Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROGRAMME

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Teradevice Compuing

D9.3 — Evaluation of the Codelet Runtime System am Teradevice

Due date of deliverable: $March 2014
Actual Submission: T9May 2014

Start date of the project: Januafy 2010 Duration: 51 months
Lead contractor for the deliverable: UD

Revision See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU Public

PP | Restricted to other programs participant (includimg Commission Services)

RE | Restricted to a group specified by the consortiunti§ding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 1 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Change Control

Version# | Author Organization | Change History

1 Stephane Zuckerman ub Initial Skeleton

2 Stephane Zuckerman ub First draft — still somespaissing

3 Stephane Zuckerman ub Added work by Chen et al.aotomatic
static codelet scheduling.

4 Stephane Zuckerman ub Added model for optimaldize search.

5 Stephane Zuckerman ub Added Energy vs. Perforeariiing
discussion.

6 Stephane Zuckerman ub Added table of contens, df figures,
authors list, etc.

7 Stephane Zuckerman ubD Restructured  document; d fixeross-
references.

8 Stephane Zuckerman ubD Added x86/Intel perf anglgganumbers fo
DARTS.

9 Stephane Zuckerman ub Added perspective orymgpbower aware
scheduling techniques to TERAFLUX arch,
Added conclusion

10 Stephane Zuckerman, | UD Integrated Jaime’s update on LDCS sectian.

Jaime Arteaga

11 Joshua Suetterlein ub Updates to Sections 3and

12 Stephane Zuckerman ub Added missing references

13 Stephane Zuckerman ubD Fixed DMM perf. and pawenbers; adde
g500 perf and power numbers for Intel/x86
analysis. Added Fib and DGEMM COTSor
experiments.

14 Stephane Zuckerman ub Added parallel mergeesperiments on
COTSon

15 Stephane Zuckerman ubD Final version, minus ate point for
16core OpenMP merge sort.

16 Stephane Zuckerman ub Final version.

17 Stephane Zuckerman ubD Corrections after intaenaéw.

18 Roberto Giorgi UNISI Updates

19 Stephane Zuckerman ub Added clarifications

Release Approval

Name Role Date

Guang R. Gao WP Leader 29.04.2014

Robert Giorgi Project Coordinator for formal deliable 16.04.2014

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice

File name: TERAFLUX-D93-v20.doc

Page 2 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Contents
EXECUTIVE SUMMARY 8
1 INTRODUCTION 9
1.1 RELATION WITH OTHER DELIVERABLES «...veeuveesuteesuteesuteesseeessseessseessseesseessseessseessseessseessseessesssseessesssseesssesssses 9
1.2 ACTIVITIES REFERRED BY THIS DELIVERABLE .....vveeuvveesteeesteeesueeesseeessesesasansesesssensesssssssssessnsesensessnsessssessnsassssesans 9
1.3 SUMMARY OF PREVIOUS WORK .....teeuvttesuteesiteesiteesiteesiseesuteesuseesuseesaseesuseesusessuseesseessseesnsessusessnseesnsessnsaessseesns 9
1.4 DESCRIPTION OF WORK OF WORK PACKAGE 9......eeiiiiiiiiee ettt ettt e e ettt e e e e ettt e e e e e s e e sabbaeeeeeeesaannes 9

2  LEVERAGING FINE-GRAIN DATAFLOW-INSPIRED MULTITHREADING ON MULTI AND MANY CORE

SYSTEMS 12
2.1 EXPERIMENTAL TESTBED...eeuveeuteesuteesureesuueenueeesseeessseesseeessesesssessssesssessnsseesssessssesnseesssesesseessssessssesssesenseesnses 12
2.1.1 A Brief Reminder of the IBM Cyclops-64 ArchiteCtUre ............cuueeeeeeeeiieeiieeeeeseciieeeeeeeescciereeaaeeean 12
2.1.2  Off-the-Shelf x86-64 Systems Used in thiS StUAY ...........c.cooeeoueeeeeciieeeeiieeeciee e eeee e eecvaa s viee e 13
2.2 DESCRIPTION AND EVALUATION OF TECHNIQUES TO EXPLOIT FINE-GRAIN EVENT-DRIVEN EXECUTION MODELS.......... 13
2.2.1 Optimizing Performance and Energy with Optimal Tile Size SEArch .............ccccvueeeeccvveveceeaesrannn. 13
2.2.2  Locality-Driven CoOAde SCRCAUIING ................uueeeeieeeeeeeeeeee ettt e e e et a e e e e s sstaraaaaeeeas 18
2.2.3  Automatic Locality Exploitation Using Static Codelet Scheduling...............ccccoccvuveeeccvveeeiieaesrennnn, 24
3 IMPLEMENTING THE CODELET MODEL ON OFF-THE-SHELF MULTI-CORE SYSTEMS 29
3.1.1  DARTS’ PErformManCe ON X8G-64 ........uueeeueeeeeeeeeesieeeesieeeeeeteeestaaeesteaaessseaestssaessssesesssssasssssnaaas 31
3.1.2 Energy and Power Efficiency of DARTS on x86-64 Platforms: DGEMM .............cccceueeeeeecceviuvenaaannn. 34
3.1.3  Energy and Power Efficiency of DARTS on x86-64 Platforms: Graph500..............ccccccveeevvvveesirennnn. 38
4 PORTING DARTS TO THE TERAFLUX SIMULATION INFRASTRUCTURE .......ccccooitruniiiinnniiinnnnininennisnennnonnens 41
4.1 MERGING CODELETS AND DF-THREADS: DARTS-ON-COTSON .....eeiiuriiriieiiiienieeniieeniteesieeesieessneeesasessseeesaeeennes 41
4.1.1 Overview of the DF-Threads/COAelets MEIGEe ............couecveeeeveeeeieeeeeeeieeeeeeeieeeieeeieseeeeeiseeeiseeenes 41
4.1.2  Units of computations: Accessing data from DF-Threads and Codelets............cccccecvvvevevvvveennnnnn. 41
4.1.3  InVOKING TRI@AAEA PrOCEAUIES.........ccveeeeieeeeee e eett ettt e e e e ettt e e e e e ettt aaaaeeessssasaaaaaneaas 42
N 14 ol 0o o =] =3 SR 42
4.1.5 Running DARTS Programs ON COTSON......ccuuueeeeeeeeeeeeeeieieieieeeeseesesesessssssssssssssssssssssssssssssssssrsssrsnrrenen 42
4.2 EVALUATION OF DARTS ON THE TERAFLUX SIMULATION ENVIRONMENT ...uvvveeteeireeiieenireenieeenieeesieeesieeenaeeennns 43
4.2.1 A Benchmark to Measure Pure Scalability: NQive FIDONACCI............ccccevuveeeeeeesiiieeieaseeeiciiireeeaean, 44
4.2.2  An Intermediate Benchmark for Scalability: Parallel Merge SOrt ............cccoueeeceeeeeccvneeeieeaesirennn. 45
4.2.3 A Compute-Intensive Benchmark: Matrix MUultiplicQtion................cccccvvuveeeeeeeesiiiiiieeseeecciiireeeaeenn, 47
5  CONCLUSIONS 49
APPENDIX A — PSEUDO-CODE TO RUN SUPERTASKS ON THE TERAFLUX ARCHITECTURE 50
REFERENCES 52

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 3 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Table of Figures

FIGURE 1 A CYCLOPS-64 NODE (BLOCK DIAGRAM) ....ceuveeeesteeseesseessesseesseesseessesssesssesssessessseessesssesnsesssesssesssesseessesssesssesnees 12

FIGURE 2 PERFORMANCE COMPARISON USING FIXED-SIZE SQUARE TILES WITHOUT SCRATCHPAD MEMORY (BLUE BARS) AND VARIABLE-
SIZE TILES WITH SCRATCHPAD MEMORY (RED BARS), WHILE VARYING PROBLEM SIZE (N=SIZE OF MATRIX). ..veevvereeererereeeneeenss 15

FIGURE 3 ENERGY COMPARISON BETWEEN: WITHOUT (BLUE BARS) AND WITH (RED BARS) SCRATCHPAD MEMORY, WHILE VARYING
PROBLEM SIZE (N=SIZE OF IMATRIX) . 1eeeeeutreeesureeessureeesasseeessseeessssesessssesssssssssssssessasssssessnssssssnssssssnssssessnssnsssnssesennns 15

FIGURE 4 TILING FOR PERFORMANCE VS. TILING FOR ENERGY. NOT ALL TILE SHAPES YIELD THE BEST RESULT ACCORDING TO A USER
L0 16

FIGURE 5 IMPACT OF TILE SHAPE AND SIZE ON PERFORMANCE AND ENERGY CONSUMPTION. BOTTOM: VARIOUS TILE SHAPES PRODUCE
VARIOUS READ/WRITE PATTERNS, THUS RESULTING IN VASTLY DIFFERENT MEMORY TRANSFER AND REUSE, IMPACTING BOTH

PERFORMANCE AND ENERGY CONSUMPTION.....eeeuteesureerureesreesseesseesseesseesssesssessssessnseesnsessssessnsessssessnsessssesssseesnses 17
FIGURE 6 THE SUPERTASK EXECUTION ALGORITHM: A HIGH-LEVEL VIEW. c.ciiiiiitiieee ettt e e e et e e e e e e ee e e e e s e enneee s 19
FIGURE 7 CLASSICAL BLOCKED LU FACTORIZATION: GETRF TASKS ARE DARK GRAY, TSTRF TASKS ARE PURPLE, GESSMTASKS ARE

YELLOW, SSSSMTASKS ARE GREEN. ...uveeuveeererseesseesseesessesseesseesseessesssesssesssesssesssessesssesssessssssessesssesssesssesssesssssseens 20

FIGURE 8 DATA DEPENDENCE GRAPH OF THE LU FACTORIZATION ALGORITHM USING LDCS. GETRF TASKS ARE DARK GRAY, TSTRF
TASKS ARE PURPLE, GESSMTASKS ARE YELLOW, SSSSMTASKS ARE GREEN, AND LIGHT-ORANGE DASHED BOXES ENCLOSE

TASKS COMPUTED BY THE SAME HARDWARE THREAD AND CONTAINING A SUPERTASK. «vveeveeeirreereeesreesireessseesssessnseesssenans 21
FIGURE 9 PERFORMANCE OF LU FACTORIZATION ON C64. HIGHER IS BETTER. 1...veevrresureertreesieeeniieesseeesseeessseesseeesseesssessnseeennes 22
FIGURE 10 TOTAL ENERGY CONSUMPTION OF LU FACTORIZATION ON C64. LOWER IS BETTER. eeeeeeiiuuierreeeeeeeaierreeeeeeseeanreeeeas 22
FIGURE 11 AVERAGE DRAM POWER CONSUMPTION OF LU FACTORIZATION ON DATASERVER. LOWER IS BETTER. .eevvevvrreneeennes 23
FIGURE 12 DRAM POWER EFFICIENCY OF LU FACTORIZATION ON INTEL XEON. HIGHER IS BETTER. .eevveervveerereesereenseeessseenaneennns 23
FIGURE 13: AN EXAMPLE OF CODELET GRAPH. ARCS ARE DATA DEPENDENCIES WEIGHTED WITH THE AMOUNT OF DATA WHICH WILL BE

MANIPULATED BY EACH CODELET ...uvteiuttesureesseessessseesssessseessessnsessnsesssesensesssesesessnssssnsessnsssensessnsessnsessssesensessnses 25

FIGURE 14 REDUCTION OF MEMORY MOVEMENTS USING VARIOUS AUTOMATIC STATIC CODELET SCHEDULING. THE X-AXIS PRESENTS
THE SIX KERNELS ON WHICH WE EXPERIMENTED. THE Y-AXIS YIELDS THE LOCALITY EXPLOITATION VALUE, THAT IS, THE
PERCENTAGE OF GLOBAL MEMORY ACCESSES THAT HAVE BEEN REDUCED VIA BUFFER IN LOCAL STORAGES. .....ccevvvieiinninnnnns 27

FIGURE 15 PERFORMANCE EVALUATION OF AUTOMATIC STATIC CODELET SCHEDULING. THE X-AXIS REPRESENTS THE VARIOUS
KERNELS. THE Y-AXIS FEATURES THE NORMALIZED EXECUTION TIME OF EACH APPLICATION BY USING THE FOUR SCHEDULING

ALGORITHMS, RESPECTIVELY . ...ttttttteeeeeauuttetteeeseauseeteeeesesauuseeeeeaesesansseteeeeaesansnebeeeeeesaanssbeeeeeesaaasnnseeeeeesenannrsnaeas 28
FIGURE 16 OVERALL NORMALIZED ENERGY CONSUMPTION USING DIFFERENT VARIANTS ON SELECTED KERNELS. .e.vvvvevreenvreenneennes 28
FIGURE 17 THE CODELET ABSTRACT IMACHINE IMIODEL. .....ttttteeeee et tee e e e e ettt e e e e e ettt e e e e e e e sababteeee e e s e nnneeeeeeesennnreeeeas 30
FIGURE 18 IMPLEMENTATION OF LOOPS IN DARTS ....eiiiiiiiiteiieesiiee st sttt ste sttt sit et e e site e sateesateesbteesaseesbaeessteenbaeenaneennes 31
FIGURE 19 DGEMM WEAK SCALING CASE: OPENMP vS. DARTS. 48 CORES ARE BEING USED. ALL MATRICES ARE SQUARE. HIGHER

IS BETTER ¢ uuttesuteesuteesuseesuteesuseesuseesaseesuseesasaesaseesasaesaseesasaeenseesaseesaseesasaeeaseesabaeeaseesaseeenseesabaeenseesabaeenseesnbaeenseesnses 32
FIGURE 20 DGEMM STRONG SCALING CASE: OPENMP VS. DARTS. HIGHER IS BETTER. ....uvttteeeeesiiinrreeeeeesaiireeeeeeesennneeeeeas 33
FIGURE 21 GRAPH500: OPENMP vs. DARTS. X-AXIS: THE NUMBER OF INPUT VERTICES. ON THE Y-AXIS: THE NUMBER OF

