 3,
respectively, in OpenStream code in Figure 2). &htes functions ensure correct synchronization

StarSs code

1. #pragma omp taskwait

Generated OpenStream code

1. openstream_resolver_flush_versions();
2. #pragma omp taskwait
3. openstream_resolver_restore_versions();

Figure 2 Translation of StarSs taskwait pragma
between OpenStream producers and consumers whbeartier is encountered.
Currently the StarSs-OpenStream translator hatldéesllowing StarSs pragma use cases:

* Function definitions
» C compound statements
» Function declarations with external linkage

3.3 Evaluation

The current prototype uses the dependence restilaercompares regions’ start addresses, which
makes it unusable for applications with tasks #eess overlapping regions. The benchmarks were
executed on a single node with 2 Intel E5649 (6eCtb2M cache, 2.53 GHz) processors.

We used two benchmarks to evaluate performandeedfanslated applications: Cholesky and Matrix
Multiplication. Both benchmarks were parallelizedthvthe OmpSs programming model. In the
OmpSs implementations tasks access blocks of dageerform local computations. The tasks are
synchronized by data dependencies among piecesrabrny expressed as OmpSs task regions, which
do not overlap. Codes translated to OpenStreamOueEmStream runtime for task scheduling and
dependency resolver based on GNU C tree. Figurm@&s speedup for different number of tasks for
both benchmarks executed for 12 threads. Both leawdts attain from 6-fold to 11-fold speedup for
increasing number of tasks OmpSs and OpenStreaimasineed to handle.
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Figure 3 Task scalability for Matrix Multiplication and Cholesky benchmarks
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4 Application porting
4.1 Applications ported to StarSs (BSC)

4.1.1 FMRadio

In the fourth year of the project we implementedeesion of the parallel FMRadio application using
the OmpSs programming model [9, 10]. In this sectide give an overview on the parallel
implementation of the application, and report orfgrenance evaluation and analysis.

The sequential version of FMRadio application ismposed of a set of filters that perform
computations over the signal samples. The filteesexecuted sequentially in a loop iterating of the
stream of samples. The main application loop ofisatjal FMRadio is shown in Figure 4.

samples stream

filterq

I output,
I

Yinput,
filter;

Foutput,
I

Y inputy
filterk

outputy
output sample;

output data

Figure 4 Body of the main loop of sequential FMRadi application

The iteration of the main loop starts by passingmai to the first filter as its input data. Each filjer
iterates over its input dajaand performs calculations that result in outptitat is passed further to
the next filterj+1 as an inpuj+1. The algorithm resembles a pipeline where eatdr filvorks on the
data produced by filtgfl, and passes the output to filje. In addition, each filters maintains the
history of its previous computatioir$ 1 <1< N, that is needed for its execution
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samples stream

i<N
in parallel
sample; samplej sampley
yinput, \ 4 \ 4
filterq filterq filterq
: output, : output, : oufput,
[ I, I,
yinput; yinput yinput,
filter; filter; filter;
: output : output, : output,
; inputy, ; inputy ; inputk
filtery filteryk filterk
outputy, outputy outputy

Y Y A\
output sample, output|sample; output sampley

\/
output data

Figure 5 Body of the main loop of parallel FMRadicapplication

The parallel main loop of the application is showrFigure 5. The parallelization strategy assumes
encapsulating each filtgrinto an OmpSs task that can be run in parallekkTeynchronization is
maintained through flow dependence between tpgkandj. Each set of filters executed in iteration
runs in parallebnd performs local computations that do not demendomputations from iteratian

1. Such parallelization scheme requires no loopi@@igtependencies between tasks. The computation
histories maintained by the filters introduce sdelpendencies and in practice serialize the exatutio
of tasks. The dependencies on the computationrigstare relaxed by precomputing the necessary
data before the main loop starts executing anétyndantly calculating the histories by tasks ahea
iteration of the main loop.

Figure 6 shows the speedup results for executibR8/®Radio for varying grain sizes. The grain size

is a parameter that is passed to the applicatidnitandicates a size of the samples each filtdr wi
process. By varying the grain size values we camgh the size of OmpSs tasks. The measurements
were taken for grain size values ranging from 220 The application was run on a node with two
processors Intel SandyBridge-EP E5-2670/1600 (2@bhe, 8-core, 2.6 GHz) and memory 8x4GB
DDR3-1600 DIMMS (2GB/core). The best speedup addeby parallel FMRadio is 13-fold for
grains of sizes 8 and 10 for 16 threads. As casele@ in the figure, excellent results can be obthin
for grains between 8 and 10.
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An image from an execution trace that shows tasketution appears in Figure 7. We can see that
tasks from different FMRadio’s main loop iterations in parallel, whereas tasks processingithe
sample are serialized by flow dependence on thétsesf their computations.

FMRadio

14+

12+

[« RN SN S}

10110
12

Speedup

b + + + + +

i é 4 6 8 10 12 14 16
No. of threads

Figure 6 FMRadio speedup for different grain sizes

THREAD 1.1.1
THREAD 1.1.2
THREAD 1.1.3
THREAD 1.1.4
THREAD 1.1.5
THREAD 1.1.6
THREAD 1.1.7
THREAD 1.1.8
THREAD 1.1.8
THREAD 1.1.10
THREAD 1.1.11
THREAD 1.1.12
THREAD 1.1.13
THREAD 1.1.14
THREAD 1.1.15

THREAD 1.1.16

[ N N filter task

Figure 7 Trace with task execution of parallel FMRadb for grain size 8 for 16 threads. Each row repremnts the activity of a
thread, with different colors representing differert tasks. The x-axis represents time.
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4.1.2 Graph500 — graph search problem

In the year four of the project we started workamgthe parallel implementation of the Graph500 [4]
benchmark that uses OmpSs programming model asatlgtiaation framework. In this section we
give an overview on the algorithms we implemented jpresent initial performance results.

Graph500 is a benchmark that implements Breadtst Search of a graph resulting in a spanning
tree. It comes with a set of parallel implementaibased on e.g. MPl and OpenMP. The graph can
be represented as an adjacency list or in a CosguleSpare Row (CSR) format. The benchmark can
be configured to use a Recursive Model for Graphiij (R-MAT) or a Kronecker product as its
graph generator.

