
Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 1 of 60

SEVENTH FRAMEWORK PROGRAMME
THEME

FET proactive 1: Concurrent Tera-Device
Computing (ICT-2009.8.1)

PROJECT NUMBER: 249013

Exploiting dataflow parallelism in Teradevice Computing

D5.4 – System Integration Analysis, Measurement and Tuning of the
Reliability System

Due date of deliverable: 31st March 2014
Actual Submission: 19th May 2014

Start date of the project: January 1st, 2010 Duration: 51 months

Lead contractor for the deliverable: UAU

Revision : See file name in document footer.
Project co-founded by the European Commission

within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)
Dissemination Level: PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 2 of 60

Change Control
Version# Date Author Organization Change History
1 03.02.2014 Sebastian Weis UAU Initial document
2 01.03.2013 Arne Garbade,

Sebastian Weis
UAU Integrated core and

NoC-level sections
3 03.02.2014 Amit Fuchs,

Yaron Weisberg
MSFT Integrated operating

system section
4 31.03.2014 Sebastian Weis UAU Revised document after

internal review
6 04.05.2014 Roberto Giorgi UNISI Review

Release Approval
Name Role Date
Sebastian Weis, Arne Garbade Originator 14.03.2014
Theo Ungerer WP Leader 19.03.2014
Roberto Giorgi Project Coordinator for formal deliv erable 09.05.2014