TRAVERSED EDGES PER SECOND (TEPS). c..eettiiieiiiie et ettt ettt e ettt e ettt e e eeate e e e etaeeeette e e e ataeeeeanasaeesreeeeenseesennnees 34

FIGURE 22 DGEMM, STRONG SCALING CASE: DARTS vs. PARALLEL MKL. PERFORMANCE FOR STRONG SCALING. MATRIX SIZE:

BT 2 BT 2. LOWER IS BETTER. wuveeeiiueeteeeteeesssreeseasseeessssssessasesessssesessssssssassssssssesessasssssssssseessaseeesssssesessnnens 35
FIGURE 23 DGEMM, WEAK SCALING CASE: DARTS Vs. PARALLEL MKL. RUNNING ON 32 HARDWARE THREADS. LOWER IS BETTER.
..................................................................................................................................................................... 36

FIGURE 24 DGEMM, STRONG SCALING CASE: DARTS Vvs. PARALLEL MKL. POWER CONSUMPTION. MATRIX SIZE:

FOTZ 2 30T 2. LOWER IS BETTER. tveeeeeuvereieueressisteeeesseressssssessasssesssssssesssssssssssssssssasesessssssssssssesssasesesssssssessssees 37

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 4 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

FIGURE 25 DGEMM, WEAK SCALING CASE: DARTS vs. PARALLEL MKL. POWER CONSUMPTION. LOWER IS BETTER. ....uvvennnnnee. 37
FIGURE 26 GRAPH500, STRONG SCALING CASE: PERFORMANCE. “GRAPH500” IS THE PERFORMANCE OF THE REFERENCE CODE
RUNNING WITH OPENMP. HIGHER IS BETTER. ....tttttetiaauurtteeeeeaeaiuseeteeeesaaauusteeeeeesasaunseteeeeesesansseeeeeesesaanssnneeeeeesaanses 38
FIGURE 27 GRAPH500, WEAK SCALING CASE: PERFORMANCE. “GRAPH500"” IS THE PERFORMANCE OF THE REFERENCE CODE
RUNNING WITH OPENMP. HIGHER IS BETTER. ....ttttteteaauurteteeeeaaaauuseeteeeesaaaunsteeeeeesaaanseteeeeesesansseeeaeesesaanssnneeeesesaanses 39
FIGURE 28 GRAPH500, STRONG SCALING CASE: POWER CONSUMPTION. “GRAPH500” IS THE POWER CONSUMPTION OF THE
REFERENCE CODE RUNNING WITH OPENIMP. LOWER IS BETTER. 1.uveeevteeveesseeesseessueeessesessessssesensssessesessesensesessessssesenses 40
FIGURE 29 GRAPH500, WEAK SCALING CASE: POWER CONSUMPTION. “GRAPH500” IS THE POWER CONSUMPTION OF THE
REFERENCE CODE RUNNING WITH OPENIMP. LOWER IS BETTER. 1uvveeuvteeveeeteeesseeesueeessesessessssesensssessessnsesensesessessnsesenses 40
FIGURE 30 COTSON EXPERIMENTS: WEAK SCALING FOR FIBONACCI. THRESHOLD VALUE: #t = 18. LOWER IS BETTER. ..eeerueennee. 44
FIGURE 31 COTSON EXPERIMENTS: WEAK SCALING FOR PARALLEL MERGE SORT. HIGHER IS BETTER. ..ceevveeureeireenieesveeenieeennns 46
FIGURE 32 COTSON EXPERIMENTS: STRONG SCALING FOR PARALLEL MERGE SORT. HIGHER IS BETTER. ..cceveeeiiiiireeeeeeeeineeeene 47

FIGURE 33 PERFORMANCE OF A 256 ¢ 256 DOUBLE-PRECISION MATRIX MULTIPLICATION, USING TILE SIZES OF 32 = 32. LOWER
IS BETTER . 1evttuuuueeeeererenunnaeeeeesessssnnaeeeessessssnnssessssssssnnnseesssssssnnnssessssssssnnseeessssssssnnseessssssssnnneeesssssssnnneeeesssssssnneneeses 48

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 5 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

List of contributors to the writing of the document

Stephane Zuckerman  Jaime Arteaga
Joshua Suetterlein Haitao Wei
Elkin Garcia Guang R. Gao
University of Delaware

Alberto Scionti, Roberto Giorgi
University of Siena

© 2009-14 TERAFLUX Consortium, All Rights Reserved.

Document marked as PU (Public) is published inyjtédr the TERAFLUX Consortium, on theww.teraflux.euweb site and can be
distributed to the Public.

The list of author does not imply any claim of owsiep on the Intellectual Properties describedhis tocument.

The authors and the publishers make no expressidptied warranty of any kind and assume no resipdites for errors or omissions.
No liability is assumed for incidental or consedisrdamages in connection with or arising outtaf tise of the information contained in
this document.

This document is furnished under the terms of tBRAFLUX License Agreement (the "License") and mayydbe used or copied in
accordance with the terms of the License. The imé#&tion in this document is a work in progress, tigideveloped by the members of
TERAFLUX Consortium ("TERAFLUX") and is provided ffinformational use only.

The technology disclosed herein may be protectednieyor more patents, copyrights, trademarks aridide secrets owned by or licensed
to TERAFLUX Partners. The partners reserve all tdghith respect to such technology and related madde Any use of the protected
technology and related material beyond the termthefLicense without the prior written consent &RAFLUX is prohibited. This
document contains material that is confidential EBRAFLUX and its members and licensors. Until pcdtion, the user should assume that
all materials contained and/or referenced in tiesudnent are confidential and proprietary unlesemifse indicated or apparent from the
nature of such materials (for example, referenagriblicly available forms or documents).

Disclosure or use of this document or any mateoatained herein, other than as expressly permigeztohibited without the prior written
consent of TERAFLUX or such other party that magngrpermission to use its proprietary material. Tademarks, logos, and service
marks displayed in this document are the registemd unregistered trademarks of TERAFLUX, its mematend its licensors. The
copyright and trademarks owned by TERAFLUX, whetregjistered or unregistered, may not be used imexiion with any product or
service that is not owned, approved or distribligdTERAFLUX, and may not be used in any manner thdikely to cause customer
confusion or that disparages TERAFLUX. Nothing eméd in this document should be construed asiggahy implication, estoppel, or
otherwise, any license or right to use any copyngithout the express written consent of TERAFLLUKX,licensors or a third party owner
of any such trademark.

Printed in Siena, Italy, Europe.

Part numberplease refer to the File name in the document foote

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFKUSPECIFICATION IS PROVIDED BY TERAFLUX TO MEMBERSAS IS"
WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR BATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIOLAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RI&TS.
TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES ORNY KIND
OR NATURE WHATSOEVER (INCLUDING, WITHOUT LIMITATION ANY DAMAGES ARISING FROM LOSS OF USE OR LOST BUSESS,
REVENUE, PROFITS, DATA OR GOODWILL) ARISING IN CONBCTION WITH ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TRT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THE®Y, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 6 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Glossary

Codelet Sequence of non-preemptive machine instructions

COTSon Software framework provided under the MIT licengeHi-Labs

c64 IBM Cyclops-64, a many-core chip designed for HPC

DARTS Delaware Adaptive Run-Time System

DARTS-TSUF The port of DARTS on the TSUF version of the Thr8atieduling Unit.

DDG Data Dependency Graph

DMM Dense Matrix Multiplication

DS Dynamic Scheduling

FPU Floating Point Unit

FMAD Floating Multiply-Add Double

HPC High Performance Computing

LDCS Locality-Driven Code Scheduling

MKL Matrix Kernel Library

MMU Memory Management Unit

Percolation Mechanism used to move data and/or code acrossdbkine in a smart way

PXM Program Execution Model

SS Static Scheduling

Supertask Coarse-grain structure used in LDCS to group task&essing a common
block of data

TU Thread Unit

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice

File name: TERAFLUX-D93-v20.doc

Page 7 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Executive Summary

This is the final report relating University of @&lare’s work in the TERAFLUX Consortium. We
expose the impact of fine-grain execution modelgtoae different platforms: the IBM Cyclops-64
general-purpose many-core processor; off-the-gegleral-purpose multi-core x86-64 systems (from
both Intel and AMD vendors); and finally, the TERAFX simulation environment for teradevices.

We propose several techniques that leverage thefuBee-grain multithreading to achieve high-
performance and energy-efficient executions by @kpt code and data locality. One of them is a
way to reduce the search space for optimal tilessianalytically on systems which rely on
programmer-managed memory, evaluating empirichiéy ltest tile shape for either performance or
energy efficiency purposes. Experiments were camducn Cyclops-64, using matrix multiplication
and the LU factorization as target kernels. We pl@vesults for both performance and energy and
power efficiency.

Another technique is Locality-Driven Code Schedyl{hDCS), a way to leverage the knowledge of
block-based algorithms such as LU factorization @mdlesky decomposition to perform dataflow-
inspired task co-scheduling when a group of tasksaacessing the same data block. Such tasks are
grouped and inlined into orseipertaskwhich relaxes the traditional dataflow constraiity allowing
data-driven tasks to becorpbasesn the supertask that are fired when their daj@eddencies are
satisfied. LDCS thus allows signaling to occur e tmiddle of a supertask. Experiments were
conducted on both Cyclops-64 and Intel Xeon-badatigpms. We provide results for performance
and energy and power efficiency.

A third technigque describes how to automaticallyplei locality using the Codelet Model and
efficient static scheduling. Three algorithmic eatis were evaluated and compared to a basic
dynamic scheduling scheme. It was applied to sévieemnels, ranging from classical matrix
multiplication to graph-based algorithms.

Finally, we present results based on the Universftypelaware's implementation of the Codelet
Model: the Delaware Adaptive Run-Time System (DARTSe first introduce the implementation of
DARTS on regular x86 platforms, including the penfiance and (when available) power/energy
consumption results of several kernels running fthe-shelf computing systems. We then present
the port of DARTS on the TERAFLUX simulation inftagcture. We detail the trade-offs that were
required to implement the Codelet Model on toph&f DF-Thread/T* implementation using the T*
(T-star) instruction set extension implemented @TSon. The resulting runtime system provides a
hybrid data-driven execution model that makes WafiThreads and Codelet models converge into
one. We conducted experiments to compare the dgacot DARTS using the regular x86 software
scheduling implementation, and the DARTS-TSU puitjch uses the native Thread Scheduling
Units.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 8 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1 Introduction

The main objective of the workpackage WP9 is tagtine impact of the DARTS codelet runtime on
teradevices. This study is decomposed into 3 steps:

1. The first step gives a preliminary study of thegiosities of applying DARTS on a large
scale platform. In particular, this task consistgvaluating the opportunity to port DARTS to
the COTSon simulator [Argollo09], performing andepth study of existing techniques of
percolation, and also studying the existing wonkglre popular topic of energy efficiency
and power-awareness.

2. The second step of WP9 is to evaluate the impab®&® TS on teradevices. This consists in a

proof of concept of the percolation and power-avetgeduling techniques by performing ad-
hoc development of the techniques.

3. Finally, WP9 concludes with a refined study of timpact of DARTS on teradevices.

This deliverable is focusing on the third and Ist&tp of WP9: an evaluation of a codelet runtime
system on a teradevice. This document is strudtasefollows:

* The present section explains what is the relatipnsith previous deliverables (WP8, WP9),
and gives a summary of the previous work;

e Section 2 introduces and describes techniquesdgiey fine-grain data-driven

multithreading to improve performance and enerdgiehcy for compute-intensive
workloads.

» Section 3 presents the mechanisms that compod$getherare Adaptive Run-Time System
(DARTS), an implementation of the Codelet Model. W&o present experimental results for
both performance and energy efficiency.

e Section 4 describes the port of DARTS to the TERBWKLarchitecture using the COTSon
simulation infrastructure. We discuss the resulérgcution model, which is a hybrid
between the DF-Thread and Codelet models, an@ ieBult of trade-offs that were
necessary to port DARTS on the TERAFLUX simulatmvironment.

The integration of University of Delaware’s workonT ERAFLUX was therefore successful.

1.1 Relation with other deliverables

This document extends our previous work, describdaB.1 and D9.2, and in particular our efforts to
the evaluation of DARTS.

1.2 Activities Referred by this Deliverable

This deliverable reports on the research carri¢droiine context of Task 9.3.

1.3 Summary of Previous Work
Reported in D8.1, D8.2, D9.1 and D9.2.

1.4 Description of Work of Work Package 9

We report here the DoW, for the reader convenience.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 9 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Task
ID

Pre-
Requisite

Partners
(PM)

Task Title (start, end month) and Description

T9.1

ub  (3),
UNISI (1)

Preliminary study of the impact of the codelet modeon teradevices
(start m1 (TERAFLUX_m28) - end m3 (TERAFLUX_m30))

This initial task will allow UD to study in more thels the possibilities of

applying the codelet model on a large scale platfauch as the on
proposed in TERAFLUX. In WP8, the TERAFLUX toolchawill be
studied to evaluate the opportunity to port UD'sleet runtime system t

the COTSon simulator and environment; in this WR9ainm to focus more

on the theoretical foundations and the study wélinbostly based at UD. |
particular, this task will allow UD to perform an-depth study of existin
techniques that apply percolation or any code/datvement techniqu
close enough to be reused with percolation. Likeymower-aware/energy
efficient scheduling is becoming a very popularicopnd the study o
existing literature in the field should provide yarseful insights. Once thi
study is completed, UD will be able to determine ttmost productive
strategy for applying data percolation and the teidaodel on teradevice
The initial results will then be exposed earlyhe project (m3).