In our experiments we use the Kronecker methocktate graphs, which are stored in CSR format.
The algorithms we show in this section are Arrag@®R8ased and Queue-Based [5].

def queue_bfs(graph, root) =
current_frontier, next_frontier
local_queues(threads_number)
visited_nodes
next_frontier.push(root)
visiter_nodes(root) = VISITED
while Inext_frontier.empty?
for nodes <- current_frontier.partition(thr eads_number)
#pragma omp task
Ig = local_queues(my_thread_id)
for cn <- nodes
for n <- graph.neighbors(cn)
if lvisited_nodes.visited?( n)
if visited_nodes.atomic _cas(n, NOT_VISITED, VISITED)
Ig.push(n)
if 1g.full?
next_frontier.s ync_push(lq)
lg.clear
if lg.empty?
next_frontier.sync_push(lq)
lg.clear
#pragma omp taskwait
swap(next_frontier, current_frontier)
next_frontier.clear

Figure 8 Pseudocode of Queue-based parallel Bread#irst Search algorithm

The pseudocode of a Queue-based BFS algorithmowrsin Figure 8. The algorithm uses two
gqueuescurrent_frontier andnext_frontier , which store, respectively, nodes on the level
i and nodes on the leviell of the graph traversal. The constructed spanmiwyis stored in a data
structure calledvisited_nodes . The traversal continues until there are no nadeasit (line 7).
The set of nodes on the currently visited lavel partitioned among threads (line 8) and eachaithr
runs a task that visits neighbors of an assignbdetwof nodes (lines 9-21). The threads maintaiallo
queues stored in a data structure cdbbed|_queues , where neighbors of nodes visited on leivel
are stored. The neighboring nodes will form a fiemon the levei+1. Nodes in the thread’s local
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gueue are moved to theext_frontier queue at the end of traversal (lines 19-21) ornte
thread’s local queue is full (lines 16-18 and 19-21

Tasks do not maintain data dependencies. Althobgl access in parallel thasited_nodes

data structure to mark nodes that have been vjditeg are synchronized through test-test-and-set
pattern (lines 13 and 14). Also, in the implemeaantaticcesses to a quetigrent_frontier are
synchronized. Each thread modifies the queue’sutailg atomic operatiofetch-and-add . The
local_queues queues are modified locally by each thread soetlemo need to manage data
dependencies for these data structures.

def array_read_bfs(graph, root) =
visited_nodes
levels(graph.nodes_number)
threads_completed(threads_number)
visited_nodes(root) = VISITED
level = 1
levels(root) = level
finished = false
while !finished
for nodes <- graph.nodes.partition(threads_ number)
#pragma omp task
for n <- nodes
if levels(n) != level
continue
for ng <- graph.neighbors(n)

if visited_nodes.visited?(n Q)
if visited_nodes.atomic _cas(ng, NOT_VISITED, VISITED)
levels(ng) = level +1

threads_completed(m

y_thread_id) = false

#pragma task wait
finished = threads_completed.logical_an d
level++

Figure 9 Pseudocode of Array Read-based parallel Badth First Search algorithm

The pseudocode of Array Read-based BFS is showfigure 9. As it was a case for Queue-based
BFS, the algorithm uses thiésited_nodes data structure. It defines thevels data structure,
which stores levels of nodes that were visited. id@es on the levelform a current frontier (line 13
and 22). The nodes of the graph are partitioneddistdbuted among threads (line 10). Each thread
runs an OmpSs task that checks whether a node farmgrent frontier (line 13). Then it visits
neighbors of the node (lines 15-19). If the neighbw node has not been previously encountered, it
is marked as visited and will form a frontier ore tleveli+1 (line 16-19). The algorithm runs until
there are no nodes to visit (lines 9, 19 and 21).

The Array Read-based BFS uses biaels data structure that stores current frontier. Thead
structure is partitioned among threads and alloasall computations without creating data
dependencies between tasks. So the algorithm diédstroduce an overhead of concurrent accesses
to queues with current and next frontiers prese@ueue-based BFS.
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Figure 10 shows performance results for OmpSs Qbased and Array Read-based implementations
of Graph500. We compared our results with sequerdgiad OpenMP implementations. The
application was run on a node with two processatsl ISandyBridge-EP E5-2670/1600 (20MB
cache, 8-core, 2.6GHz) and memory 8x4GB DDR3-16IMNIS (2GB/core). The size of a graph is
depicted by scale; the number of vertices in a tyiap2°@¢ The performance metric used in the
measurements is the number of traversed edgeepend (TEPS). Due to memory limitations of our
environment we could only run the application fcale of up to 22.

BFS is an irregular parallel algorithm and makesirdgaresting case for work distribution among
tasks. At the early and late levels of traversskdaare very small due to the small size of a feont
and the low number of nodes to visit, which aremhll degree. There is no overlap of task creation
with task execution; very little parallelism is @asle. In the middle levels of traversal the frienof

the BFS is larger, and the number of nodes to Wigiteases. Tasks become bigger and can be
scheduled and executed in parallel.

Although OmpSs implementations are competitive v@fenMP implementations, for graphs used in
our experiment there is not enough available pelisth due to uneven work distribution. Threads
stay idle waiting for OmpSs tasks to execute.

Graph500
5x108~ OmpSs Queue-based [ _
OmpSs Aarray Rread-based [ |
i EE
Seq =]
4x108 |
3x108+ |
m .
g-( —
=
B
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Figure 10 Performance results of Graph500 for diffeent graph sizes
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4.1.3 Labyrinth (Lee-Routing)

In deliverable D2.3 we presented a methodology decomposing sequential code into parallel
OmpSs tasks with Tareador [10]. As a running exampé used Lee-routing algorithm. In this
deliverable we present further performance improaais of the algorithm.

As it was stated in deliverable D2.3, a main gsidivided recursively into smaller subgrids; eadkt
creates two subtasks that try to route paths withéir respective subgrids. The algorithm takes a
divide-and-conquer approach in order to route giseinof paths between points on the board. In the
current incarnation of the algorithm each subgsiéxpressed as an OmpSs region of the main grid.
OmpSs regions allow us to relax dependencies oméie grid and limit them to its parts where tasks
perform routing.

Figure 11 shows pseudocode of expansion and trekegiteses. The code for halving main grid and
spawning children tasks has not been changed arwinitet.