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 3 of 60

TABLE OF CONTENTS

GLOSSARY .. 8

EXECUTIVE SUMMARY ... 9

1 INTRODUCTION ... 10

1.1 FAULT TOLERANCE CONCEPT .. 11

1.1.1 Monitoring of Cores and Interconnect by periodic Heartbeats ... 11

1.1.2 Leveraging Dataflow for Fault Detection and Recovery ... 11

1.2 DOCUMENT STRUCTURE .. 13

1.3 RELATION TO OTHER DELIVERABLES .. 13

1.4 ACTIVITIES REFERRED BY THIS DELIVERABLE .. 14

2 CORE-LEVEL FAULT TOLERANCE IN TERAFLUX ... 15

2.1 FAULT DETECTION .. 15

2.1.1 Sphere of Replication for Double Execution .. 15

2.1.2 Pessimistic Double Execution .. 16

2.1.3 Optimistic Double Execution ... 18

2.2 RECOVERY .. 20

2.2.1 Global Error Recovery ... 20

2.3 QUANTITATIVE RESULTS .. 23

2.3.1 Simulation Methodology ... 23

2.3.2 Fault-free Execution .. 24

2.3.3 Execution under Faults .. 29

2.3.4 Multi Node Behavior ... 30

3 NOC-LEVEL FAULT TOLERANCE IN TERAFLUX ... 33

3.1 IMPACT OF HB MESSAGES ON APP. MESSAGES ... 33

3.1.1 Metrics of interest ... 33

3.1.2 Evaluation Methodology ... 34

3.1.3 Quantification ... 36

3.2 FAULT LOCALIZATION WITH MULTIPLE FAULTS WITHIN THE NOC ... 41

3.2.1 Investigation Methodology ... 41

3.2.2 Applying fault pairs to the NoC ... 42

3.2.3 Quantification ... 47

4 OS-LEVEL FAULT TOLERANCE IN TERAFLUX .. 49

4.1 BASIC ARCHITECTURE .. 49

4.1.1 Clustered Architecture .. 49

4.2 OPERATING SYSTEM GOALS ... 50

4.2.1 Execution Model ... 50

4.2.2 Fault Tolerance ... 50

4.3 RUNTIME ENVIRONMENT ... 50

4.3.1 Memory Arrangement .. 50

4.3.2 Inter-node Communication ... 51

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 4 of 60

4.3.3 Node Failure Tolerance ... 52

4.3.4 Thread Execution Procedure ... 53

4.4 IMPLEMENTATION DETAILS .. 55

4.4.1 Thread Identifier ... 55

4.4.2 Thread Binaries ... 55

4.4.3 Fail Tolerant Synchronization Count ... 56

4.4.4 Integration into TERAFLUX .. 56

4.5 RELATED RESEARCH .. 58

REFERENCES .. 59

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 5 of 60

LIST OF FIGURES

FIGURE 1: INPUT REPLICATION FOR TSCHEDULE INSTRUCTION. .. 12

FIGURE 2: SPHERE OF REPLICATION FOR DOUBLE EXECUTION. .. 15

FIGURE 3: PESSIMISTIC DOUBLE EXECUTION. .. 16

FIGURE 4: OPTIMISTIC DOUBLE EXECUTION WITH REDUCED WAITING TIME. .. 19

FIGURE 5: ESTABLISH GLOBAL CHECKPOINT FOR 4 NODES. .. 22

FIGURE 6: EXECUTION OVERHEAD OF PESSIMISTIC DOUBLE EXECUTION COMPARED TO NON-REDUNDANT EXECUTION WITH HALF OF

THE CORES PER NODE. .. 25

FIGURE 7: EXECUTION OVERHEAD OF OPTIMISTIC DOUBLE EXECUTION COMPARED TO NON-REDUNDANT EXECUTION WITH HALF OF

THE CORES PER NODE. .. 26

FIGURE 8: OVERHEAD OF SPECULATIVE OPTIMISTIC DOUBLE EXECUTION WITH NODE CHECKPOINTING AT AN INTERVAL OF 10,000

CYCLES COMPARED TO NON-REDUNDANT EXECUTION. .. 28

FIGURE 9: OVERHEAD OF PESSIMISTIC DOUBLE EXECUTION IN THE CASE OF A FAULT RATE OF 0.01 FAULTS PER SECOND COMPARED TO

NON-FAULTY PESSIMISTIC DOUBLE EXECUTION. .. 29

FIGURE 10: OVERHEAD OF OPTIMISTIC DOUBLE EXECUTION IN THE CASE OF A FAULT RATE OF 0.01 FAULTS PER SECOND COMPARED

TO NON-REDUNDANT EXECUTION WITHOUT FAULTS. .. 30

FIGURE 11: SCALABILITY OF PESSIMISTIC AND OPTIMISTIC DOUBLE EXECUTION FOR 1 TO 8 NODES. EACH NODE COMPRISES 16 CORES.