We also wish to agree on the benchmarks (includitgRAFLUX
applications) to be considered.

T9.2

T9.1

UD (15),
UNISI (3)

Evaluation of the impact of the codelet model on tadevices (start m4
(TERAFLUX_m31) - end m9 (TERAFLUX_m36)

The comparison between codelets and DF-threadddshelp UD and its|

partners to decide how to best implement/adapt plateolation techniques.

Whether codelets are implemented using DF-threfdly (utilizing their
features or a subset) or the other way around, WDcharacterize what ig
needed to perform the actual implementation andenaafirst attempt.

Ad-hoc developments using the TERAFLUX toolchaird doD’s codelet
runtime system are performed in WP8, here mostly kdBed studies wil

be performed and reported. UD will then evaluate tmpact of these

techniques on performance with respect to a seleodf representativg
workloads. Both TERAFLUX’s DF-threads and UD’s ctele will be
evaluated using these techniques. A first step tdvgeneralization an
automation will be proposed for percolation and poaware schedulin
techniques.

T9.3

T9.2

UD (15),
UNISI (4)

Refinements on the impact of the codelet model oreradevices (start
m10 (TERAFLUX_m37) - end m21 (TERAFLUX_m48)

Once the usefulness of percolation and power-awssk scheduling ar
characterized and quantified, we aim to use extehsthese techniques fq
assessing the system performance and its powerastn.

The Run Time System from UD and the COTSon basealeimentation
will be closely compared.

The availability of the Cyclops-64 platform willla us to compare th
results on such platform as well.

[}

O

154

=

D

=

D

In particular, we aim to provide an in-depth ansly: percolation appliec

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 10 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

to DF-threads and codelets.

Power-aware task scheduling techniques will theaxpdored.

As a final step a multi-constraint scheduling enpessing power
performance and other metrics such as temperatufautt rate will be
evaluated.

Deliv. | Delivery | Nature | Dissemination| Deliverable Title

No month level

D9.1 | m30 R RE Executing a codelet runtime on teraés: a feasibility study
D9.2 | m36 R RE Report on data percolation on teriadev

D9.3 | m51 R PU Evaluation of the codelet runtimeesyson a tera device

Deliverable number: D9.3

Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 11 of 53




Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2 Leveraging Fine-Grain Dataflow-Inspired Multithrea  ding

on Multi and Many Core Systems

The TERAFLUX project emphasizes Program eXecutiood®ls (PXMs) that feature fine-grain
synchronization as well as event and data drivekst@.g, DF-Threads and codelets. Using such
PXMs leads to design solutions to well-known coregintensive kernels which differ from their
coarse-grain counterparts.

One important topic when targeting teradevicesowqy and energy efficiency. One of UD’s goals
for TERAFLUX was to demonstrate power-aware schadiukechniques, leveraging fine-grain event-
driven execution models, and to evaluate the todftebetween performance and power and energy
efficiency.

The remainder of this section presents severahtgabs that leverage fine-grain synchronization and
the scheduling of fine-grain dataflow-inspired tmte as well as their impact on both performance and
energy consumption and/or power efficiency. We gisesent some results of updated techniques
presented in the previous deliverable (D9.2), alé agethe ones presented therein, to both a general
purpose many-core processor as well as off-thd-shdti-core x86 systems when available.

2.1 Experimental Testbed

2.1.1 A Brief Reminder of the IBM Cyclops-64 Archit  ecture

Cyclops-64 (C64, pictured in Figure 1) is a manyecarchitecture designed for High Performance
Computing (HPC) [Denneaull]. A C64 chip contain® I8dependent single-issue thread units
(TUs), up to 4.8MB of shared on-chip memory (SRAMH 1GB of external memory (DRAM). Each
pair of TUs shares one 64-bit floating point ufiP{J), one memory bank and a memory controller.
The FPUs can fire one double precision “FloatingqhpMultiply and Add” (FMAD)instruction per
cycle for a total performance of 80 GFLOPS per chifen running at 500MHz. A 96-port crossbar
network with a bandwidth of 4GB/s per port connedts’Us and SRAM banks. Execution on a C64
chip is non-preemptive and there is no hardwarteaiimemory manager.

e Node
Processor 1 Processor 2 Processor 80 Chip
Host | 3D Mesh d
Interface|~ Controll
| Network

A-Switch—— FPGA 4D »

< P
Gigabit
Ethernet

Crossbar Network
I
= x| [DDR2 SDRAM|}, Off-Chip
<c
o ©| | Controller Memory
0@ T =

Figure 1 A Cyclops-64 node (block diagram)

SRAM
Bank
SRAM
Bank
SRAM
Bank
SRAM
Bank
SRAM
Bank

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 12 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.1.2 Off-the-Shelf x86-64 Systems Used in this Stu  dy

In this study, we used several 64-bit x86-basedhmas. This section only uses on of them, which
we call DataServerand which is based on a 2-socket Intel Xeon EBZBPU, featuring 8 cores per
socket, two hardware threads per core, and clocke2l60GHz. Each Xeon processor features a
shared unified 20MB L3 cache, a private unified RB6L2, and 32KB L1 data and instruction
caches. Hence, two hardware threads share botlithad L2 cached his processor is based on the
Sandy Bridge micro-architecture, which allows upésform power and energy measurements using
hardware counters. We obtained our power efficianaybers usingkwid [TreibigHagWel10]

2.2 Description and Evaluation of Techniques to Exploit Fine-Grain
Event-Driven Execution Models

2.2.1 Optimizing Performance and Energy with Optima | Tile Size Search

In the past, we proposed an optimization framewatkch integrates optimal tiling [GarciaEtAl10,
GarciaOroGaol1l], as well as dynamic schedulingdyméimic percolation techniques [GarciaEtAI13,
GarciaGao13] in our work to improve both performaaad energy on a general purpose many-core
architecture, the IBM Cyclops-64. However, the iorad framework features several limitations:

1. Only DRAM, shared on-chip SRAM and registers weyasidered,
2. Tiling was restricted to the registers; and
3. Tiles had to be square.

We have extended the previous work to integratefiop-scratch-pad memory (SPM), which plays an
important role in performance and energy efficiemcgur framework. Improvements to the previous
framework include:

1. Extending the tiling technique to the shared oip@GRAM,;
2. Search for optimal tile shapes, including rectaagohes; and
3. The SPMis now used as a cache to improve perfarenand energy consumption.

Please note that the following has not been puldigtet.

2.2.1.1Improving our Optimal Tile Search on C64

We formulate the energy optimization for matrix tiplly on Cyclops in Equations (1)-(3). There are
two levels of tiling: from DRAM to SRAM, and fromF8AM to register. We perform the matrix
multiplication € = A x B, assuming that the matrices A, B and C are in DRAMI of dimensions

N x N. We define the tiled matrix multiplication fromRAM to SRAM asCyw.y = Apwx X Brwy,

and the tile size from SRAM to register@g..;, = Ay 1, ¥ By« We used the double-buffering

technique to perform latency-hiding. Therefore,hage 6 buffers in SRAM or registers. All the
following equations (from Eq. (1) to Eq. (5)) arerided from the research done by Garcia et al.
[GarciaOroGao11].

2= Ll +17 = Ryge (1)

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 13 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2+ XYV + X* < SRAM 0, (2)

Where SRAM, . is the capacity of SRAM, and B . is the maximum number of registels.x L,:

tile size of rowxcolumn tile from SRAM to registe¥ = ¥: tile size of rov& column tile from DRAM
to SRAM. Inequations (1) and (2) show the capamitystraints for the bufferdi is thesize of the
matrices in DRAM — we assume matrices of $ize .

g,_,zﬁ.rﬂ(zl+%+ 1) ®3)

Energysiarie = Pmax « Freg

3 1 3

. 2 1 2 5
Energ¥pynamic = N° X [(I.— + FJ Casram T % Bwsram T Eg."-'sdrcm + g}'mcd] + N % epdran

(4)

Wheree, is the static energy coefficient, asg.om. eweram » fadram, » Ewdram » aNdermzathe energy
spent by SRAM read instructions, SRAM write instroies, DRAM read instructions, DRAM write
instructions, and FMAD (Floating Multiply-Add Doul instructions respectively.

Equation (3) describes static energy consumptidrigviEquation (4) represents dynamic energy
consumption. Equation (5) minimizes the total epergnsumption of matrix multiply by
accumulating both static energy and dynamic eneogrggumption.

Minimize Energ@¥rocar = ENerg ¥searic +Emrﬂ.1}b}'r!cmir (5)

The larger the tile size, the better the solutidhlve. An efficient way of narrowing the
search space is to us the method of Lagrange Met8go obtain an optimal tile size. To do so,
Inequations (1) and (2) must be turned into regedarations. We can then apply the Lagrange
Multipliers method. We then finally get the solutiby empirically and exhaustively search the tile
size space, which was drastically reduced thanksit@revious computationsl =1 andlZ =&
are the best values on the C64 platform. In oralsirhplify our implementation, we chose the
multiple of 6 that is the closest to the optimdugon of X and¥ as our final choice.

2.2.1.2Evaluation of our Optimal Tile Size Search Methodabgy

By applying the methodology for optimal tile shagrel size finding described in Section 2.2.1, we
find that the optimak x ¥ tile dimensions should 188 x 48 for the C64 platform. We compared

our solution with the previously (non-optimal) sgeigolution yieldingt =¥ =192 in our
experiments.

We compared the performance and energy betwearmthasing SPM and the one without in Figure
2 and Figure 3. Both of them use our tiling techriat the register level, dynamic scheduling fekta
execution and dynamic percolation from DRAM to SRABee D9.2). We list the main differences
below:

1. The blue bar (*n192-m192”) represents the casegufixed square tile sizes in SRAM,
without using the scratchpads. 192x192 is the mamnsquare size which can be held in
SRAM.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 14 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2. The red bar (“n288-n48-spm”) represents the casg @smore efficient tiling at both SRAM

SPM levels. 288x48 is the optimal tile size for igyeand performance under the capacity
limitation of SRAM.

From the figures, we observe a significant advantafgusing scratchpad memory to enhance energy
efficiency: efficient tiling shows a constant energavings for different matrix sizes. Overall, we
observe performance improvements in a 6.4%-7.5%eraand energy efficiency improvements in a
7.3%-8.3% range.

66

En192-m192

B n288-n48-spm
64

62
60
58
56 1
54
52 -

1152 2304 4608 5760
Size of Matrix

Performance (GFLOPS)

Figure 2 Performance comparison using fixed-size square tiles without scratchpad memory (blue bars) and
variable-size tiles with scratchpad memory (red bars), while varying problem size (n=size of matrix).

Total Energy
450
En192-m192
400 T m n288-m48-spm
350
300
250
=
g 200
w
150
100
50
o .
1152 2304 4320 5760
Slze of Matrix

Figure 3 Energy comparison between: without (blue bars) and with (red bars) scratchpad memory, while
varying problem size (n=size of matrix).

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 15 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.2.1.3Further Discussion — Performance Tiling vs. Energyliling

It may seem intuitive that by optimizing for penfueince, the resulting tile shape and size will also
automatically result in a more energy efficient @xen. However, this is not true in several cases.
Figure 4 illustrates this fact using matrix muligattion (and leveraging the energy model we
described above).

Performance
Dynamic Energy| |~ Higher Performance
A - Lower Static Energy Sweet Spot:
- Proportional to Vel -Lower Total Energy
energy of load - Good Performance
and stores ™~
- Few Tasks
- Poor parallelism [~ -Tasks too short
\ - High overhead

of scheduler

Tiling Shapes
» that fit in
SRAM

mU I:l

nCC @ nlfl. n|:|.

Figure 4 Tiling for Performance vs. Tiling for Energy. Not all tile shapes yield the best result according to a
user goal.

We studied the tradeoffs between optimizationgptformance and energy efficiency. We found that
while optimizing for performance decreases alsodtagic energy consumption (related to leakage
currents and total execution time), it does notessarily decrease dynamic energy (related to
instructions executed). We explored the tiling gpr matrix multiply in C64 and found that while
several tiles shapes can produce similar performaand similar static energy consumption),
variations in dynamic energy make a major diffeeero this order of ideas we found that the best
tiling for performance is not necessarily the liistg for energy consumption.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 16 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1.2
Performance
Dynamic Energy
1
-10%
0.8 -
0.6
0.4
\ -42%
0.2 2
4

306
324
342
360
378
39
414
432

S EEEEEERY g "
| [ —

—n S |

Figure 5 Impact of tile shape and size on performance and energy consumption. Bottom: various tile shapes

produce various read/write patterns, thus resulting in vastly different memory transfer and reuse, impacting
both performance and energy consumption.

In our particular example, allowing a 10% loss ba thaximum performance can result in energy
savings of up to 40%. The results we just discussedpresented iRigure 5 These experimental
results confirm that our energy model is sound.

Some of our recent work also shows evidence ofttiisd for different kinds of kernelg,g. LU
factorization on C64 [GarciaEtAl13].

2.2.1.4Considerations to Apply Optimal Tile Size Search fo the
TERAFLUX Architecture

The work presented in this section was successfyplied to the Cyclops-64 architecture. They rely
(among other things) on dataflow-inspired multidding (.e., tasks run only when their data is

available, thus reducing data movement to timegwithis only needed), coupled with the availability

of on-chip cache-less SRAM and scratchpad memaegtly addressed by the running program.