#pragma omp task in(grid) in(work_list) in(grid)
/I Compute paths
def router_task(grid, work_list) =
/IDivide grid into subgrids and
/[create two children tasks that will route paths w ithin the subgrids
/...
path_grid_list = allocate_list
for((src, dest) <- my_work_list))
expansion_queue = allocate_queue
local_grid = copy_grid(grid)

#pragma omp task concurrent(path_grid_list) in(grid [lowerY:uppperY][lowerX:upperX])
/lexpansion task
if(expand(local_grid, expansion_que ue, src, dest))
#pragma omp critical
list_insert(path_grid_list, (sr c, dest))
#pragma omp task out(grid[lowerY:upperY][lowerX:upp erX]) concurrent(path_grid_list)

[ltraceback task
for((src, dest) <- path_grid_list)
path = traceback(grid, src, dest)
if(not_empty?(path))
update(grid, path)

Figure 11 Pseudocode of Labyrinth (Lee routing) algithm with OmpSs regions
Each expansion task (lines 11-15) computes a path jgart of the main grid. A subgrid expansion

tasks work on is encoded as an OmpSs region aintie grid (n clause in task pragma, line 11).
Whenever expansion for a given pair of points igceasful, the pair is inserted into the

pair_grid_list data structure (line 14), that is further usedhmytraceback task. Dependencies
on pair_grid_list between expansion tasks are relaxed through Ocg®sirrent  pragma,
and the accesses to the list are synchronizedeb@penMReritical pragma (line 14).

The traceback task (lines 16-21) marks successéxihanded paths and it accesses only a part of the
main grid. The updates on the grid are limitechiogubgrid expansion has been previously performed
on, so there is no need for synchronization onedhtire grid. The dependence on a subgrid is
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expressed as an Omp&# clause with the subgrid encoded as an OmpSs rélgienl6). The same
subgrid forms an antidependence between expanagks tand a traceback task that synchronizes
execution of these tasks. Furthermore, as exparaidntraceback tasks are synchronized through
dependences on a subgrid, there is no need to reynizh accesses fmath_grid_list between
instances of these two tasks.

The speedup results are shown in Figure 12. Thicappn was run on a node with two processors
Intel SandyBridge-EP E5-2670/1600 (20MB cache, ®&c@.6 GHz) and memory 8x4GB DDR3-
1600 DIMMS (2GB/core). The application was executedwo data sets: board of size 512x512 and
with 512 paths to route, and board of size 1024410Rh 4096 paths. Measurements for both data
sizes were calculated against sequential execafitre application.

The algorithm scales for varying number of dat®.sktachieves 10-fold speedup for board of size
512x512 with 512 paths to route, and 8-fold speddupoard of size 1024x1024 with 4096 path to
route.

OmpSs Labyrinth

15+ Board: 512x512 Paths: 512 ® 1
| Board: 1024x1024 Paths: 4096 +
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Figure 12 Speedup results for OmpSs Labyrinth for veying data sizes
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Task:

B child_tasl B solve [ tracebac

Figure 14 Trace with parallel task execution for boad of size 1024x1024 and number of paths 4096 fo6 threads.

Each row represents the activity of a thread, with dferent colors representing different tasks. The xaxis represents time.
Figure 14 shows a timeline with task execution ¥6rthreadsSingle_expansion tasks, that
perform expansion between points on the board,myparallel. They maintain input dependencies
between each other on respective subgrids, anddheésses tpair_grid_list data structure
are handled by OpenMétitical pragma.Traceback tasks execute after the expansion tasks
finished. Synchronization is maintained by antidefsnce on the subgrid expansion and traceback
are performed on. Dependencies between expansibtraneback tasks can be seen in

B child_task I single_expansion [l solve [ traceback

Figure 13. The lines in the figure indicate depewiks between tasks. We can see that no

I single_expansic

Tasks

B child_task I single_expansic [l solve [ tracebac

Figure 13 Execution trace with task dependencies f@ board of size 1024x1024 and number of paths 46%or 16 threads. Each row represents
the activity of a thread, with different colors representing different tasks. The x-axis representsrtie.
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dependencies between expansion tasks are fourftebl@rhpSs runtime. The only dependencies that
need to be resolved during execution are thosedegtwxpansion and traceback tasks.

4.1.4 FFT1D — numeric application

In the year four of the project we used OmpSs parallelization framework for FFT1D benchmark.
The implementation is based on the parallel algorithat uses SMPSs [8] for parallelization. In this
section we give an overview on the algorithm anesent results of performance measurements for
the code using OmpSs.

FFT1D implements the Fast Fourier Transform ovemaany of complex double precision floating
point numbers and it uses 6-step Fast Fourier Toemsalgorithm [6]. The input and output data are
unidimensional, but the algorithm operates ovemtlas a bidimensional matrix. The 6 steps are
divided into 3 transposition operations, 2 FFT agens over all rows and a multiplication of aleth
elements by twiddle factors. The benchmark usedNFkdrary for FFT operations.

The pseudo-code of the algorithm is shown in FiditreEach step of the algorithm is implemented as
an OmpSs task. Each tasks accesses blocks of matvikich are represented as OmpSs regions.
Representing data as an OmpSs region allows OmaSs trunning in parallel to overlap
computations; data dependencies between tasksatitaiss overlapping regions are tracked and
resolved by the OmpSs runtime. Tastespose_block andtranspose_swap  (line 4, 6, 20
and 22) implement an in-place matrix transpose aifmer and taskftld (lines 9 and 17) calls
FFTW library to perform in-place FFT operation.

void fft(complex A[N_SQRT][N_SQRT])
/I 1. Transpose
for (longi=0;i<N_SQRT;i+=TR_BS)
transpose_block(A[i][i])
for (long j=i+ TR_BS; < N_SQRT;j+=TR _BS)
transpose_swap(A[i][il, ALl
/I 2. First FFT round
for (long j=0; j < N_SQRT; j += FFT_BS)
fit1d(A[][(O])
/l 3 & 4. Twiddle and Transpose
for (long 1 = 0; | < N_SQRT; | += TR_BS)
twiddle_transpose_block(i, A[i][i])
for (long j=1+ TR_BS;j < N_SQRT; j+=TR _BS)
twiddle_transpose_swap(i, j, A[i][j], A 110
/I'5. Second FFT round
for (long j = 0; j < N_SQRT; j += FFT_BS)
fit1d(A[][0]);
/l 6. Transpose
for (long 1 = 0; | < N_SQRT; | += TR_BS)
transpose_block(A[i][i])
for(longj=1+TR_BS;j<N_SQRT;|j+=T R_BS)
transpose_swap(A[i][jl, ALI[])

Figure 15 Pseudocode of the FFT1D algorithm
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The speedup results of parallel FFT1D are showfigare 17. The application was run on a node
with two processors Intel SandyBridge-EP E5-267001@0MB cache, 8-core, 2.6GHz) and memory
8x4GB DDR3-1600 DIMMS (2GB/core). The measurementse carried out for the following
configurations:

OmpSs Fftld

147 T
Matrix: 16384 Block: 512 Transposed block: 256 +
Matrix: 8192 Block: 128 Transposed block: 1024 ®

1271

10+ T

o 8 i
=
=
3
&

6- 1

4+ 1

2+ 1

0+ ' [ i | ' [ i i I +

1 2 4 6 8 10 12 14 16

No. of threads

Figure 17 FFT1D speedup for different problem sizes

Task:
zz_initializeBlock tw_trsp_swap
FFT1D_:

trsp_blk
tw_trsp_bl}

B FFTiD

trsp_swa .

