
TERAFLUX 
Exploiting dataflow parallelism in Teradevice Computing 

Reliability Work Package 
Theo Ungerer- University of Augsburg (UAU),  

Avi Mendelson - Microsoft Israel (MSFT) 

 

CASTNESS 2012 

 

FUTURE AND 
EMERGING 
TECHNOLOGIES 
PROJECT N. 249013 

SEVENTH FRAMEWORK 
PROGRAMME THEME 
FET proactive 1 (ICT-2009.8.1)  
Concurrent Tera-Device Computing 



TERAFLUX 

Overall Objectives 

• VLSI circuits for 1000 core processors will be less 
reliable 

• Permanent, intermittent and transient faults 
may occur 

• Techniques to establish a reliable overall multi-
/many-core system out of unreliable 
components such as cores and interconnects. 

3 



TERAFLUX 

• Fault detection and recovery mechanisms required on all levels 

– OS level, the system must guarantee that with high 
probability no observable failure (to the application) can 
occur. 

– NoC level, the system needs to be able to detect and recover 
from any link or router fault. 

– Node/cluster level, heartbeats to detect core faults within 
node 

– Core level, the system needs to be able to detect and recover 
from “stuck-at” or “soft-error” faults. 

• Additional requirements: prevent overheating and wear-out,  
 load balancing and power-aware scheduling 

Reliability – Overall Goal 

4 



TERAFLUX 

Operating System Level 

• Operating System designed as Linux OS running on the 
Service Node of TERAFLUX and being connected to L4 
kernels running on nodes.  

• We start defining the mechanisms to handle faults based on 
different fault models. 

• Work on resource allocation and OS related issues. 

 

5 



TERAFLUX 

Operating System 
Low Level Core/Memory Map 

6 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

Cores View Memory View 

Each CPU can access it’s private memory 
All shared memories can be accessed (as one 
virtually contiguous address space) by the DMA 
for coping data in and out 



TERAFLUX 

• Fault detection by Heatbeat messages to FDUs  (Fault Detection Units) 

• Faulty elements are avoided by re-routing using turn-model 

• Target of software remains always the basic mesh  
(OS and Node Manager keep this illusion) 

Reliability at (Clustered) NoC Level 

7 

Basic mesh chip1 chip2 



TERAFLUX 

Implication of Heartbeats  
for the NoC Level 

• Heartbeat based fault detection has an influence on the 
NoC 

• Timing constraints require  heartbeat message prioritization 
over application messages. 

• Timing pattern of heartbeat sending to prevent heartbeat 
message interference. 

• Staircase vs. XY routing of heartbeats can relax the application 
message delays (depends on used traffic pattern). 

 

8 



TERAFLUX 

Core to FDU Routing at NoC Level 
Network delays induced by heartbeat messages 

9 

using XY routing using Staircase routing 



TERAFLUX 

Fault Detection Unit (FDU) Concept at 
Node/Cluster Level 

FDU 

CORE CORE CORE CORE 

TSU 

Service Node 
Neighbouring 

FDU 

Neighbouring 
FDU 

Neighbouring 
FDU 

Monitoring 
Task 

placement 

Per-Node-Manager 

Node/Cluster  



TERAFLUX 

Fault Detection at Node/Cluster Level 

• FDU functions and message formats defined and implemented 

– Heartbeat messages carry information on core fault rate, 
temperature, ... 

• Core to FDU heartbeat communication is operational in Noxim 
NoC Simulator and attached to COTSon Simulator 

• Algorithms for Clustering of cores to an FDU in a pure NoC-
based Teraflux system 

• In a fixed node/cluster-based Teraflux system the core-FDU 
mapping is static 

• Algorithms for mutual fault detection of faulty FDUs or whole 
nodes/clusters; also extended to Faulty I/O and peripheral devices 

 
11 



TERAFLUX 

• Machine Check Architecture (MCA) of x86-cores  
– detects and corrects certain faults in the processor logic 

– provides information on core status by registers 

• Temperature information from Digital Thermal Sensor 

• Registers of MCA and MSR are provided to FDU by the cores 
via alert/heartbeat messages 

• Special Target: Soft error detection and recovery 

 

Fault Detection at Core Level 

12 

 

Heartbeat  

Message 

Core 

Machine Check Architecture 

L-FDU 
Soft Error Checker 

 

 

 

FDU 

 

 

 



TERAFLUX 

Soft Error Detection and Recovery 

• Control flow error checking techniques 

I. Instrumentation and checker concept developed  

II. Double execution for  control flow and data error 
detection (alternatively) 

• The recovery mechanism is incorporated as part of the 
data-flow execution model  

– Verify that no error occurred before commit of 
dataflow thread 

• Assume ECC for memory cells and busses   

– Not covered  in this project ( TRAMS project) 

13 



TERAFLUX 

Control Flow Error Checking 

• Detect control flow errors in dataflow thread 
execution by temporal and logical control flow 
monitoring 

• Code instrumentation on basic block level 

 

 

• Checker hardware extension to cores 

• Dataflow thread execution commitment should be 
deferred until all checks are done.  

• Checker alerts FDU&TSU in case of time out or wrong 
control flow. 

 

 
14 



TERAFLUX 

Double Execution 

• Detects control flow AND data errors  

• Run each thread twice, once as a leading and second 
time as a trailing thread.   

• Each execution generates signature of output results. 

• At completion compare the two signatures, if consistent, 
the primary write its results to main memory. 

• If not, no commitment and reschedule both threads. 

• The duplicated threads can run on the same core or on 
different cores of the same node/clusters. 

15 



TERAFLUX 

Planning for 2012 
• OS level:  

– Impact of the selected memory model and other alternatives of 
memory models on the reliability of the system 

– Scheduling and resource allocation algorithms that can efficiently 
handle dynamic fault conditions of the system 

• NoC level: 

– Faulty link: Impact of re-routing decisions on Heartbeat timing 

– Exploiting Heartbeat timings for fault localization within the NoC 

• Node/cluster level:   

– Adaption of FDU technique to Teraflux dataflow architecture 

– Dynamic adaption techniques within FDU (MAPE cycle) 

– Task distribution between FDU and TSU for fault recovery 

 16 



TERAFLUX 
Exploiting dataflow parallelism in Teradevice Computing 

PROJECT NUMBER: 249013 

http://teraflux.eu 

 

FUTURE AND 
EMERGING 
TECHNOLOGIES 
PROJECT N. 249013 

SEVENTH FRAMEWORK 
PROGRAMME THEME 
FET proactive 1 (ICT-2009.8.1)  
Concurrent Tera-Device Computing 