The TERAFLUX architecture experimented on x86-baséfethe-shelf components with added units,
such as fault-detection and thread scheduling .ufits will make the dataflow part of the program
run much better than a software-only solution tike one we used for C64. However, while we could
rely on a rather precise data movement and localiglysis to compute the ideal tile size for either
performance or energy efficiency (or a trade-offinsen the two), the addition of cache components
will require further experiments, and to add newstmaints to our model — or at the very least,uo o
empirical search space once it has been computddedl, replacing scratchpads with caches imply
dealing with coherence protocols, and their poesiloiwnsides: false-sharing, capacity misses, ®tc. |
no way does this make this technique non-applicabi86-based processors with caches, but it does
mean that further modeling is required to adapibitcache-based architectures such as the one
proposed in TERAFLUX. This being said, caches biigter programmability to the high-level
programmer, who does not have to deal with expliait movements from one memory level to the

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 17 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

other: in the C64 platform, the programmer mustlieily declare where in the memory hierarchy a
piece of memory must be allocated( DRAM, SRAM, or scratchpad), and any movement fiame
level to the other must be made explicit througpycimstructions. This is likely to greatly hamper a
programmer’s productivity for application progranmgi

2.2.2 Locality-Driven Code Scheduling

One of the main causes for elevated power consomptian application could be a large amount of
data movements across the different levels of theaony hierarchy. As a result, several techniques
have been proposed to increase the reuse and ¢hktyloof data in parallel applications. These
techniques are known as locality-aware scheduliggrithms and they focus on determining the best
scheduling algorithm for the assignment of worlh&wdware threads considering constraints such as
spatial and temporal data locality, latencies, eanfisses and hits, etc. in a single chip with a
software-managed memory hierarchy.

The remainder of this section introduces the conoépsupertask, as described by Arteaga et al.
[ArteagaEtAl14].

2.2.2.1Introduction to Supertasks

We believe that an application can benefit morenfenlocality-aware scheduling technique in a fine-
grain programming model by grouping tasks that @ssca common block of data in a single coarse-
grain construct callecsupertask which requires dependence satisfaction in thedhaidf its
execution. We call this technique Locality-Drivende Scheduling (LDCS).

Operational semantics of supertasks are derivad ftataflow semantics, and in particular macro-
dataflow. A supertask is comprised of several phdsat execute in sequence. Each phase is tied to a
set of dependence signals and is triggered whaesrrettdata it depends on has been fully updated.
Supertasks provide several advantages: they impdata reuse, drastically reduce scheduling
overheads, and, as phases are inlined within artsisge they make the economy of function calls.
This reduction in the amount of data movement igdly translated into improvements in the
execution time of the application.

In order to achieve this, the programmer must sele@ppropriate size for the block of data so this
one can fit in one of the upper levels of the mgmuerarchy of the target platform, along with any
other data required by the supertask for its pings If the Data Dependence Graph (DDG) of an
application is known, the steps a programmer neeftdlow to implement LDCS are:

1. Determine the number of blocks of data to be preduzy the application and their associated
tasks.

2. For each block, create a supertask with all theesponding tasks.

3. Assign dynamically supertasks to available hardwlareads. Prioritize supertasks containing

tasks in the critical path of the DDG.

Execute each supertask following the algorithrrigare 6.

Repeat steps 3 and 4 until all supertasks have dmsgned and processed.

a ks

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 18 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Algorithm 1 LDCS: Execution of a Super-Task by a Hard-
ware Thread

1: procedure PROCDATABLOCK(NP = Number of
Phases, ND[NP] = Number of Dependencies for each
Phase)

2 for (p=0; p < NP; p++) do

3 Wait for ND[p]’s dependencies to be satisfied

4 if p==0 then

5: Read the block of data of the super-task.

6 end if

7 Read any other data required.

8 Process the block of data with phase p

9 end for

10: Write the block of data back into main memory
11: Signal any thread(s) waiting for this block of data
12: Make hardware thread available

13: end procedure

Figure 6 The Supertask Execution Algorithm: a High-Level View.

2.2.2.2LU Factorization using LDCS

As an example of an application that can benddinft.DCS, Figure 7 presents the DDG for the LU
factorization of anM = M matrix A, which has been divided in blocks Bf< Telements for an

efficient blocked implementation. LDCS can be inmpémted by identifying in the DDG and grouping
in a single supertask those tasks processing a oarbiock of data, as shown in Figure 8.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 19 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

0,0(0,1{0,2(0,3 0,0(0,1{0,2|0,3 0,0(0,1|0,2|0,3
12(1,3 » 1,0(1,1(1,2(1,3 » 1,0(1,1(1,2(1,3
2,0(2,1 % m 2,0(2,1(2,2(2,3
3,0(3,1 % 3,0(3,1 3,zm

Stage 2 Stage 3 Stage 4

(a) Processing Stages

Stage 1

Stage 2

Stage 3

Stage 4

(b) Data Dependence Graph

Figure 7 Classical Blocked LU factorization: GETRF tasks are dark gray, TSTRF tasks are purple, GESSMtasks
are yellow, SSSSMtasks are green.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 20 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Stage 1

Stage 2

Stage 3

Stage 4

Figure 8 Data Dependence Graph of the LU factorization algorithm using LDCS. GETRF tasks are dark gray,
TSTRF tasks are purple, GESSMtasks are yellow, SSSSMtasks are green, and light-orange dashed boxes
enclose tasks computed by the same hardware thread and containing a supertask.

2.2.2.3Evaluating Locality-Driven Code Scheduling on C64

The following are the versions of LU factorizatianplemented on C64 in order to evaluate the
benefits obtained with LDCS.

Version Features

Stat. Sched. Static scheduling of tasks in C

+ASM Supertasks written in assembly

+Data pref. Software pipelining and loop unrolling

Dyn. Sched. With dynamic task scheduling, usifgx & tiles
LDCS With LDCS as described in Figure 6

+Column Transp. With transposed storing of data to exploit C64 desd

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 21 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

o 50 == 50
4 [e=Stat. Sched. g leStat. Sched.
9 45 |/ + ASM I ——— gy 945 ! -
G lse + Data Pref. E [+ ASM
2 20 -[#=Dyn. Sched. — 2 20 ||+ Data Pref.
g |weiDcs £ 35 IfsDyn. Sched .
E 35 o+ Column Transp/ g 35 FeRvn. ' /
% 30 5 30 DG
9 E &+ Column Transp.
25 a 25
20 20
15 15
10 - 10
5 5
.
0 e — . 0 e
120 180 240 300 360 420 480 540 600 660 720 780 B840 0 10 20 30 40 S0 60 70 80 S0 100 110 120 130 140 150
Matrix Size Hardware Threads

(a) Weak Scaling using 156 Hardware Threads. (b) Strong Scaling using an 840 x 840 Matrix.

Figure 9 Performance of LU factorization on C64. Higher is better.

12

Stat. Sched. + ASM -Stat. Sched + ASM
=i + Data Pref.

= + Data Pref.
17 ==Dyn. Sched. [==Dyn. Sched.
==l DCS ' ==L DCS

0.8 -

Energy [J]
Energy [J]
-
2
4

o+ Column Transp.

10 —

+ Column Transp.[—

0.6

04

— — T T T T %
10 20 30 40 50 60 70 80 90 1001101201301401
0.2

o5 - -
120 180 240 300 360 420 480 540 600 660 720 730 840
Matrix Size

0.1

Hardware Threads

[a) Weak Scaling using 156 Hardware Threads. (b) Strong Scaling using an 840 x 840 Matrix
(logarithmic scale).

Figure 10 Total Energy Consumption of LU factorization on C64. Lower is better.

Figure 9 and Figure 10 show that LDCS can effeltivienprove the power efficiency of an
application. On architectures with software-manamgednory hierarchy such as C64, an improvement
of 72% on average in weak scaling was obtainedmparison with a dynamic scheduling version of

the application. Performance is also greatly ineedathanks to the complete control the programmer
has on the content of all the memory levels.

2.2.2.4Evaluating Locality-Driven Code Scheduling on Off-he-Shelf
Multi-Core Systems

LDCS was also evaluated on x86 platforms usibataServerdescribed in Section 2.1.2 and

compared against an implementation using Intel'sri&ernel Library (MKL).The variants used in
our experiments with x86 are described below.

Deliverable number: D9.3

Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 22 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Version Features
MKL-DGETRF With CBLAS’ DGETRF
Stat. Sched. Pthreads with CBLASDAXPY andDGEVM using100 x 100 tiles
Dyn. Sched. Same with dynamic task scheduling
LDCS Same using LDCS as described in Figure 6
g 18 '§' 15
g 16 E s
el 2
g 12 g
H H
£ 10 + E

+MKL-DGETRF «+=MKL-DGETRF
41— wStat. Sched. s | wmStat. Sched.
2 «Dyn. Sched. aDyn. Sched.
== DCS ws DCS
0 3 T T - ) 3 — 7T
0 10000 20000 30000 40000 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Matrix Size Hardware Threads

(a) Weak Scaling using 32 Hardware Threads.

(b) Strong Scaling using a 10k x 10k Matrix.

Figure 11 Average DRAM Power Consumption of LU factorization on DataServer. Lower is better.

w
o

]
w

A

[
w

Power Efficiency in DRAM [GFLOPS/W]

0

T T
0 5000 10000 15000 20000 25000 30000 35000 40000

Matrix Size

Power Efficiency in DRAM [GFLOPS/W|]

[
[

[
oo

=
P

o

0

[
(]
!

N ==MKL-DGETRF - -
10 - WStat. Sched. 6 - I et
- aDyn. Sched. o “+MKL-DGETRF
5 = +=.DCS 3 | - fuStat. Sched.
- - = - - - =Dyn. Sched.
- -

#DCS

0 2 4 6 8 10 12 14 16

18 20 22 24 26 28 30 32

Hardware Threads

(a) Weak Scaling using 32 Hardware Threads.

Figure 12 DRAM Power Efficiency of LU factorization on Intel Xeon. Higher is better.

(b) Strong Scaling using a 10k x 10k Matrix.

On an architecture with hardware data caches, ssck86, LDCS improves the DRAM power

efficiency of the application by 28% on averageveek scaling, versus a highly optimized version of
the application using Intel's MKL, as can be serrFgure 11 and Figure 12. On this architecture,
LDCS' performance is competitive due to the incedasdata locality obtained by executing with the

same hardware thread all the tasks that proceemeeon data block and by inlining such tasks in a
single supertask.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 23 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.2.2.5Steps Required to Make Supertasks Run on the TERARUX
Architecture

Some trade-offs must be made to allow supertaska ®ERAFLUX machine. While our current
implementation of supertasks is based on coddletdata-driven threads that are inlined to reduce
scheduling overhead, it is not reasonable to exiecThread Scheduling Units (TSUSs) to be able to
do so using the T* Instruction Set Extensions [Giib2] (cf. D6.2) implemented in the TERAFLUX
simulation environment. However, at the cost ofighly more complex scheduler, it could probably
be possible to obtain a result that will be veyselin practice to what we obtained in a fully weaite
way.

The INRIA and HP partners have worked on a newieersf the TSU which, among other things,

allow newly created DF-Threads that are not yeedaled for execution to be assigned to a given
node. The (Distributed) TSUs still decide to pearfowvork-stealing however they want within a given

node. However, if a variant of tltf _const r ai n instruction could be produced, it could not only

pin a given DF-Thread to a node, but a supertaslddze emulated as follows:

1. Run the first phase of a supertask as a DF-Thread.

2. As afirst action, create a new DF-Thread for teetiphase. 1D will be stored somewhere in
shared-memory so that the other supertasks caal sigrhen they are done processing their
data block.

3. The dependence count of this phase is equal toummber of outside supertasks which will
signal it, plus one (so that the current phasesagmal it when it is done).

4. Add a constraint on the new DF-Thread handle soittlikan only run on the current core.

5. Each phase follows the same steps from 2-4 f@uitsessor phase.

Appendix A proposes some pseudo code to show hpertsks could be generated.

2.2.3 Automatic Locality Exploitation Using Static Codelet Scheduling

2.2.3.1Problem Description

Current codelet scheduling approaches primarilyu$oon balancing workloads and reducing
scheduling overhead in effort to increase perfoearThis leaves programmers responsible for
manually exploiting locality at the cost of progmaing productivity. The following technique
explores the automation of locality exploitationarg codelets.

To motivate the exploitation of locality in the adet model, we present the following example.
Figure 13 shows 6 codelets and their dependencies.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 24 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

@staning codelet ending codelet working codelet

Figure 13: An example of codelet graph. Arcs are data dependencies weighted with the amount of data
which will be manipulated by each codelet.

The starting and ending codelets do not affeceimoitation of locality. The 4 codelets in the il
are working codelets. The arrows fredrand B to € and D indicate data dependencies between the

codelets. A codelet is unable to begin its exeautintil its dependencies are satisfied. The numbers
on each arrow signifies the data generated by sonfrche arrow and consumed by the sink. This
number also indicates potential locality. For exeEmfhe arrow betwee# andC specifies that 20KB

of data produced by will be consumed b'Z. In general, A has to store this 20KB data intared
memory since it guarantees thiais able to access the data no matter wifeéseexecuted. However,

if 4 andC are scheduled to the same cciedoes not need to store the 20KB data into theeshar
memory. Instead4d may store the data into the core’s local storagduture access cf. In such a
way, we exploit the locality betweedh andC. In general, there may be multiple choices to @xpl
locality. For example, we may schedu£ on one core an&D on the other. This scheduling plan
exploits 30KB locality. However, the best plan fois example is to schedu#l on one core an&C

on the other, which exploits 31KB locality. For @m complicated case that contains many codelets

and dependencies, there may be exponential seiectiowould be hard for a programmer to figure
out the optimal schedule exploiting maximum logalit

With the previous motivation we can informally imdiuce theBest Schedule ProblemAssuming the
CDG is static and the information of potential llityais known, can a schedule be generated that
partitions the CDG into groups of adjacent codelgtich may be assigned to cores that maximizes
locality? By partitioning the CDG into several gps of codelets, we can generate a static schedule.
Each group may be assigned to a single core. THgtent codelets (a pair of codelets that are
executed contiguously on the same core) may usé $tarage as a buffer to pass data. It reduces not
only the latency of the memory access, but alsesawergy since data is produced and consumed in
place. Since the schedule is static, the execuotider of the codelets assigned to the same growh mu
be fixed. In other words, the codelets belongintheosame group are totally ordered in the CDG. The
generated schedule should guarantee the maximumrarobpotential locality is exploited.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 25 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

We propose three algorithms to solve the Best Sdimed Problem. The three algorithms have
different trade-offs in the algorithmic complexitgcality exploitation, program performance, energy
efficiency, and required computation resources. fEatures of the three algorithms are as follows:

The first solution converts the Best SchedulingbRmim to a “min-cost” flow problemGiven the
weighted codelet graph, we can create a flow nétweat has two properties:

1. Each scheduling plan corresponds to a flow in libve hetwork, and vice versa; and
2. The sum of available weights in a scheduling plaeh the cost of the corresponding flow are
anticorrelated.