Figure 16 Trace with task execution of parallel FFT1Cfor the first configuration for 16 threads. Each rown represents the activity of a thread,
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Figure 18 Trace with task execution of parallel FFT1Cfor the second configuration for 16 threads. Eachaw represents the activity
of a thread, with different colors representing diferent tasks. The x-axis represents time.

1. 16384 elements, block size of 512 and transposutkisize of 256
2. 8192 elements, block size of 128 and transposetkisiae of 1024

For both configurations the application scales atthining 12-fold speedup in both cases agaimst th
sequential application.

Figure 16 andError! Reference source not found.show parallel execution traces of FFT1D for both
configurations. The traces show that FFT1D perfocommputations in steps. Tasks within each step
are executed in parallel. In both cases the exatuis dominated by task&rsp swap and
tw_trsp_swapwhich swap blocks of the matrix. Both tasks swhgments of the block in place and
their size depends on the size of transposed hlocks

4.1.5 SPECFEM3D - scientific application

In the deliverable D2.2 we characterized CPI stfcRPECFEM3D benchmark. In the deliverable for
the fourth year of the project we conveyed measeargsnand performance evaluation of the
benchmark.

SPECFEM3D is a benchmark that implements speckeahent method that is used for numerical
calculations for 3-D wave propagation. Implemewntatinat is presented in this section uses OmpSs
for parallel execution.

As it was shown in deliverable D2.2, tasks coverimgst of the execution time are executed in the
serial time loop in the following order:

1. gather - localizes and maps points in the local mesh mash elements from a global
mesh
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2. process_element  — performs local calculations on a single 3D spéetiement

3. scatter - sums computations on spectral elements intglttel mesh
The first two tasks can be run in parallel as tloeplly perform accesses and calculations. Thel thir
task, scatter , updates a global mesh of points that can be dhamgong neighboring spectral
elements, so the accesses to each point needstribbzed. OmpSs provides three clauses, which can
be used within task pragma, that provide task keat&on:

» directionality clausesir{ , out , inout ) — allow OmpSs to build task dependency graph at
runtime and to schedule tasks based on their dgendiencies
* commutative clause — allows OmpSs to execute tasks out-ofronde serialized manner.
The clause preserves data dependencies betwesan task
* concurrent  clause — relaxes data dependencies between Es&sburden of providing
correct task synchronization is put onto a programm
Figure 20 shows SPECFEM3D speedup results for ihmpementations oscatter  task that use
the aforementioned methods of synchronization. @peplication was run on a node with two
processors Intel SandyBridge-EP E5-2670/1600 (2@khe, 8-core, 2.6GHz) and memory 8x4GB
DDR3-1600 DIMMS (2GB/core).OmpSs-inoutand OmpSs-conmmutativenplementations use,
respectively,inout andcommutative clausesOmpSs-concurrenimplements relaxed accesses
through theconcurrent  clause; synchronized accesses are provided byMpatomic pragma.

In all three cases application attains a 2-fold3tfwld speedup for 16 threads. The difference in
performance between concurrent implementation aedother two is attributed to synchronization
overhead related to OpenMBtomic pragma. Thescatter tasks of OmpSs-concurrent
implementation cover more execution time compaocetthé¢ tasks’ codes @mpSs-inouandOmpSs-
commutativamplementations (Figure 22, Figure 19, Figure ZImpSs-inous scatter  tasks are
scheduled onto the single core and in practice sequentially, wherea®mpSs-commutati
scatter  tasks are scheduled to and executed by differergsc The difference in scheduling
policies for commutative tasks and tasks viitbut clause comes from that inout tasks are executed
in the order they were created; commutative taaksbe executed out of order.
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Figure 19 Trace with parallel task execution of OmpS-inout implementation for 16 threads. Each row repesents the activity of a thread, with
different colors representing different tasks. The xaxis represents time.
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Figure 21 Trace with parallel task execution of OmpS-commutative implementation for 16 threads. Each mv represents the activity of a thread,
with different colors representing different tasks.The x-axis represents time.
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Figure 22 Trace with parallel task execution of OmpS-concurrent implementation for 16 threads. Each rowepresents the activity of a thread, with
different colors reonresentina different tasks. The -axis renresents time
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4.2 Applications ported to Scala (UNIMAN)

This section highlights some of the benchmarks Haate been ported to the Scala programming
language. Within TERAFLUX we have developed two elokbraries which provide transactional
memory and dataflow execution in Scala.

MUTS http://apt.cs.manchester.ac.uk/projects/ TERAFLUX/N8J

DFScalahttp://apt.cs.manchester.ac.uk/projects/TERAFLUXJ0& a/

The DFScala library provides the functionality tmstruct and execute dataflow graphs. The nodes in
the graph are dynamically constructed over thesmaf a program and each node executes a function
which is passed as an argument. The arcs betwedss rave all statically typed. An example of a
function using DFScala and implementing Fibonackofvs:

Expanded Version
def fib(n :Int, out:Token[Int]){
if(n <= 2)
out(1)
else {
var t1 = DFManager.createThread(
(x:Int, y:Int, out:Token[Int]) => {out(x + y)}

)
var t2 = DFManager.createThread(fib _)

var t3 = DFManager.createThread(fib _)

t2.argl=n-1
t2.arg2 = tl.tokenl
t3.argl=n-2
t3.arg2 = tl.token2
tl.arg3 = out

}

Concise Version
def fib(n :Int):Int = {
if(n <=2)
1
else
fib(n-1) + fib(n-2)
}

The concise version can be used without havinghtmge anything in Scala and it is clearly more
productive. The applications that we are going ¢osider are Matrix-Matrix multiplication, 0-1
Knapsack, LeeTM, KMeans, Monte-Carlo Tree Searclplaying Go, and Parallel Scala Collections.
Matrix-Matrix multiplication and 0-1 Knapsack repent problems that can be solved without the
need to use shared state. KMeans is drawn fromStaep Benchmarks. The Go playing A.l
application represents a more dynamic environmedtig a real world application. Go uses Monte
Carlo Tree Search to determine the best move toipla game of Go. This involves generating trees
of combinations of moves for which a score is ot#diand transactions are used to protect the shared
state. The following graph presents the speedugtsefr these benchmarks on system with two 6
core AMD Opteron sockets.
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4.3 Industrial applications (THALES with the collaboration of INRIA
and BSC)

This section discusses the study of porting to@penStream and OmpSs dataflow programming
paradigms of two applications used in THALES salog and their evaluation on x86 multi-core
solutions and the TERAFLUX platform.