 ... 31

FIGURE 12: THROUGHPUT OF APPLICATION MESSAGES UNDER TRAFFIC PATTERN RANDOM. ... 36

FIGURE 13: THROUGHPUT OF APPLICATION MESSAGES UNDER TRAFFIC PATTERN HOTSPOT. ... 36

FIGURE 14: APPLICATION MESSAGE LATENCY UNDER TRAFFIC PATTERN RANDOM. .. 37

FIGURE 15: APPLICATION MESSAGE LATENCY UNDER TRAFFIC PATTERN HOTSPOT. .. 37

FIGURE 16: JITTER AT 0.0001 FOR TRAFFIC PATTERN RANDOM. ... 38

FIGURE 17: JITTER AT 0.001 FOR TRAFFIC PATTERN RANDOM. ... 38

FIGURE 18: JITTER AT 0.01 FOR TRAFFIC PATTERN RANDOM. ... 38

FIGURE 19: JITTER AT 0.00001 FOR TRAFFIC PATTERN HOT-SPOT. ... 39

FIGURE 20: JITTER AT 0.001 FOR TRAFFIC PATTERN HOT-SPOT. ... 39

FIGURE 21: JITTER AT 0.01 FOR TRAFFIC PATTERN HOT-SPOT. ... 39

FIGURE 22: BLIND SPOT DUE TO F1. ... 42

FIGURE 23: CORRESPONDING MATRIX OF SUSPICIOUS NETWORK COMPONENTS. .. 42

FIGURE 24: RESOLVED BLIND SPOT BY MOVING THE FDU TO A DIFFERENT CORE... 43

FIGURE 25: BLIND SPOTS DUE TO F1 AND F4. ... 43

FIGURE 26: CORRESPONDING MATRIX OF SUSPICIOUS NETWORK COMPONENTS. .. 43

FIGURE 27: PHANTOM FAULT DUE TO F1 AND F2. ... 45

FIGURE 28: CORRESPONDING MATRIX OF SUSPICIOUS NETWORK COMPONENTS. .. 45

FIGURE 29: EXAMPLE SCENARIO FOR THE IMPLICATION OF SUCCESSIVE OCCURRING MULTIPLE FAULTS .. 46

FIGURE 30: STATUS MATRIX AFTER PHASE #2 FOR SIMULTANEOUSLY OCCURRED FAULTS. .. 47

FIGURE 31: STATUS MATRIX AFTER PHASE #2 FOR SUCCESSIVELY OCCURRED FAULTS. .. 47

FIGURE 32: LOGICAL SYSTEM VIEW. .. 50

FIGURE 33: MEMORY ARRANGEMENT ... 51

FIGURE 34: SIMULATION OVERVIEW ... 57

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 6 of 60

LIST OF TABLES

TABLE 1: BASELINE NODE CONFIGURATION .. 24

TABLE 2: TERAFLUX-SPECIFIC PARAMETERS .. 24

TABLE 3: NODE UTILIZATION OF PESSIMISTIC AND OPTIMISTIC DOUBLE EXECUTION (NO-FAULTS) .. 27

TABLE 4: SPEEDUP OF OPTIMISTIC DOUBLE EXECUTION COMPARED TO PESSIMISTIC DOUBLE EXECUTION (NO-FAULTS). 27

TABLE 5: OVERHEAD OF OPTIMISTIC DOUBLE EXECUTION COMPARED TO PESSIMISTIC DOUBLE EXECUTION WITHOUT NODE

CHECKPOINTS. .. 29

TABLE 6: OVERVIEW OF THROUGHPUT, LATENCY, AND MAXIMUM DELAY FOR APPLICATION MESSAGES 40

TABLE 7: DIFFERENT PROBLEMATIC FAULT PATTERN REGARDING LOCATION AND ORIENTATION .. 44

TABLE 8: QUANTIFICATION OF PATTERNS ... 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 7 of 60

List of contributors to the writing of the document.

Sebastian Weis, Arne Garbade, Theo Ungerer
University of Augsburg

Yaron Weinsberg, Amit Fuchs
Microsoft Research and Development

© 2009-14 TERAFLUX Consortium, All Rights Reserved
Document marked as PU (Public) is published in Italy, for the TERAFLUX Consortium, on the www.teraflux.eu web site
and can be distributed to the Public.
The list of author does not imply any claim of ownership on the Intellectual Properties described in this document.
The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors
or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of
the information contained in this document.
This document is furnished under the terms of the TERAFLUX License Agreement (the “License”) and may only be used or
copied in accordance with the terms of the License. The information in this document is a work in progress, jointly
developed by the members of TERAFLUX Consortium (“TERAFLUX”) and is provided for informational use only.
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets owned
by or licensed to TERAFLUX Partners. The partners reserve all rights with respect to such technology and related materials.
Any use of the protected technology and related material beyond the terms of the License without the prior written consent
of TERAFLUX is prohibited. This document contains material that is confidential to TERAFLUX and its members and
licensors. Until publication, the user should assume that all materials contained and/or referenced in this document are
confidential and proprietary unless otherwise indicated or apparent from the nature of such materials (for example,
references to publicly available forms or documents).
Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited without
the prior written consent of TERAFLUX or such other party that may grant permission to use its proprietary material. The
trademarks, logos, and service marks displayed in this document are the registered and unregistered trademarks of
TERAFLUX, its members and its licensors. The copyright and trademarks owned by TERAFLUX, whether registered or
unregistered, may not be used in connection with any product or service that is not owned, approved or distributed by
TERAFLUX, and may not be used in any manner that is likely to cause customer confusion or that disparages TERAFLUX.
Nothing contained in this document should be construed as granting by implication, estoppel, or otherwise, any license or
right to use any copyright without the express written consent of TERAFLUX, its licensors or a third party owner of any
such trademark.
Printed in Siena, Italy, Europe
Part number: please refer to the File name in the document footer.

DISCLAIMER
EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUX SPECIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS “AS IS” WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS, DATA
OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 8 of 60

Glossary
D-FDU Distributed Fault Detection Unit

DF-Thread A dataflow thread

D-TSU Distributed Thread Scheduler Unit

ECC Error Correction Code

EDC Error Correction and Detection

FM Frame Memory

Leading Thread Represents the forerunning thread in the
Double Execution approach

L-FDU Local Fault Detection Unit

L-TSU Local Thread Scheduler Unit

MAPE Acronym for Monitoring, Analysing,
Planning, and Executing

NoC Network-on-Chip

Node Group of cores and additional
TERAFLUX hardware units

SPSC Single Producer Single Consumer

TDMA Time Division Multiple Access

Trailing Thread Represents the trailing thread in the
Double Execution approach

QoS Quality of Service

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 9 of 60

Executive Summary
This deliverable reports on the research carried out in the context of DoW Task 5.4 (project months
36 -51) “System Integration Analysis, Measurement and Tuning of the Reliability System”:

• We integrated optimistic and pessimistic Double Execution, two redundant thread execution
mechanisms, in the TERAFLUX architecture.