A min-cost flow algorithm finds the flow that hasnimum cost among all possible flows. Applying
the above two properties, we know that the cornedipg scheduling plan is the one with maximum
sum of available weights among all the plans. Tioeee the solution of the min-cost flow problem
corresponds to the solution of the Best SchedWirgdplem. This solution is guaranteed to be optimal.
Furthermore, the time complexity @&{knmlog(n)) wherek is the number of cores,is the number

of codelets, anthis the number of dependencies in the codelet graph

The second approach uses a heuristic algorithmlgdalmax-first” algorithm) to provide a near-
optimal solution for the Best Scheduling Problerhe Tain idea of the algorithm is to schedules the
two codelets with maximum potential locality to semdjacent position on the same core at every
step. The max first algorithm has lower time comjiilethan the min-cost flow based algorithm.
Leveraging a heap data structure in its implemanmtathe max first algorithm has a time complexity
of O(nlog{n)+m) where n is the total number of codelets amd is the total number of

dependencies.

The final approach converts the Best Schedulindlro to a graph partitioning problenA graph
partitioning algorithm partitions the vertices ofa@ighted graph into multiple groups. It guarantees
that the sum of inter-group weightise(, the weights of edges that go across groups) fénmal or
nearly minimal. By applying the graph partitionialgorithm on a codelet graph, we may patrtition the
codelets into groups equal to the total numbenoés. Then the codelets belonging to the same group
will be scheduled to the same core. The minimum sdinmter-group weights indicates that the
schedule minimizes the waste of inter-core localitfrhis approach has a time complexity of
O(mlog(k)) wheremis the number of dependencies, and k is the numbesres. This approach’s

generated schedule may suffer unnecessary seti@hzmnd is not guaranteed to be optimal.

2.2.3.2Evaluation of Automatic Static Codelet Scheduling o0 C64

To study the three approaches presented, we dexklpemulation platform of the IBM Cyclops-64
many-core architecture. The platform consistswal parts, the scheduling plan generator and the
runtime scheduling emulator. The scheduling planegator uses a static codelet graph, the potential
locality information, and the total number of cotesgenerate a schedule according to one of four
approaches listed below.

* Base — basic scheduling without locality explodati
MCF - Min-cost flow based algorithm
*  MF — Max-first algorithm

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 26 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

» GP — Graph partitioning based algorithm

The generated schedule is then inputted into théme scheduling emulator along with the number
and types of instructions in each codelet. Theust of the module are the exploited locality,
performance, and energy consumption.

We use the following six applications in our expents:

« nm(matrix multiplication kernel): This benchmarkidased on the previous study of matrix
multiplication on C64 [GarciaEtAl10].

* s (merge sort kernel): This benchmark computes tingoof 10K integers via a 7-level
merge process.

 rt_ci (random tree with computation-intensive codel€ls)s is a randomly generated tree-
structure codelet graph. The codelet graph confiiscompute-intensive codelets.

 rt_m (random tree with memory-intensive codelets): Thiglso a randomly generated
tree-structure codelet graph with 160 codeletshEeaclelet however is memory-intensive.

 rg_ci (random graph with computation-intensive codeléik)s benchmark is similar to
rt_ci. However, the codelet graph is a randomlyegated graph with 160 codelets and 320
dependency edges.

* rg_m (random graph with memory-intensive codelets)sT@nchmark is similar to rt_mi.
However, the codelet graph is a randomly genermataph with 160 codelets and 320
dependency edges.

Figure 14 shows the best locality exploitation lafee algorithms (MCF, MF, and GP, described in
Section 2.2.3) applied on the six applications. dgenot show the result of Base because it does not
exploit locality.

60%

500/0 i

reduction on global mem
[
(=]
&
T

mm ms rt_ci rt_mi rg_ci rg_mi
application
Figure 14 Reduction of memory movements using various automatic static codelet scheduling. The X-axis
presents the six kernels on which we experimented. The Y-axis yields the locality exploitation value, that is,
the percentage of global memory accesses that have been reduced via buffer in local storages.

Figure 15 shows the performance evaluation of dlie &lgorithms on various applications. To make
the comparison fair, all the algorithms use the esaamount of cores. We set the amount to be
equivalent to the requirement of MF because ihes dnly algorithm that does not support arbitrary
number of cores.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 27 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1 g
g0s8
o
% 06
?
= 0.4
@
£
202
0 2 " = ©
mm ms rt_ci rt_mi rg_ci rg_mi
application

Figure 15 Performance evaluation of automatic static codelet scheduling. The X-axis represents the various
kernels. The Y-axis features the normalized execution time of each application by using the four scheduling
algorithms, respectively.

Lastly in Figure 16 we present the normalized oVergergy consumption of the four algorithms on
various kernels. The overall energy consumptioramfapplication consists of static and dynamic
energy consumptions. The static energy consumpsiotetermined by the execution time. The
dynamic energy is determined by the number and affrestructions executed.

b & bd
B o =) -

normalized overall energy
e
N

o

mm ms rici  rtmi rg_ci rg_mi
application

Figure 16 Overall normalized energy consumption using different variants on selected kernels.
Our major observations can be summarized as follows

* MCF always exhibits best locality exploitationrdduces up to 59.7% of global memory
accesses. MF is the second best (within 7.0% &tdréifice comparing to MCF).

* The applications using MCF outperform the sameiegiibns using the other scheduling
algorithms. MCF achieves up to 68.1% of performangarovement comparing to Base. MF
is the second best (within 9.1% of difference cormgato MCF).

MCF exhibits best energy reduction on both oveaatl dynamic energy consumptions. It reduces up
to 40.7% overall energy and 59.2% dynamic energypaoing to Base. MF is the second best (within
8.5% of difference on overall energy and 3.6% omadlyic energy comparing to MCF).

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 28 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.2.3.3Discussion — Applying Automatic Locality Exploitation on the
TERAFLUX Architecture

To be applied to the TERAFLUX architecture using BF-Thread or codelet models, this technique
combines the caveats expressed to apply optingakiile selection for performance and energy in
Section 2.2.1.4, and the additional mechanismsimedjuby locality-driven code scheduling and
emulating supertasks, as explained in Section .3.2.2

Since our technique statically schedules tasksghtiig data dependency arcs according to the
amount of data moved between them, generating ¢helacode is not the problem. However, as
explained before, the presence of caches, whil®an Hor the programmer, makes it harder to
evaluate latencies to correctly place the weightthe arcs. It is far from impossible, but stiljueres
further experimentation, as well as consider séveases, namely in-cache behaviors (say, by
considering accesses to the last level of caclieeagpper bound for memory latencies), and out-of-
cache ones (to take into account cache misses RAdDatencies and bandwidth). In addition, as
with LDCS, this technique requires the ability thedule several tasks to the same core. Hence, some
additional TSU instruction to constrain DF-Thre&ml$he same core is necessary.

3 Implementing the Codelet Model on Off-the-Shelf M ulti-
Core Systems

The Delaware Adaptive Run-Time System (DARTS) & ltmiversity of Delaware’s implementation
of the Codelet Model. There already exist runtiygem implementations of the codelet model
currently under development, such as SWARM [Laualetdhan12]. While they reuse the codelet
object as the central unit of computation, theyegalty tend to stray from the original specificatio
Hence, our goal is to build a runtime system wiidlhbe true to the codelet model, but also serve a
a research vehicle to evaluate and advance thelniteglé We thus emphasized the following goals
when we designed DARTS:

- Faithfulness: DARTS is implemented to be faithful to the basdalet model. Hence, it
employs codelets as the base unit of computatuaint Blso requires the use of threaded
procedures as the containers for codelets.

- Portability and Modularity: DARTS is written in C++. This language is low-#¢\enough to
ensure full control of the underlying hardware, leluffering an object-oriented model which
encourages modularity and component reuse. The [aint is important as we intend to use
DARTS to explore and stretch the limit of the caed&tXM.

Codelets are (small) pieces of sequential code @atatnon-preemptive and event-driven: they are
ready to be scheduled when all their data depeneteace satisfied, and that all required resources
(e.g, bandwidth or power envelope requirements) arfdléd.

The codelet Abstract Machine Model (codelet AMM) consists of many nodes connected together via
an interconnection network. Each node is expeatetiave several chips containing hundreds of
cores. Interconnects with varying latencies wilheect components at multiple levels. We envision
two types of cores. The first is a simple CompotatUnit (CU) which is responsible performing

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 29 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

operations. The other is a Scheduling Unit (SU)clvhs responsible for steering computation. Figure
17depicts the proposed abstract machine model.

Node — Cluster —

Node - Node . o N Compute Unit
uster uster emory {Light Core)
D N . AN N N | —d
. AN

. -~ A
¢ | Interconnect ) Interconnect Interconnect
( 2

. . ~
- 77\_/\/ —_
cee Cluster Cluster
Node Node b |

(Heavy Core)

Figure 17 The Codelet Abstract Machine Model

This abstract machine is very close to the one bgethe TERAFLUX project (cf. D6.2, D6.4, in

fact, the difference is mostly in terms of termwgy). The Codelet Model itself was already
presented in previous deliverables [D9.1, D9.2] waell as peer-reviewed publications
[ZuckermanEtAlll, SuetterleinZucGaol3].

The codelet AMM we just described requires a cdecneapping to a physical machine. We reused
the hwl oc library [BroquedisEtAI10] to obtain the topology the underlying computation node.
Once discovered, the runtime decides how to deceepbe hardware resources (processing
elements, caches, etc.) according to the userqmuger's selection of preset configurations. For
example, one can elect a single socket of an SMEemsyto act as the AMM's cluster, and a single
core on the socket to act as the scheduling uetv Mappings can easily be added to the description
of the codelet AMM.

Each cluster contains two types of cores, one SUsameral CUs. Each core runs one of two types of
schedulers. Each CU runs a micro-scheduler, reggensrimarily for executing codelets. An SU
runs a Threaded Procedure scheduler (TP schedutech is responsible for load balancing TPs
between clusters, instantiating codelets, andibliging codelets within a cluster. Having designed
DARTS with modularity as a guiding principle, eadheduler is capable of running several different
scheduling algorithms. For the scope of this wavk, use a work-stealing policy similar to Cilk
[BlumofeEtAI95] to perform load balancing betweerP Tschedulers. Within a cluster, micro-
schedulers use a centralized queue to get work.

The codelet specification is implemented as@del et class containing a synchronization skr(c
slot) and a method callefdi r e. The sync slot is used to keep track of the onthtay dependencies.
TheCodel et class must be specialized (i.e. derived) and candtantiated once tHe r e method

is expressed.i r e is applied on a codelet by a CU's micro-schedwleen the codelet is chosen for
execution. Each sync slot is initialized with thember of events the codelet requires to run. Ceslele
within a TP are known statically and can be acakfiseugh the TP frame. The address of a codelet
is required to signal codelets outside a TP, amdbEaprovided at runtime. DARTS implements a
form of argument fetching dataflow [GaoHumWon903, the act of signaling is dissociated from
passing data. For this reason data is written furstl then a codelet is signaled.

DARTS uses asynchronous functions called Threaded Procedures as the main way to instantiate
portions of the computation graph. Much like coteldhreaded procedures are implemented as
classes that must be derived by the programmerTiheadedPr ocedur e class embeds an active
codelet counter (to know when all the codeletsontains have finished executing), a pointer to a
parent TP (the one which invoked it), and a menfilmection to add a new codelet within the TP. The
address of the TP frame (in practice, the poirteéhé TP instance) is passed along to codeletsago t

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 30 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

they can access shared variables. Once the lastet@d an instantiated TP has finished running, th
TP is deallocated along with all the codelets nttamed.

Currently, DARTS implements three types of loops. a serial loop, a TP parallel for loop, and a
codelet parallel for loop. Parallel for looger@ll) prohibit loop-carried dependencies, conceptually
executing all iterations in parallel. Practicalllge iterations are executed when sufficient hardviar
available. The TP forall creates a TP for eaclaiten of the loop, permitting the iterations to rom
any cluster. The codelet forall loop adds all tieeations to the invoking TP, pinning them to agien
cluster.

Conceptually, a codelet loop requires two codeketsshown in Figure 18. These “loop controllers”
act as a source and sink. The source codelet maledy normally. Upon execution, the source
schedules copies of the enclosed CDG. After thp tmmdy has finished executing, the “leaf” codelets
of each iteration signal the sink codelet. Once itgiations have completed, the sink codelet
deallocates the copied iterations, and signalsiéx¢ codelet in the CDG. In practice, the sourcg an
sink codelets which control the loop are merged ome, to avoid useless memory allocations. Once
it has performed its source action, the loop cdietrds reset to the number of “leaf’ codelets
multiplied by the number of iterations prior to edualing the loop iterations. This approach is

sufficient for supporting nested loops.
-

Ot O codelet Cependence [ Loop Body

OO

Figure 18 Implementation of Loops in DARTS

3.1.1 DARTS’ Performance on x86-64

We propose the study of two benchmarks to evaltiage potential of fine-grain, event-driven
multithreading on off-the-shelf x86-based machiméatrix multiplication, and Graph500.