The objective of THALES was threefold:

1. Evaluate the porting (complexity, effort requiredf applications with parallelization
opportunities to dataflow programming paradigmaig€DpenStream and OmpSs.

2. Evaluate the performances achieved by these sptutta commercial of-the-shelf (COTS)
solutions (e.g., x86 multicores) when compared t@ran common programming
parallelization solutions, like OpenMP.

3. Evaluate the performances achieved by the dataflension on a massively parallel machine
like the TERAFLUX platform with up to 1024 cores.

When porting, THALES wanted to take advantage efchpabilities of the parallelization solutions
(OpenMP, OpenStream and OmpSs) to parallelizeghbcations, without discarding completely the
legacy code. For that purpose we avoided extremmeyaaizations of the legacy code or alternative
algorithms for the same tasks, as the proposedamragalready contained enough dataflow and non-
dataflow parallelization options as discussed avjmus deliverables (see D2.1, D2.2 and D2.3).

The results of this study are presented in th@fotlg sections. Sections 4.2.1 and 4.2.2 respégtive
present the porting of the Pedestrian DetectionRaudhr applications and the evaluation of the ports
against OpenMP solution and on different machimesuding the TERAFLUX platform). Finally,
Section 4.2.3 discusses non-quantifiable metricaitathe possible usage of the dataflow paradigms
on industrial solutions.

4.3.1 The Pedestrian Detection application

The Pedestrian Detection application was previodshcribed in D2.1, D2.2 and D2.3. It's based on

Input image Output image

Figure 23 Example of output produced from the Peddsan Detection application
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the Viola-Jones cascading algorithm [7]. The agpian basically takes as input an image (possibly
with people on it) and detects the people preseiitt ¢n addition it takes two other input paranmste

» The classifier with the filters used by the casogdilgorithm implemented in the application
to determine if there is a person in the input iemag
» The scale step which determines the tiles scaleg tnalyzed. Typical scale ranges go from
1.01 to 1.2 in current real time implementationshef application.
The application outputs a copy of the input imagth ihe detected people surrounded with white
boxes. An example of the output generated fronvargimage, with a scale step of 1.01 and a basic
classifier, can be seen in Figure 23. As can bergbd not all the people from the input image are
detected; the quality of the detection actuallyate}s on the quality of the classifier and the scale
applied.

Figure 24 shows the classical implementation of ¢hecading algorithm used for this study. In
addition to the filtering of the tiles at the diféat scales with the cascading algorithm, the apfin
performs a reduction on tiles belonging to the saoade for which detection was positive. Effectyvel
as the tiles overlap each other the cascading itligptends to detect multiple tiles for the same
person and the reduction allows merging them irgmgle detection.

image

small sized tiles mid sized tiles large sized tiles

image split into

CUUREN LR HE -
IR * l
EEE B E O m m D
classification
th h filteri
noﬁfatclhiigntgi:les l l B ’djscarded tile l
B B o m Fhe D
l matching tile
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Figure 24 Cascading algorithm
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4.3.1.1Porting to parallel and dataflow paradigms

This section presents the efforts developed toeaeha parallel and dataflow implementation of the
Pedestrian Detection application with good perforoea on x86 multicore machines and the
TERAFLUX platform (ISA agnostic, but first evaludten x86 cores). For this study two of the
dataflow programming solutions were considered: Ss(BSC) and OpenStream (INRIA). One goal
of the study was to achieve performance withoueavis modification of the initial application, by
simply adding the parallelization and dataflow ptimes of OmpSs and OpenStream.

A first thing to notice is that the Pedestrian [2&ten application presented few opportunities tplap
dataflow principles at coarse level, i.e. betwdes different kernels that compose the application.
Effectively the filtering task is done independgnitbr each of the scales analyzed, and even the
filtering of the different tiles on a scale is doimelependently. The only dataflow operation occurs
when on a given scale the filtering operations Haniehed indicating the tiles on which a pedestria
was detected on a matrix, and the reduction tas&gss the matrix to merge detected tiles. Thus, the
only dataflow potential of the application was eg@nted by this matrix, which we refer to as the
detection matrix.

In D2.3 we presented four different directions floe parallelization of the application filteringsta
(scale, tile, filter and cascading axes in Figutg B is important to note that those cascadingsaare
typically implemented incrementally. Thus, whengbiatizing at the tile, filter and cascading axes,
the implementation also includes the scale axigllgdization. Our experiments demonstrated that
parallelizing at these axes without parallelizinghe scale axis degraded the performance whereas
speedup was achieved when using parallelizatitimeagcale axis.

4.3.1.1.1Parallelizing across the tile, the cascading ancethiter axes

The tile axis parallelization proved to be very giento implement by using the OmpSs and the
OpenStream programming paradigms (as was als@a#gwhen using OpenMP). The code snippet in
Figure 25 shows the tile axis parallelization agglio the Pedestrian Detection application when
using OmpSs:

/I process scale

for (irow = 0 ; irow < num_rows ; irow++) {
for (icol = 0; icol < num_caols; icol++) {

/ parallelize tile processing

#pragma omp task output (detectionMatrix[irow][icol )
good = runFilterStageOnTile(tile[irow][icol], 0);
for (istage = 1; good && istage < num_filter_ stages; istage++) {
good = runFilterStageOnTile(tile[irow][icol ], istage);

detectionMatrix[irow][icol] = good;
}
}
}

#pragma omp task input ([irows][icols]detectionMatr ix)

/I reduce task
}

Figure 25 The Pedestrian Detection application parélized across tile axis with OmpSs
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The OpenStream version was not much differentdbbféred on its dataflow approach and was more
easily implemented. However when executing thissioer, we observed the creation of a large
number of small threads. The first filters (i.dtef at stage 0) discarded most of the tiles mgkirost

of the threads execute for a very short amounineé,tcausing a huge overhead, and thus degrading
the performance.

