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TERAFLUX 

Overall Objectives 

• VLSI circuits for 1000 core processors will be less 
reliable 

• Permanent, intermittent and transient faults 
may occur 

• Techniques to establish a reliable overall multi-
/many-core system out of unreliable 
components such as cores and interconnects. 
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TERAFLUX 

• Fault detection and recovery mechanisms required on all levels 

– OS level, the system must guarantee that with high 
probability no observable failure (to the application) can 
occur. 

– NoC level, the system needs to be able to detect and recover 
from any link or router fault. 

– Node/cluster level, heartbeats to detect core faults within 
node 

– Core level, the system needs to be able to detect and recover 
from “stuck-at” or “soft-error” faults. 

• Additional requirements: prevent overheating and wear-out,  
 load balancing and power-aware scheduling 

Reliability – Overall Goal 
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TERAFLUX 

Operating System Level 

• Operating System designed as Linux OS running on the 
Service Node of TERAFLUX and being connected to L4 
kernels running on nodes.  

• We start defining the mechanisms to handle faults based on 
different fault models. 

• Work on resource allocation and OS related issues. 
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TERAFLUX 

Operating System 
Low Level Core/Memory Map 
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Each CPU can access it’s private memory 
All shared memories can be accessed (as one 
virtually contiguous address space) by the DMA 
for coping data in and out 



TERAFLUX 

• Fault detection by Heatbeat messages to FDUs  (Fault Detection Units) 

• Faulty elements are avoided by re-routing using turn-model 

• Target of software remains always the basic mesh  
(OS and Node Manager keep this illusion) 

Reliability at (Clustered) NoC Level 
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TERAFLUX 

Implication of Heartbeats  
for the NoC Level 

• Heartbeat based fault detection has an influence on the 
NoC 

• Timing constraints require  heartbeat message prioritization 
over application messages. 

• Timing pattern of heartbeat sending to prevent heartbeat 
message interference. 

• Staircase vs. XY routing of heartbeats can relax the application 
message delays (depends on used traffic pattern). 
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TERAFLUX 

Core to FDU Routing at NoC Level 
Network delays induced by heartbeat messages 
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TERAFLUX 

Fault Detection Unit (FDU) Concept at 
Node/Cluster Level 
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TERAFLUX 

Fault Detection at Node/Cluster Level 

• FDU functions and message formats defined and implemented 

– Heartbeat messages carry information on core fault rate, 
temperature, ... 

• Core to FDU heartbeat communication is operational in Noxim 
NoC Simulator and attached to COTSon Simulator 

• Algorithms for Clustering of cores to an FDU in a pure NoC-
based Teraflux system 

• In a fixed node/cluster-based Teraflux system the core-FDU 
mapping is static 

• Algorithms for mutual fault detection of faulty FDUs or whole 
nodes/clusters; also extended to Faulty I/O and peripheral devices 
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TERAFLUX 

• Machine Check Architecture (MCA) of x86-cores  
– detects and corrects certain faults in the processor logic 

– provides information on core status by registers 

• Temperature information from Digital Thermal Sensor 

• Registers of MCA and MSR are provided to FDU by the cores 
via alert/heartbeat messages 

• Special Target: Soft error detection and recovery 

 

Fault Detection at Core Level 
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TERAFLUX 

Soft Error Detection and Recovery 

• Control flow error checking techniques 

I. Instrumentation and checker concept developed  

II. Double execution for  control flow and data error 
detection (alternatively) 

• The recovery mechanism is incorporated as part of the 
data-flow execution model  

– Verify that no error occurred before commit of 
dataflow thread 

• Assume ECC for memory cells and busses   

– Not covered  in this project ( TRAMS project) 
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TERAFLUX 

Control Flow Error Checking 

• Detect control flow errors in dataflow thread 
execution by temporal and logical control flow 
monitoring 

• Code instrumentation on basic block level 

 

 

• Checker hardware extension to cores 

• Dataflow thread execution commitment should be 
deferred until all checks are done.  

• Checker alerts FDU&TSU in case of time out or wrong 
control flow. 
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TERAFLUX 

Double Execution 

• Detects control flow AND data errors  

• Run each thread twice, once as a leading and second 
time as a trailing thread.   

• Each execution generates signature of output results. 

• At completion compare the two signatures, if consistent, 
the primary write its results to main memory. 

• If not, no commitment and reschedule both threads. 

• The duplicated threads can run on the same core or on 
different cores of the same node/clusters. 
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TERAFLUX 

Planning for 2012 
• OS level:  

– Impact of the selected memory model and other alternatives of 
memory models on the reliability of the system 

– Scheduling and resource allocation algorithms that can efficiently 
handle dynamic fault conditions of the system 

• NoC level: 

– Faulty link: Impact of re-routing decisions on Heartbeat timing 

– Exploiting Heartbeat timings for fault localization within the NoC 

• Node/cluster level:   

– Adaption of FDU technique to Teraflux dataflow architecture 

– Dynamic adaption techniques within FDU (MAPE cycle) 

– Task distribution between FDU and TSU for fault recovery 

 16 



TERAFLUX 
Exploiting dataflow parallelism in Teradevice Computing 

PROJECT NUMBER: 249013 

http://teraflux.eu 

 

FUTURE AND 
EMERGING 
TECHNOLOGIES 
PROJECT N. 249013 

SEVENTH FRAMEWORK 
PROGRAMME THEME 
FET proactive 1 (ICT-2009.8.1)  
Concurrent Tera-Device Computing 