3.1.1.1Experimental Testbed

For these experiments, we used a 4-socket AMD Opté234 (“Interlagos”) multicore system. Each
socket yields two 6MB unified L3 caches; 6 2MB igiif L2 caches (each shared by two cores); 12
private 16KB L1 data caches; and 12 private 32Kd&ruction caches. There are 12 cores in total (per
socket), each sharing a floating-point unit witloter core.

Software-wise, we used GCC v4.6.1 for all our tes$swell as the AMD Core Math Library (ACML)
v5.3.0.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 31 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.1.1.2First Benchmark: Dense Matrix Multiplication

We compared our DARTS implementation to the ACMLlraflal implementation of the Double
GEneral Matrix Multiplication (DGEMM). The ACML’smplementation uses OpenMP to parallelize
the computation. To ensure fairness, we reuseddhal version of ACML’s DGEMM, and used it
within our codelets to compute DGEMM. Details omhae parallelized DGEMM for DARTS, the
number of repetitions for each casetc, are available in our Euro-Par publication
[SuetterleinZucGaol3]. We use the sequential ex@ttime of DGEMM/ACML as our baseline.

25
QZO u DARTS
%15 = ACML OMP
(«}}
210
(7]
5
0
el === - -
O O O O O O O O O O O O O
N 00 OO ©O O O OO0 0 06 o o
w N M < N O N0 O O
Dimension of Matrix - N

Figure 19 DGEMM Weak Scaling Case: OpenMP vs. DARTS. 48 cores are being used. All matrices are square.
Higher is better.

As Figure 19 shows, for matrix sizes that are sigfitly big (700 and above), DARTS shows a better
speedup, with &.4 x improvement on average. DARTS wins on a fully ddnachine because of

two phenomena:

1. FPUs are completely contended, as OpenMP statiseligduled parallel-for loops launch all the
work at the same time, and

2. Memory banks get more contended in the OpenMP wedsk in the DARTS case, signaling
allows for some delay between load and store regjues

It is worth noting that on a relatively low numbef cores, such contention on memory banks is
difficult to notice, as the bandwidth is sufficieartd caches hide the remaining latencies well émoug
With a high core count however, contention is undable.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 32 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

25

—

20 pARTS =
ACML OMP

e
o wn

Speedup

o

0 6 12 18 24 30 36 42 48
Number of Cores

Figure 20 DGEMM Strong Scaling Case: OpenMP vs. DARTS. Higher is better.

Figure 20 shows strong scalability results for DQEMJp to 12 cores on a single socket, OpenMP
clearly outperforms DARTS. The single-level schadylfeatured by OpenMP is clearly helped by
such as configuration. However, as the number cécomcreases and “overflows” on more than one
socket, DARTS’ hierarchical scheduling catches up, the point where it outperforms
ACML/OpenMP at 48 threads. Still, there is a ~8% batween DARTS and OpenMP in favor of the
latter. This gap is seriously narrower as soon @®rthan 12 cores are solicited.

The use of DGEMM as a benchmark is meant to shetty #ven though more software mechanisms
are required to run codelets,g.,to keep track of threaded-procedures and themds to ensure
codelets are signaled when some of their input datanade availableetc, DARTS remains
competitive with state-of-the-art implementations aif-the-shelf multi-core systems, even without
hardware help. On the contrary, the next benchnisrintended to show where DARTS, and
dataflow-inspired program execution models in gahecan easily shine: programs that feature
irregular data and/or control flow.

3.1.1.3Second Benchmark: Graph500

Graph500 MurphyEtAI10] is a benchmarks that proposes to measure sevaral& related to graph
processing. We have compared our implementati@araph500’s second kernélreadth-first search
(BFS), to its reference implementation. To ensaiméss, we used the exact same tools to generate
the same pseudo-randomly generated graph as antmpoth versions. We also kept most of the
code from the original reference implementationly omdding the boiler plate necessary to run
DARTS. As with the DGEMM case, implementation distain how we built the codelet graph for the
BFS kernel are available in our publication [Su#¢iaZucGaol3].

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 33 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

e =00 M OpenMP
2 400 ™ DARTS
=

wn 300

a

i

-

10 TF

14 16 18 20 22 24 26
Scale of Graph (2”N)

Figure 21 Graph500: OpenMP vs. DARTS. X-axis: The number of input vertices. On the Y-axis: The number of
traversed edges per second (TEPS).

As Figure 21 illustrates, DARTS’ implementation refgcantly outperforms OpenMP. There are
several important notes to make, however:

1. As we stated earlier, we only modified the BFS péthe code itself. The point was to compare
two execution models: OpenMP’s and DARTS’, andoqitmize the underlying data structures.
There are many publications which describe hownjarove the execution of Graph500 by
reshaping the vertex list, and careful use of atayperations, but none which made their
implementation available to the best of our knowkcht the time these experiments were
conducted.

2. We only reported the results of OpenMP obtained wiaitic scheduling. We did try to modify the
reference code to use dynamic scheduling, thudiagathunks to have different sizes, but in our
experiments, static scheduling always finished.firs

On average, our implementation yields a speedup Ird5 x to 2.38 % as the graph size increases.

3.1.2 Energy and Power Efficiency of DARTS on x86-6 4 Platforms:
DGEMM

We evaluated our DGEMM kernel dbataServey a 32-thread machine described in Section 2.1.2.
We recompiled DARTS with Intel's C++ Compiler (ICG@1L4.0, and used Intel's Math Kernel
Library (MKL) to run our experiments: We either rahe parallel DGEMM using MKL's
implementation based on icc’s OpenMP runtime, orused the serial DGEMM from the MKL in
conjunction with DARTS. We first present performamumbers for both strong and weak scaling (as
we did in Section 3.1.1.2), and then introduce pasficiency numbers.

In addition, we have decided to evaluate threeedifit scheduling policies for DARTS: a purely
static scheduling policy, akin to OpenMP’s, a dymaone which also follows OpenMP, and a work-

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 34 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

stealing policy. Until now, work-stealing had bedescribed to move codelet sub-graphs across the
machine DARTS was running upon. With this last schieg policy, even within a given cluster of
cores, codelets can be stolen between local sarsdul

Performance DARTS vs MKL -
Matrix Multiply - Strong Scaling - Matrix Size = 3072

3.0E+09
_ ——Static
[7,]
@ 2.5E+09 | g -=Dynamic
S \
o] Steal
© 2.0E+09 \ —
3
E
o 1.5E+09
Q
[ =
: \\
5 1.0E+09 \s
t \&%&/
[+}]
a
5.0E+08 —
0.0E+00 T T T T T T T 1
0 4 8 12 16 20 24 28 32
Processors

Figure 22 DGEMM, Strong Scaling case: DARTS vs. parallel MKL. Performance for strong scaling. Matrix size:

3072 = 3072, Lower is better.

As Figure 22 shows, dynamic and/or work-stealinices perform slightly better than the MKL,
while the static policy is on par with it.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 35 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Performance DARTS vs MKL

Matrix Multiply - Weak Scaling - Matrix Size
7.00E+08

—O—Stat|c 7’/\

Steal
5.00E+08 ||

—MKL /
4.00E+08 /
3.00E+08 / //
2.00E+08 /
o '_M

0.00E+00 1 T T T T T T T T
512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072

Matrix Size

Performance [num of cycles]

Figure 23 DGEMM, Weak Scaling Case: DARTS vs. parallel MKL. Running on 32 hardware threads. Lower is
better.

Likewise, weak scaling shows a slight advantagawor of DARTS, for all scheduling policies. The
results are not as good in terms of power effigidmwever.

From Figure 24 it is obvious that the MKL is muclone power-efficient than any of the DARTS
scheduling policies in the strong scaling caseewike, Figure25 shows a similar trend in the weak
scaling case.

This requires further investigation, but we suspéett individual threads are more solicited with
“meta-work” (e.g., local codelet queue management as well as thilgaeedure management) than
the more “flat” parallelism yielded by the MKL. kddition, our experience with MKL is that the
“shape” of the blocks that are passed to the sdighdnkKL's DGEMM kernel have a strong impact
on the overall performance [ZuckermanPerJal08].

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 36 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Power Consumption DARTS vs MKL
Matrix Multiply - Strong Scaling - Matrix Size = 3072

120

—+Static

100 —{-=Dynamic
Steal
——MKL K

[2e]
o
|

Power [W]
3

40 -

20

O T T T T T T T 1
0 4 8 12 16 20 24 28 32

Processors

Figure 24 DGEMM, Strong Scaling Case: DARTS vs. parallel MKL. Power Consumption. Matrix size:

2072 x 3072, Lower is better.

Power Consumption DARTS vs MKL
Matrix Multiply - Weak Scaling - Processors = 32

120
e — =

100 //" . —e

_ 8 = -

2 :

- —»-Static

9 60 .

g -=-Dynamic

- Steal  x

40 |
20 K__—’_—)/

0 T T T T
500 1000 1500 2000 2500 3000

Matrix Size

Figure 25 DGEMM, Weak Scaling Case: DARTS vs. parallel MKL. Power Consumption. Lower is better.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice

File name: TERAFLUX-D93-v20.doc Page 37 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.1.3 Energy and Power Efficiency of DARTS on x86-6 4 Platforms:
Graph500

We also ran a new set of experiments using the G&( benchmark, and using tBataServer
machine to also measure performance and poweti&@mtchine.

Performance DARTS vs OpenMP
BFS - Strong Scaling - Scale of Graph = 22

7 0F+08
M Static
6.0e+08 | M Dynamic [
— Steal
& 506408 -
w B Graph500
=
8 2.0e+08 -
c
(4]
§ 3.0E+08
OE+ |
L
} .
&
2.0E+08 -
0.0E+00 |

1 4 8 12 16 20 24 28 32
# Hardware Threads

Figure 26 Graph500, Strong Scaling Case: Performance. “Graph500” is the performance of the reference code
running with OpenMP. Higher is better.

Again, we evaluated the strong scaling performaosic®ARTS using our three different policies
(Static, Dynamic, and Work Stealing) against thee@P version of the reference code. The
implementation was not changed compared with the described in Section 3.1.1.3, with the
exception of the experimentation with different edbling policies. In the original experiments, for
both DGEMM and Graph500 (shown in Sections 3.1ah@& 3.1.1.3), we used the default dynamic
scheduling policy. Whether for strong or weak swaljshown in Figure 26 and Figure 27), DARTS’
implementation clearly outperforms OpenMP’s. Areressting observation is that although the static
scheduling policy is mimicking OpenMP’s static sdhiéng for parallel for loops, the 2-level
scheduling (threaded procedures and codelets) alowefficiently deal with variable granularity and
work load imbalance much better than what OpenMfPal In addition, the dataflow mechanisms
used by codelets allow for a better resource usagenly those threads that are effectively ready t
run will actually access the memory subsystems.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 38 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Performance DARTS vs OpenMP
BFS - Weak Scaling - Processors = 32

8.00E+08

M Static

7.00E+08 | .
B Dynamic

6.00e+08 | ™ Steal
B Graph500

5.00E+08

4.00E+08

3.00E+08

Performance [TEPS]

2.00E+08

1.00E+08 -

0.00E+00 -

14 18 22
Scale of Graph

Figure 27 Graph500, Weak Scaling Case: Performance. “Graph500” is the performance of the reference code
running with OpenMP. Higher is better.

The data collected for power consumption is preskritespectively) in Figure 28 in the case of
strong scaling and Figure 29 for weak scaling.wits DGEMM, we used thékwid tool to measure
power. However, due to some counter overflow, Halata is represented.

Overall, power efficiency is much better for the BAS implementation in the strong scaling case, as
pictured in Figure 28. This is probably a “mechaliieffect of the execution time being so much
lower than the reference code time, and is likelyrprove as the input data set grows. With smaller
input sets, such as those depicted in Figure 29,aanwith the DGEMM case, power consumption
does not quite match the performance we observieileWbwer, it is clear that the threaded procedure
schedulers, as well as the micro-schedulers ruromngach core have a cost on power consumption.

However this is only a preliminary set of resultsd &urther investigation must be performed. In
addition, we haven't taken advantage of the DVFRSabdities of the Sandy Bridge architecture yet.
While in the DGEMM case this is probably going telgt poor results with respect to performance, in
the Graph500 case, there are certainly opportsntbelower the voltage/frequency levels so that
additional power is saved.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 39 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Power Consumption DARTS vs OpenMP
BFS- Strong Scaling - Scale of Graph = 22

1.20E+02
M Static
100e+02 | ™ Dynamic
m Steal
8.00e+01 | M Graph500
)
@ 6.00E+01
. +
3
°©
a
4.00E+01 -
2.00E+01 -
0.00E+00 |
1 4 8 12 16 20 24 28 32
Processors

Figure 28 Graph500, Strong Scaling Case: Power Consumption. “Graph500” is the power consumption of the
reference code running with OpenMP. Lower is better.

Power Consumption DARTS vs OpenMP

BFS - Weak Scaling - Processors = 32
1.00E+02

| Static

9.00E+01
B Dynamic

i Steal
B Graph500

8.00E+01

7.00E+01

6.00E+01 -

ES 00E+01
.00E+01 -
3

(o]

Q. 4.00E+01 -
3.00E+01 -
2.00E+01 -

1.00E+01 -

0.00E+00 -~

14 18 22
Scale of Graph

Figure 29 Graph500, Weak Scaling Case: Power Consumption. “Graph500” is the power consumption of the
reference code running with OpenMP. Lower is better.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 40 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4 Porting DARTS to the TERAFLUX Simulation

Infrastructure

This section describes the efforts to port DART$h® TERAFLUX simulator, COTSon, as well as
the implementation trade-offs that were made assalt. We first start by describing how DARTS
was ported, and continue with some selected resnltee simulation platform. It is worth mentioning
the timeline of our porting DARTS to COTSon. Itrs¢a as a simple feasibility study (as described in
D9.1), where we only ported the “pure” DARTS rurginwith full software scheduling. We then
proceeded to modify our runtime to take advantdgih@® DF-Threads/T* (cf. D7.2, D6.2) TSU. A
first port of DARTS for the TSU4 (implemented by UBY) was thus finalized in January 2013. A
second port of DARTS, this time for the TSUF vensigmplemented by HP) was completed in
January 2014. Both TSU-based implementations arénem to a single-node execution for now, but
we plan on modifying DARTS to be able to run on FSuith multiple nodes.