Likewise, the parallelization of the cascading gxieved to be very straightforward as depicted by
code snippet in Figure 26, but we observed importalowdowns when performing this
parallelization:

Il process scale
for (irow = 0 ; irow < num_rows ; irow++) {
for (icol = 0; icol < num_cols; icol++) {

for (istage = 0O; istage < num_filter_stages; is tage++) {

#pragma omp task output (detectionMatrix[istage][ir ow][icol])
detectionMatrix[istage][irow][icol] =
runFilterStageOnTile(tile[irow][icol], is tage);
}
}

}
#pragma omp task input ([num_filter_stages][num_row s][num_cols]detectionMatrix)

/I reduce task

}

Figure 26 The Pedestrian Detection application parétlized across cascading axis with OmpSs

Effectively the cascading axis parallelization optexecutes all the filters for a given tile, irasing
with another dimension (number of filter stage®) size of the streamed datketectionMatrix )
and leaving extra work to the reduction task. Tapproach proved to be worse than the tile
parallelization because the amount of work ontarfivas too small. Additionally it increased theesi
of the data being streamed.

Finally, for the filter axis parallelization appidawe were forced to slightly modify our code and
exploit some of the features of the OmpSs and Opea® dataflow programming paradigms by
streaming thaletectionMatrix not only between the filter task and the reductask, but also
between the different filter stages as depictetiéncode snippet in Figure 27.

The approach also provided worse performance thansequential version, as it creates a large
amount of threads that have little or no work torfgeen and that have to stream the
detectionMatrix between each other.
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Il process scale

#pragma omp task output ([num_rows][num_cols]detect ionMatrix)
for all irows & all icols - detectionMatrix[irows][icols] = true;
for (istage = 0; istage < num_filter_stages; istage ++) {

#pragma omp task \
input ([num_rows][num_cols]detectionMatrix) \
output ([num_rows][num_cols]detectionMatrix)
for (irow = 0 ; irow < num_rows ; irow++) {
for (icol = O; icol < num_cols; icol++) {
if (detectionMatrix[irow][icol])
detectionMatrix[irow][icol] =

runFilterStageOnTile(tile[irow][icol], is tage);
else
detectionMatrix[irow][icol] = false;
}
}
}
#pragma omp task input ([num_rows][num_cols]detecti onMatrix)

/I reduce task

}

Figure 27 The Pedestrian Detection application parétlized across filter axis with OmpSs

4.3.1.1.2Parallelizing across the scale axis and the “balat’ scale axis

As for the parallelization across the cascading tdadaxes, the parallelization across the scale ax
proved to be straightforward as depicted in theecgrdppet in Figure 28:

#pragma omp task

foreach iscale on scales {
/l compute num_rows and num_cols on given scale
I/ process scale

/I filter task
#pragma omp task output ([irows][icols]detectionMat rix[iscale])

{
for (irow = 0 ; irow < num_rows ; irow++) {
for (icol = 0; icol < num_cols; icol++) {

good = runFilterStageOnTile(tile[irow][icol 1,0);
for (istage = 1; good && istage < num_filte r_stages; istage++) {
good = runFilterStageOnTile(tile[irow][ic ol], istage);
}
detectionMatrix[irow][icol] = good;
}
}
}
/ reduce task
#pragma omp task input ([irows][icols]detectionMatr ix[iscale])

/l reduce task code

}
}

#pragma omp taskwait
... I/ generate output image

Figure 28 The Pedestrian Detection application paréglized across scale axis
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This implementation provided tasks with enough wawkjustify the creation of threads and, as
expected, provided interesting speedups (see 8etil.2). However we observed that there were
some cores that were unused before others as eejricFigure 29.
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Figure 29 Trace of the parallelization across scalexis for the reference image

The reason for such unbalanced core usage wa® dwe different reasons:

1. In some of the scales more tiles are detected sifygs making the filtering task more time
consuming than others, as more filtering stagessseuted.
2. Initial scales generate smaller tiles and thus ntilee to analyze. The effect is especially
important when comparing initial scales with thst lscales.
We have little room for action to resolve the filstue, as we cannot know a priori in a scale how
many positives there will be. However, the secoadse can be addressed by splitting the filtering
task depending on the number of tiles to be andly?ée call this approach the “balanced” scale axis
parallelization approach, see bottom of Figure T3ie parallelization across the scale axis creates a
thread for each scale, see mapping vO in the figuhéle the “balanced” parallelization creates a
relatively large number of threads for the smalksile (smaller tiles) and reduces the number of
threads as the scale increases (larger tilesynapeing v1 in the figure.

We implemented the “balanced” scale axis para#déilin approach with both OpenStream and

OmpSs, and observed that thanks to this approdcthealcores presented a more homogeneous
execution time usage on the reference image; spad=i32. However, as we will see in Section

4.3.1.2 this proved to be a worthless solution wiesd over a large dataset.
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Figure 30 Scale axis vs. "balanced" scale axis pdfelization approaches

4.3.1.2Evaluation

This section presents the evaluation of the Padasiietection application ports on different target
architectures. The evaluation starts with the eatéda of the ports against current commercial off-
the-shelf (COTS) multi-cores (Intel and AMD) andldavs with an evaluation of the scalability of the
parallelized application on the TERAFLUX platforraing the OmpSs port with OWM.