Most of the details that follow are valid for bate TSU4 and TSUF implementations of DARTS.
The experiments detailed in Section 4.2 were afiopmed using DARTS-TSUF. A first mention of
this work was expressed in a collective TERAFLUXleation [GiorgiEtAI2014] [SolinasEtAI13]

4.1 Merging Codelets and DF-Threads: DARTS-on-COTSon

4.1.1 Overview of the DF-Threads/Codelets merge

While both execution models are very close, DF-atiseand codelets differ in a few but significant
ways, as explained in D8.2. We explain again sofrihase aspects when they are relevant to the
discussion of porting DARTS to COTSon.

4.1.2 Units of computations: Accessing data from DF  -Threads and
Codelets

Both DF-Threads access data using a frame. Howekiercan see such data being read or written,
and what can be accessed varies widely betwedwthmodels.

1. A DF-Thread has its own input frame (ttiieframée and can access several output frames. DF-
Threads are supposed to access variables in fideratit types of memory (Frame Memory
(FM), Owner Writable Memory (OWM), Transactional Mery (TM), and Thread Local
Storage (TLS)) each with its own consistency (&f.1DD7.2, D6.2, and D3.5).

2. By contrast, codelets are contained within a thedgatocedure, and have no real frame of their
own: They access variables from fHe frame and all codelets belonging to the same TP can
access the same variables and memory locations.

We have opted to port DARTS on top of COTSon, whimaplies that we want to use the native
instruction set extensions of the already-implemerF-Thread/T* model as building blocks. The
compromise we came to is the following: Each cadeid be assigned to a DF-Thread. To ensure
that the various codelets instantiated in a TP érane fully initialized before they can be run,extra
dependency is added to them. Whendldel call is issued, a call tdf _t decr ease is issued to
remove this extra dependency.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 41 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4.1.3 Invoking Threaded Procedures

According to the Codelet Model specification, cedelcannot be invoked directly from the code by
the programmer: They must be contained in asyncdu®functions called Threaded Procedures. Our
goal was to keep as much of the original DARTS APIpossible. However, the reference counting
required in the original DARTS implementation ieless on COTSon, since the Thread Scheduling
Unit has no knowledge of codelets, and the memsgduo allocate the TP frame and the codelets
contexts are also invisible to it. Thus a comprenfiad to be reached.

Calling a threaded procedure is done by issuingldai nvoke:

i nvoke<SomeThr eadedPr ocedur e>( par anet er s)

The classSoneThr eadedPr ocedur e is the actual asynchronous function we desire to YMe
feed it the parameters required by the functiore @btual sequence of operations is a bit complex,
and involves the creation of a temporary DF-Thré&#ten calling a TP, thenvoke function creates
an instance of pCl osur e, a set of template classes that simply holdshallarguments required by
the TP to be instantiated. To each of the temptéasses, there is a correspondifigFact ory
template function whose sole purpose is to insaéatihe real TP for execution. Once a TP is
effectively instantiated, all the codelets it negnlsun are also created. Thus, by storing thetfonc
pointer to the adequaléPFact or y as well as its correspondihgpCl osur e, one can migrate work
that has not yet started anywhere on a teradeWe.create a new DF-Thread through the
df _t schedul ez call, giving the size of the corresponditgfClosure in the invoke function, so
that it stores the rightKPFact ory, t pC osur e> pair, and upon firing, as many DF-Threads as
there are codelets to run inside the TP are created

4.1.4 Firing Codelets

For obvious reasons, C++ prevents the executiora afon-static member function without a
corresponding instance context. Hence it is nosipts to store theCodel et : : fire member
function call as a valid DF-Thread function pointéfe have elected to use an external function to
perform the task. Its code is very simple, andsesdufor all codelets firings:

voi d Fire(void){
Codel et* codel et = static cast<Codel et*> df _tload();
codelet->fire();

df _destroy();

}

Thus, once a codelet is done firing, it also heguarantee that the df-frame it was using is also
deallocated.

4.1.5 Running DARTS Programs on COTSon

As we mentioned before, some compromises were s@&geto be able to port DARTS on COTSon.
There are new features in the latest version:

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 42 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1. The loop constructs are effectively useless imdReThread context: contrary to the full-
software implementation of DARTS on x86, it is potsible to ensure that a given set of
codelets see their dependencies reset when thelpaecfiring, thus avoiding useless cycles
of reallocations. Instead, a loop must be simulatadg a recursion, much like what the
current DF-Thread implementation requires already.

2. Because the TSU knows nothing of codelets and tivexievel parallelism scheme, it is
necessary that the user explicitly deletes theraids that were allocated upon exit. This
only involves a few control paths, and is usualigily done in our experience.

3. Finally, thei nvoke call has been simplified compared to the origDARTS
implementation: as the parent TP is no longer reguio keep track of TP frames allocation,
we have decided to remove the parameter altogetiiee COTSon port.

These three caveats can be overcome to a cert@ntékneed be: the loop construct could simply
generate a sequence of DF-Threads with a source &k, with a counter to know when to stop
iterating. The required deletion of the TP frame @ATSon could be encapsulated (say, using a
EXI T_TP() macro), thus allowing conditional compilation tongeate the call if it is needed.
However, it would constrain the original runtime maothan it should, since in the original
implementation, there is no need to know when ¢e fthe TP frame. Finally, the call tmvoke
could also be encapsulated in a macro, thus algpwonditional compilation to decide which set of
parameters should be used depending on the tdegfetrp.

4.2 Evaluation of DARTS on the TERAFLUX Simulation

Environment
We have performed several experiments to showlihigyaof the various models implementations to
scale, using several benchmark kernels: Fibona@rige sort, and dense matrix multiplication. As we
ran our experiments using the COTSon simulator ¢AogEtAIO9], we used dynamic sampling
[FalconFarOrt07}o speed up simulation times.

As we explained in Section 4.1, all DARTS experitsewere performed on DARTS-TSUF (cf.
D7.5). The configuration we used for COTSon isftil®wing:

- We used dynamic sampling, with a sampling size wiilBon instructions;

- weused 4, 8, and 16 cores on a single node foexperiments;

- all cores have access to a 1GB DRAM bank, withenltzy of 100 cycles;

- aunified 4MB L3 cache, with a latency of 10 cycliesshared by all cores in the node;
- all cores have access to a private 64KB unifie¢&éhe, with a latency of 5 cycles;

- all cores have access to a private 16KB L1 dathe;amith a latency of 2 cycles;

- all cores have access to a private 32KB L1 inswaoatache, with a latency of 2 cycles;
- all cache lines yield a size of 64 bytes

We compared the results bf b, nsor t , andnmusing three different implementations: “pure” DF-
Threads, DARTS-TSU, and OpenMie(, running using a normal multicore approach, witre@SU

to help with the scheduling). Also, please notet titee OpenMP variant was invoked with the
OVP_PROC_BI ND set to true, to ensure threads are not migrataah the core they initially got
assigned to.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 43 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

It should also be noted that we only report sinmglde results in this report, as a multi-node
configuration could not be correctly exploited byegular implementation of OpenMP. A multi-node
implementation of DARTS is currently underway.

4.2.1 A Benchmark to Measure Pure Scalability: Naiv e Fibonacci

Running a naive Fibonacci computation is of cotwgaly inefficient. However, it is a perfect toa t
evaluate the scalability of a system, including theerhead required to create threads. In our
experiments, when the recursion reacies 18, the computation calls a serial Fibonacci function
finish the computation.

Fibonacci: Weak Scaling (1 care) Fibonacci: Weak Scaling (4 cores)
7.000+09 2.50E109
Level T
6.00E+09 ize | 16kB 54kB ‘
Line Size €4 o4 2.000+09 Ve
- 5.00E+09  |Num Sets q 4 = /
Lal 2 5 o
L o0se09 ERAE £ L.5DE+09 /
g z 97
£ 3008409 = 1.00E+09 / s
2.00£109 ) %DSPMP /% Cpenip
-
5.006+08 =TSUF
1.00E+09 -
+ - DARTS i ,///// BARTS
0.00E+00 0.00E+0C —
3 32 34 36 20 2 2 16
Fib(n} Fib(r)
S Fibonacci: Weak Scaling (8 cores) R Fibonacci: Weak Scaling (16 cores)
+ +
’ vel : Level u 2
I:g: ;;m; g,l:(g / 4.50E+08 size . 1bkB bdkd I4
2.00E+09  |Line Size CoBd 6a / 1006408 :nesslm 64 €4 —0OpenMP //
(INum Sets 4 4 um Sets E -=-TSLUF
o latency | 1 5 ‘/+OpenMP — 3.50E408  |iatency 5 DARTS
£ 1.50E+09 / =T5UF £ 3.000+08
g DARTS L 2s0c+08 //
= 1.00E+09 / = 2.00£+08 /
- 1.5DE+08 // A
5.00E+08 — = L.ODE+08 / /
_— o 5.006107 - p
0.00E+-00 - DODFHIC Bt "
30 32 34 36 30 32 34 36
Fib(n) Fib(r)

Figure 30 COTSon Experiments: Weak Scaling for Fibonacci. Threshold value: n = 18. Lower is better.

As Figure 30 shows, when running the Fibonacci rerm@omputation on a single core, all
implementations (“pure” DF-Threads, DARTS, and Q@é) spend roughly the same amount of
time, which was expected. As we increase the nurabeores however, there is a clear increase in
overhead for OpenMP, while the other two stay reablty low. The pure DF-Thread implementation
outperforms DARTS-TSUF. This is due to the adddiortevel of parallelism that DARTS
implements. In a single-node environment, it bdlsiceneans that we are allocating additional
structures on the heap which, while still beingyvemall (~256B on average), offer no clear benefit:
Threaded Procedures were designed for a morehdistd environment. However, since we map
codelets to DF-Threads, overall DARTS benefits fritva hardware scheduling they offer, and its
performance stays close to the one demonstratedigyDF-Threads.

Deliverable number: D9.3

Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 44 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4.2.2 An Intermediate Benchmark for Scalability: Pa  rallel Merge Sort

We chose to run a parallel merge sort to have taiogbalance between an almost computation and
data movement free kernel (Fibonacci numbers coatipas) and a computationally intensive one
(DGEMM, see Section 4.2.3), so underline cases evtlataflow-inspired execution models may play
a significant role, while not staying in the readfrftoy” kernels.

We used a parallel merge sort algorithm proposedCbyLeiserson for Cilkk and sketched in
Introduction to Algorithms '8 Edition [CormenEtAI09]. The implementation itse¥fis inspired by
two articles in theDr Dobbs C++ Journal [Duvanenkolla, Duvanenkollb], whichwdr on
Leiserson’s lecture. Instead of using Intel ThregdBuilding Blocks however, we ported the
algorithm to use DF-Threads, DARTS-TSUF, and OpenWe used a cutoff value of 500 for both
the divide-and-conquer step which performs theaasplitting” and the parallel merge step. When
the threshold of 500 is reached by the “divide-aodguer” part of the algorithm, a call gsort
(from the standard C library) is issued. When thmulated length of both arrays used in the merge
sort algorithm falls below 500 elements in the reestgp, a sequential, iterative (instead of recejsi
call to serial _nerge is issued to speed-up merging the arrays. We uspdra sequential
implementation of merge sort as the baseline teegperiments.

Parallel Merge Sort: 8 Cores

2?8 B OpenMP M TSUF M DARTS
4.00
3.50
g. 3.00 —
2.50 —
§ 2.00 u
1.50 —
& 100 -
0.50 |
0.00 . : .
$ $
%, % %, %
o, O % G 05

# elements to sort

! Lecture slides available at http://supertech.csail.mit.edu/cilk/lecture-2.ppt

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 45 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Parallel Merge Sort: 16 Cores
12.00 H OpenMP W TSUF RTS
10.00
8.00
53
3 6.00
8 400
o
v 200 I B
0.00 . .
Ky Ry
'004;( {Oo@x \)OO@ 3 . 0% ‘6005;(
[ Qe % 2 2
# elements to sort

Figure 31 COTSon Experiments: Weak Scaling for Parallel Merge Sort. Higher is better.

Weak scaling is shown in Figure 31. As we incrégagenumber of available cores on a node, full-
software scheduling becomes more costly (the sdbedoust decide where to assign threads, on
which core). Overall, both pure DF-Threads and DSRIISUF outperform OpenMP as input size
increases.

Figure 32 illustrates strong scaling abilities afr ahree systems for inputs of 5’000'000 and
10000000 32-bit integers to sort (resp. 40MB &@MB worth of input,.e. 10 to 20 times bigger

than the shared L3 cache). Both DARTS-TSUF and [ifeThreads clearly scale better than
OpenMP. Pure DF-Threads seem to better scale atpthiat than DARTS-TSUF. We are still

investigating the reasons. There clearly is sonditiadal overhead involved in DARTS 2-level
threading scheme, which can be alleviated wheningron multiple nodes.

9P::Irallosel Merge Sort: Input = 5'000'000
g B OpenMP B TSUF = DARTS
o 7
2 6
S S
2 3
922
1
0
1 4 8 16
# cores

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 46 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Parallel Merge Sort: Input = 10'000'000

593 B OpenMP mTSUF DARTS
o 7
26
8 5
2 3
v 3 |
1 |
O _
1 4 8 16
H# cores

Figure 32 COTSon Experiments: Strong Scaling for Parallel Merge Sort. Higher is better.

4.2.3 A Compute-Intensive Benchmark: Matrix Multipl  ication

Figure 33 allows us to study the scalability of #ystem for computation-intensive kernels such as
dense matrix multiplication. As with the Fibonaamd parallel merge sort examples, pure DF-
Threads show the lowest overhead, followed by DARBYF.

Figure 33 shows the results obtained witim on a 256 = 256 matrix multiplication. There is a

relatively high discrepancy between DF-Threads/DSRIISUF and the OpenMP implementation,
especially as we increase the number of cores.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 47 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Execution Time for M=(256,32)

8.E+08
7.E+08 == OpenMP

6.E408 \\ —m—TSUF
E‘S.E‘I‘Og \ ~ DARTS
‘;‘4.E+08 \\\
£
= 3.E+08 \
2.E+08 - . 4

1.E+08 - N —
0.E+00 T T ———eeeeee— ]
123456 7 8 9 10111213 14 1516

# cores

Figure 33 Performance of a Z56 = 256 double-precision matrix multiplication, using tile sizes of 32 = 3Z.

Lower is better.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 48 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

5 Conclusions

This document presented our achievements with césfoe power-aware scheduling leveraging
dataflow-inspired, fine-grain program execution misd and the possibilities to apply them to the
TERAFLUX architecture. One fundamental result iattbcontrary to common wisdom, increasing
performance does not automatically increase ergffgyrency on tiled computations: the tile size and
shape have a clear impact on the performance/eméfigiency trade-offs to make. These techniques
are applicable to teradevices, at the cost of maait experiments and measurements to compute the
optimal tile size in the presence of caches (imkt@ascratchpads), and/or the addition of a core-
affinity constraint instruction to guide the TSU evhcreating a new DF-Thread.

It also described our implementation of the codeletiel, the Delaware Adaptive Run-Time System
(DARTS) to off-the-shelf multi and many core systerand its subsequent port to the TERAFLUX
simulation infrastructure, COTSon. We provide perfance numbers for two widely different
kernels on regular 64-bit x86: we show that DARESon par with state-of-the-art OpenMP
implementations of parallel DGEMM (both using higloptimized Intel and AMD math libraries on
their respective platforms), and greatly outperforthe Graph500 reference implementation, with
almost no change to the original code. On the THRA% port, we provide results where we
compare our TSU-leveraged version of DARTS agdhestegular, software-implemented scheduling
system. TSU based implementations outperform Openhkien the core count is higher. The DF-
Threads/T* provided a solid basis for supportirexitble models such as codelets.

While this project is at an end, we plan on furithgthis research and perform additional experiment
to evaluate the performance gap between DF-Threadrgms, our DARTS-TSU port, which
leverages a merging of both DF-Thread and Codelmiets, and regular OpenMP programs. A
journal paper is currently being written in collafitoon with the UNISI partner to explore those ¢re
models, while varying the cache hierarchy.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 49 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Appendix A — Pseudo-Code to Run Supertasks on the
TERAFLUX Architecture

We provide below some pseudo-code that illustrates proposed strategy to modify the TSU's
instruction set to allow for constraining a setDff-Threads to a given core. Please note that this
proposed solution to implement supertasks mearghbee must be a way to signal that a given DF-
Thread in a Local TSU (L-TSU) must be marked asvaif@ble for stealing. The best way to perform
this is probably to propose two task queues, auleetj one, from which everyone can steal, and a
“supertask” queue, which should typically be bouhdad very short in general (probably less than
10 slots should be available, or even less). Ttet fihase of a supertask should be considered a
regular DF-Thread, and as such should be storethenregular DF-Thread queue. Calling the
proposeddf constrain_to_current_core is what should move a task from one queue to the
other.

/I Stores the DF IDs of the next phases to signal
df tid t* global tid _map;
typedef void (*next_phase_t)(void);

typedef struct phase2_s {

| ong supertask_id;
next phase_t next phase;
[* The rest of the structure contains the data blo cks, *
* local variables, etc. */
} phase2_t;

voi d phase2(void);

typedef struct phasel_s {

| ong supertask_id;
next phase_t next phase;
/* The rest of the structure contains the data blo cks, *
* local variables, etc. */
} phasel_t;

voi d phasel(void) {
stask_phasel t* frane = (stask_phasel t*) df tload();
| ong supertask id = get_supertask_id_self(frame);

/'l Allocate new DF-Thread for the next phase

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 50 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

df _tid_t next_phase = df _tschedul ez(phase2, 1+num deps, sizeof (phase2_t));
/I Retrieve next phase's DF-Frame
phase2_t* fp_phase2 = (phase2_t*) df_tcache(next_phase);
/I Prefill next phase's frame with the data blocks to read and/or write
fill _phase2(get_data_ bl ocks(frane), supertask_id, fp_phase2);
/* Ensure that the next phase will execute on the s ame core. *
* This *instruction does not exist at the moment. *
df constrain_to current core(next_phase);
[* Store next phase's dataflow ID in a shared conta iner accessibleto  *
* all workers involved, using the current supertas k ID. */
store_df tid(global _tid map, supertask_id, next_phase);
conput e_step(get _data_ bl ocks from(franme));
[* retrieve the DF IDs of other supertasks whose phases are waiting *
* for us to update their data blocks */
si gnal _nei ghbors( get_supertask_id(global tid _map, supertask _id) );
/* next_phase will be fired when all supertasks on which it depends *
*will have signalled it. */
df _t decr ease( next_phase);

df _destroy();

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 51 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

References

[ArgolloEtAI09] Eduardo Argollo, Ayose Falcon, PadFaraboschi, Matteo Monchiero, and Daniel Ortega.
2009. “COTSon: infrastructure for full system simibn”. SIGOPS Oper. Syst. R&\3, 1 (January 2009), 52-
61.

[ArteagaEtAl14] Jaime Arteaga, Stephane Zuckerridkin Garcia, and Guang R. Gao, "Position Paper:
Locality-Driven Scheduling of Tasks for Data-DepentiMultithreading”In Proceedings of Workshop on
Multi-Threaded Architectures and Applications (MTA2014) May 2014,

[BlumofeEtAI95] Blumofe, R. D., Joerg, C. F., Kusaai, B. C., Leiserson, C. E., Randall, K. H., arbd, Y.
(1995) “Cilk: an efficient multithreaded runtimessgm” In PPOPP '95: Proceedings of the fifth ACM
SIGPLAN symposium on Principles and practice offial programming, pages 207-216, New York, NY,
USA. ACM.

[BroquedisEtAl10] F. Broquedis, J. Clet-OrtegaM&reaud, N. Furmento, B. Goglin, G. Mercier, S.[hilt,
and R. Namyst. “hwloc: a generic framework for nging hardware affinities in HPC applications” Inr&éel,
Distributed and Network-Based Processing (PDP)Q2(8th Euromicro International Conference on, pages
180-186, Feb. 2010.

[ChenEtAI13] Chen Chen, Yao Wu, Joshua Suetterleang Zheng, Minyi Guo, and Guang R. Gao, 2013.
“Automatic Locality Exploitation in the Codelet Mel. In Proceedings of the 2013 12th IEEE International
Conference on Trust, Security and Privacy in Commguand Communicationd RUSTCOM '13). IEEE
Computer Society, Washington, DC, USA, 853-862.

[CormenEtAI09] Thomas H. Cormen, Charles E. Leiseyfonald L. Rivest, and Clifford Stein. 2009,
Introduction to Algorithms, Third Editio(8rd ed). The MIT Press.

[Denneaull] M. Denneau, “Cyclopsi Encyclopedia of Parallel Computing: SpringerRefece
(www.springerreference.coniD. Padua, ed.), Springer-Verlag Berlin Heidelgg2011.

[Duvanenkolla] V.J. Duvanenko, “Parallel Merge Sart Dr Dobbs March 24, 2011. URL:
http://www.drdobbs.com/parallel/parallel-merge-£&28400239

[Duvanenkol1b] V.J. Duvanenko, “Parallel Merge’Dr Dobbs February 24, 2011. URL:
http://www.drdobbs.com/parallel/parallel-merge-£20204454

[FalconFarOrt07] A. Falcon, P. Faraboschi, and Be@a “Combining Simulation and Virtualization thigh
Dynamic Sampling’Performance Analysis of Systems & Software, 2EFABS 2007. IEEE International
Symposium qrvol., no., pp.72, 83, 25-27 April 2007

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&antmer=4211024&isnumber=4211007

[GaOHUMWo0Nn90] G. Gao, H. Hum, and Y.-B. Wong, “Rlatdunction invocation in a dynamic argument-
fetching dataflow architecture” In Databases, Ralrérchitectures and Their Applications, PARBASH;9
International Conference on, pages 112-116, Map199

[GarciaEtAl10] Elkin Garcia, loannis E. VenetissRi Khan and Guang R. Gao, "Optimized Dense Matrix
Multiplication on a Many-Core Architecturelh Proceedings of International European Confereane
Parallel and Distributed Computing (Euro-Par'10%chia, Italy. August 31- September 3, 2010.

[GarciaOroGaol1] Elkin Garcia, Daniel Orozco anda@y R. Gao, "Energy efficient tiling on a Many-Core
Architecture",In Proceedings of 4th Workshop on Programmabibigules for Heterogeneous Multicores

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 52 of 53



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

(MULTIPROG 2011)6th International Conference on High-Performaaicé Embedded Architectures and
Compilers (HIPEAC), Heraklion, Greece. JanuaryZg,1.

[GarciaEtAl13] E. Garcia, D. Orozco, R. Khan, I.nédis, K. Livingston, and G.R. Gao, “A Dynamic Saot&
to increase performance in Many-core Architecttinesugh Percolation operationsh, Proceedings of the
2013 IEEE International Conference on High Performo@ Computing (HiPC 2013Myderabad, India,
December 18 - 21, 2013.

[GarciaGaol3] E. Garcia and G. R. Gao, “Strateffiesmproving Performance and Energy Efficiencyaon
Many-core”,In Proceedings of 2013 ACM International Confeena Computer Frontiers (CF 2013)
May 14-16, Ischia, Italy, ACM, 2013.

[Giorgil2] R. Giorgi, "TERAFLUX: Exploiting Dataflev Parallelism in Teradevices", ACM Computing
Frontiers, Cagliari, Italy, May 2012, pp. 303-304

[GiorgiEtAl14] R. Giorgi, R. M. Badia, F. Bodin, ACohen, P. Evripidou, P. Faraboschi, B. FechneR.Gsao0,
A. Garbade, R. Gayatri, S. Girbal, D. Goodman, Bai S. Koliai, J. Landwehr, N. Minh L, F. Li, M.
Lujan, A. Mendelson, L. Morin, N. Navarro, T. P&®j A. Pop, P. Trancoso, T. Ungerer, I. Watson, S.
Weis, S. Zuckerman, M. Valero "TERAFLUX: Harnessthaflow in next generation teradevices", Journal
of Microprocessors and Microsystems: Embedded Hare\wesign (MICPRO), April 2014, doi:
doi.org/10.1016/j.micpro.2014.04.001

[LouderdaleKhan12] C. Lauderdale and R. Khan, “Tialsaa codelet-based runtime for exascale computing:
position paper”. In Proceedings of the 2nd Inteomat! Workshop on Adaptive Self-Tuning Computing
Systems for the Exaflop Era (EXADAPT '12). ACM, N&tark, NY, USA, p. 21-26

[MurphyEtAI10] R. C. Murphy, K. B. Wheeler, B. W.aBrett, and J. Ang. Introducing the graph 500. Cray
Users Group (CUG), 2010.

[SolinasEtAI13] M. Solinas, R.M. Badia, F. Bodin, 8ohen, P. Evripidou, P. Faraboschi, B. FechneR.G
Gao, A. Garbade, S. Girbal, D. Goodman, B. Khafdai, F. Li, M. Lujan, L. Morin, A. Mendelsor\.
Navarro, A. Pop, P. Trancoso, T. Ungerer, M. ¥@a|&. Weis, |. Watson, S. Zuckerman, and R. gjdThe
TERAFLUX Project: Exploiting the DataFlow ParadigmNext Generation Teradevicef)igital System
Design (DSD), 2013 Euromicro Conference,aol., no., pp.272,279, 4-6 Sept. 2013.

[SuetterleinZucGao13] Joshua Suetterlein, StépEankerman, and Guang R. Gao. 2013. “An implemetati
of the codelet model”. IRroceedings of the 19th international conferencé®arallel ProcessingEuro-
Par'13), Felix Wolf, Bernd Mohr, and Dieter Mey €)X Springer-Verlag, Berlin, Heidelberg, 633-644.

[TreibigHagWel10] J. Treibig, G. Hager, and G. W, “LIKWID: A Lightweight Performance-Oriented
Tool Suite for x86 Multicore EnvironmentsParallel Processing Workshops (ICPPW), 2010 39tkrimational
Conference onvol., no., pp.207, 216, 13-16 Sept. 2010.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&autper=5599200&isnumber=5599082

[ZuckermanPerJal08F. Zuckerman, M. Pérache, and W. Jalby. “Fine Tgihliatrix Multiplications on
Multicore”, In Proceedings of the High-Performance Computind?) International Conference, pages 30—
41, Bangalore, 2008.

[ZuckermanEtAl11] Stéphane Zuckerman, Joshua SiletieRob Knauerhase, and Guang R. Gao, 2011.
“Using a "codelet" program execution model for exds machines: position paper”.Pnoceedings of the 1st
International Workshop on Adaptive Self-Tuning Cotimg Systems for the Exaflop EEEXADAPT '11).
ACM, New York, NY, USA, 64-69.

Deliverable number: D9.3
Deliverable nameEvaluation of the Codelet Runtime System on a Teralice
File name: TERAFLUX-D93-v20.doc Page 53 of 53