The Pedestrian Application was ported to OpenStraach OmpSs using the two parallelization
options discussed in Section 4.3.1.1.2. For corsparpurposes the application was also ported to
OpenMP using the parallelization across the scaie approach, and removing the dataflow
operations by taskwait pragma, as can be seen in the code snippet ime=&ju

The five implementations were compared againsirtitiel non-parallelized version of the application
on 3 different target machines:

* Dual-core Intel i7 (2c in Figure 33)
» Four-core Intel i7 (4c in Figure 33)
* 16-core AMD Opteron (16c in Figure 33)
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#pragma omp task

foreach iscale on scales {
/I compute num_rows and num_cols on given scale
/I process scale

/I filter task
#pragma omp task
{
for (irow = 0 ; irow < num_rows ; irow++) {
for (icol = 0; icol < num_cols; icol++) {

good = runFilterStageOnTile(tile[irow][icol 1,0);
for (istage = 1; good && istage < num_filte r_stages; istage++) {
good = runFilterStageOnTile(tile[irow][ic ol], istage);

detectionMatrix[irow][icol] = good;

}
}
}

#pragma omp taskwait
I reduce task

/I reduce task code

}
}

#pragma omp taskwait
... Il generate output image

Figure 31 The Pedestrian Detection application parétlized with OpenMP
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Figure 32 Trace of the “balanced” parallelization acoss scale axis for the reference image
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Figure 33 shows the average performance speeduevadhwith each of the ports on each of the
platforms using as input 97 different images arid as scale step. As can be observed in the figure
all the ports achieve a speedup that is closegtmtimber of cores, just being slightly lower fdrialt

the OpenStream balanced port in the 16-core caodfiigun. There seems to be no gain on using the
OpenStream or the OmpSs programming paradigms &@enMP for the 2- and 4-core
configurations, but the dataflow paradigms cleathieve slightly better speedups on the 16-core
machine, thus showing a better scalability as tmaber of processors increases. The balanced ports
showed little speedup difference when comparedtelralanced ports. While there are input images
that seem to take advantage from the balanced mepitation, others show slowndowns.
Additionally, the speedup varies depending on timalrer of cores. At the end the average speedups
of balanced and non-balanced ports are very clodetfze balanced version presents little interest
given the extra complexity they added in the sowmde. Finally, the OpenStream and the OmpSs
versions seem to perform similarly and on par d¢teloéhan more mature solutions as OpenMP.

On the TERAFLUX platform we evaluated the speedecglability of the OpenStream with OWM
(Owner Writeable Memory, cf. D7.1, D3.5) supporttpagainst a non-parallelized execution on the
same platform. Only the parallelization acrosseseais was considered, as the added complexity of
the balanced solution was not providing any improest in average. The OWM support was used to
avoid the transmission of the large read-only ispedich of the tasks requires: the image and the
classifier. Without the OWM support the threads ldoflood the interconnect with requests to
retrieve the inputs, which would impair any speedegpecially as the number of threads increases.
OWM avoids this flooding by creating local copiestbose inputs. Various configurations of the
TERAFLUX platform were considered, from 1 to 32 aedf 32 cores, thus effectively simulating 32
to 1024 cores configurations. Figure 34 shows tlezame performance speedup achieved on each of
the configurations using the default input and 1a@1scale step. As can be observed the achieved
speedup doesn’t scale with the number of corethéogiven inputs.

18 Legend

OpenMP s

OpenStream =

OmpSs -

OpenStream balanced s
OmpSs balanced ==

2C 4c 16c¢

Configuration

Figure 33 Ports speedup over COTS configurations

Deliverable numberD2.4

Deliverable name:Final report, including the set of reference apptations ported to the
TERAFLUX platform

File name: TERAFLUX-D24-v4.doc Page 41 of 50



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

80

u|
y
3

Speedup

20 1 Il 1
32 64 128 256 512 1024

Number of cores

Figure 34 OpenStream port speedup over the TERAFLUX m@tform

The reason for the lack of scalability is the aypitif the application to create enough threadswhilat

run simultaneously. However the application is dblereate more threads if it is given bigger insgage
or if smaller scale step are provided. For examyth a scale step of 1.008 we achieved a 111-fold
speedup on a 128 cores TERAFLUX configuration. wilse, with a scale step of 1.002 we achieved
a 353-fold speedup on a 1024 cores TERAFLUX comfiian. Table 2 shows some of the speedups
achieved when using different scale step (biggetr maller than 1.01) on different TERAFLUX
configurations.

Table 2 Impact of the scale step parameter on perfarance scalability

Number of cores Scale step Speedup

32 1.03 24
32 1.02 26
64 1.02 37
64 1.015 47
128 1.015 49
128 1.012 61
128 1.008 111
1024 1.002 353
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4.3.2 The Radar application

PuiseComp

StapAvgCov Matlnv
4% 4% Stap Filter
Chirp |—-D _’D _ param  37%
!nnSreerVeiI" Srap Apply
L —‘ 48% Stap int Dop
o D=

T tfac_edges ac_1 MaxPol:vﬁ CorrectionV
\ =i
} FD — DT —— )
‘.—\ ouT

avg_power

= CornerTurn

Figure 35 The Radar application kernel pipeline

As for the Pedestrian Detection application the &Raapplication was introduced and discussed in
D2.1, D2.2, and D2.3. The Radar application is ee mlata flow application based on a Space-Time
Adaptative Processing (STAP) signal processingrigcte. It is typically implemented on planes
taking input bursts from the radar device proceagtiie bursts in a pipeline fashion and producing as
output the objects in movement that have been wetesee Figure 35. Additionally there is no state
shared between burst, thus no data dependenc@ther than those in the pipeline.

4.3.2.1Porting to parallel and data flow paradigms

Unlike for the Pedestrian Detection application kegnel of the Radar application shows a large
number of opportunities to apply the data flow pamgming paradigms provided by OmpSs and
OpenStream. However, simply applying the data fimagramming on the whole kernel may create
an unbalanced solution where the amount of datsfeered generated by the different tasks on the
pipeline (see Figure 35) outweighs any gain that beachieved by the implemented parallelism and

pipelining.

For that purpose we used the Paraver (for the Onmp88ng) and the Aftermath (for the
OpenStream) performance debugging tools to evapgfermance gain of our implementations. We
initiated the porting task by applying the OmpSd @penStream data flow pragmas between all the
tasks (including the transposition operations) tbah be observed in Figure 35. The resulting
application presented an important slowdown whenpared against the sequential implementation.

Figure 36 shows the output of the performance dgibggools over the kernel of the initial porting o
the Radar application. Each line represents ong; @orthis case the kernel is being executed i6 a 1
core machine. The white sections display the aratf the kernel tasks, the red sections represent
tasks using most of its execution time spent tdoper data transfers, the dark (vivid) blue sections
represent tasks using most of its execution timopring computations, and finally the light blue
sections represent time when the cores are idleaAde observed most of the computation tasks are
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very small and most of the time is spent by datadfers and the cores remain idle during large time
in between the computation tasks. The large datesters are actually caused by the large amount of
computation tasks created.

__H

|} | | I TI I ]

Figure 36 Performance of non-debugged Radar applit@n

We iterated over this initial implementation by gping tasks, maximizing computation time over

idle and data transfer time. Figure 37 presentditiaé result of the performance debugging taskrove

the Radar application kernel (the color code is gshme than the one for Figure 36). As can be
observed the computation time has been maximibeddata transfer time minimized (they cannot be
observed in the screenshot but they are there)thanille time almost eliminated. The performance
measurements of this implementation will be preszkint the following section.

Figure 37 Performance of debugged Radar application

4.3.2.2Evaluation

As for the Pedestrian Detection application thetgmbrRadar application was evaluated on four
different machines:

» Dual core Intel i7 (2c in the following figures)

* Four core Intel i7 (4c in the following figures)

e 16 core AMD Opteron (16c in the following figures)

 TERAFLUKX platform (with different configurations mging from 32 cores to 1024)
Three different inputs were used during the evidnat

» small: consisting of a trace of three bursts adar signal (~800KB)
» large: consisting of a trace of nine bursts ofdaraignal (~2.6MB)
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* huge: consisting of a trace of seventy five buoéts radar signal (~21MB)
Finally two different implementations of the Radgplication were evaluated:

* Sequential implementation processes the burstsesgéglly, but each burst is using the
parallel kernel.
» Parallel implementation processes all the inputstbun parallel, each of the bursts using the
parallel kernel.
The Radar application was also parallelized usivgg ®penMP solution to compare it against the
parallel data flow OmpSs and OpenStream implemientt

Figure 38 and Figure 40 show the performance gathgeved by the parallel implementations on the
Intel and AMD platforms when using the sequentiad parallel bursts processing implementations.
As can be observed the sequential processing ofbthets suffers from the initialization and
finalization phases of the kernel, impeding perfance gains. The OmpSs version seems to handle
better these phases.

Legend
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8~ 7 |OpenStream
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2C 16¢c
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Configuration
Figure 38 Speedup of sequential version of the ddtaw port on x86 machines

The parallel processing of the bursts implememasbows that the parallel implementations scale
well. Again the OpenMP and OpenStream seem to rsoffee than the OmpSs version, as can be
observed by the 4c and 16c machines when usingrttal and the large inputs. This advantage
disappears when using the huge input, where theatation time clearly takes over the initialization
and finalization phases. Overall the OpenStreamtla@dmpSs implementation don't show any gain
over the OpenMP implementation when using the hogat in average, but perform better when
using the smaller input sets.
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Figure 40 Speedup of parallel version of the datadlw port on x86 machines
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Figure 39 Speedup of sequential version of the ddtaw port on the TERAFLUX platform

Figure 39 and Figure 41 show the speedups achielied running the OpenStream implementation
on six configurations of the TERAFLUX platform witbequential and parallel burst processing
respectively. The first thing we notice is that thequential burst processing achieves the same
speedup no matter which input set is used. Thisisdée be due to the support this platform provides
for the creation and destruction of threads, whittually makes them negligible. However, as
expected, the sequential processing doesn't sedl@svthe number of cores increase.
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With the parallel processing the TERAFLUX platforisy able to achieve very promising gains,
showing its capability to compute in parallel thiegdent bursts, especially as the number of buvbts
the input increases, as can be observed by thegpeebtained in the 128, 256, 512, and 1024 cores
configurations. We observe a 715-fold speedup erl@?24 cores configuration.

800 Legend

small m—
large
700 - = | huge m—

600 -

500 - -

400 - -

Speedup

300

200 + -
100 - -
R | ID. ] I

32 64 128 256

512 1024

Configuration

Figure 41 Speedup of parallel version of the datadlw port on the TERAFLUX platform

4.3.3 Discussion

The two data flow programming paradigm solutionedug this study (OpenStream and OmpSs)
proved to be efficient solutions, on par with manature solutions as OpenMP. Their usage heavily
depends on two parameters:

» the nature of the application, being data flow rieel or not
» the target machine, the number of cores and edlyettia memory subsystem, i.e., shared or
distributed memory

To take advantage of these programming paradigeagblication should show some opportunity to
apply the data flow primitives they provide. In aiudy the Pedestrian Detection application dig onl
show one opportunity to apply them, the other pelizhtion options could easily be achieved with
OpenMP. On the other hand, the Radar applicatiomigeed many opportunities to use the data flow
primitives and their application was very straigitfard, i.e., did not require to restructure the
original sources. This is a very important for tinglustry, where reuse of legacy code is very
important.

OpenStream and OmpSs, proved to be on par withra mature solution as OpenMP, but in our
study they did not show any advantage over theaAthsh used on shared memory multicore machines
(Intel i7 and AMD Opteron). Having a shared memespjpsystem puts a heavy load on a single
element, the memory, and there the data flow progimg paradigms don't provide a notable
advantage over OpenMP. However, on a distributechong solution as is basically the TERAFLUX
platform (even if it provides facilities to port @glirations that were developed for shared memory
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machines) the data flow primitives provide meangaasparently distribute the load on the different
memories, thus improving the performance of thalfiapplication. Solutions like OWM that we
evaluated on the Pedestrian Detection applicatisthér enhance it, by allowing each thread to
retrieve shared data from its local memory withbaving to share a single memory providing that
shared data.

Two other tools provided by the groups behind traeg@ programming paradigms, which proved to
be very helpful when parallelizing the applicatiomsd extracting the most from the application

performance, are Paraver (OmpSs) and Aftermathri{S&jpeam). These performance debugging tools
are required to understand the options the deveddere when parallelizing applications.

The principal problem of these parallelizing pagads (including OpenMP) is the lack of debugging

tools. Effectively during our porting we encountéreumerous runtime errors which were due to bugs
in our implementation (e.g., forgot to include aada@ependency in the parallelization pragma).

However, we frequently had no way to determine sberce of the bug, and had to resort to

rudimentary solutions, like the usagepointf  , to try to find it.
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5 Conclusions

This deliverable gives a final report on portingolgations to the project programming models,
including industrial applications: the Pedestriagtdéation and the Radar. The deliverable also report
on implementation of translation scheme betweerSStand OpenStream programming models, and
shows initial performance results. The documera pfesents research work on overhead of Software
Transactional Memory in task-based programming mode

The project partners have been able to put togethesoftware toolchain that enables to run
applications developed in high level programmingdeie (StarSs) and mapped into the TERAFLUX
platform. The evaluation performed with the indiadtrapplications show that with the parallel
processing the TERAFLUX platform is able to achieeey promising gains, showing its capability
to compute in parallel the different bursts, espigcas the number of bursts of the input increases
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