• We integrated a global error recovery mechanism into the TERAFLUX architecture.
• We quantified the overhead of pessimistic and optimistic Double Execution and local and

global error recovery in the TERAFLUX architecture.
• We quantified the overhead of heartbeat messages in the NoC and developed a fault

localization scheme in the interconnection network for multiple link faults.
• MSFT integrated their fault tolerant operating system concept into the architecture.

 Hence, all goals of WP5 for the fourth year were achieved.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 10 of 60

1 Introduction
In the Deliverables D5.1, D5.2, and D5.3 we presented concepts to improve the on-chip reliability for
a future parallel architecture. These concepts are applied at different levels: the core level, NoC level,
and OS level. At core and OS level, we were able to leverage the coarse-grained dataflow semantics
in order to implement efficient fault detection (Double Execution) and recovery mechanisms (thread
restart recovery). On NoC level we exploited heartbeat monitoring to incorporate a network-on-chip
fault localization mechanism.

This Deliverable D5.4 focuses on System Integration Analysis, Measurement and Tuning of the
Reliability System.

In detail Task 5.4 requests:

“In this Task the developed techniques are integrated more tightly into the overall architecture. To
evaluate the benefits and the performance of the proposed methods, the system is measured with
specific benchmarks and applications. The developed techniques will be tuned and optimized for fault
detection capability and minimal space and runtime overhead. Further verification of the reliability
features is performed through pilot studies.”

On the core-level, UAU developed optimistic and pessimistic Double Execution variants to improve
the runtime overhead induced by the redundant thread execution of Double Execution. Optimistic
Double Execution also demanded for an additional recovery mechanism. Therefore, we extended the
node recovery mechanisms proposed in Deliverable D5.3 to support a coordinated global checkpoint
mechanism. Finally, we integrated optimistic and pessimistic Double Execution and local and global
thread recovery in the TERAFLUX simulator [1] [2], developed in WP7. Based on this integration,
we were able to quantify the overhead induced by optimistic and pessimistic Double Execution, as
well as the overhead induced by the coordinated global checkpoint mechanism. Finally, we also
investigated the recovery overhead for a system that is constantly suffering from a high rate of
transient faults.

On NoC-level, UAU deepened the investigation from year two (Deliverable D5.2) of the impact of
message based fault tolerance mechanisms on application messages. We could show that under
different traffic patterns (applied to application messages) the proposed Staircase routing strategy can
significantly relax the impact of Heartbeat messages within the NoC. Furthermore, we examined the
capabilities of the fault localization technique developed in year three (Deliverable D5.3) regarding
multiple faults within the NoC. We identified problematic fault patterns (distributed in space and
time) of multiple faults, which prevent successful fault localizations and give a quantitative result on
the portion of these patterns compared with all possible patterns.

On OS-level, MSFT focused on their distributed, reliable operating system to manage the dataflow
thread execution. They integrated their work also in the COTSon simulator, which implements a
shared memory model for highly-parallel architecture, with acquire/release consistency.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 11 of 60

1.1 Fault Tolerance Concept
Since most of the optimizations and evaluations are based on mechanisms reported in earlier
deliverables and publications [3] [4], this section includes a short recap of the background work
described in the Deliverables D5.1, D5.2 and D5.3. For the reader’s convenience, we start with a
summary of the previously introduced on-chip fault tolerance concepts. For a more detailed
discussion of these concepts please refer to the Deliverables D5.1, D5.2, and D5.3.

1.1.1 Monitoring of Cores and Interconnect by perio dic Heartbeats

1.1.1.1 Fault Monitoring by periodic Heartbeats
In order to transmit fault information from the core-local FDUs (L-FDU) to the distributed FDU
(D-FDU), we proposed special status messages (heartbeats), carrying health state information of the
respective processor core. To gain the core status information, the L-FDU may read the performance
counter registers, as they are available in current x86 cores. Once gathered the information, the L-
FDU generates a message and stores the gathered information in it. Before sending this status
message to the affiliated D-FDU, the L-FDU has to wait until it gets a certain time slot. These time
slots are meant to separate heartbeat messages within the interconnection network. The reason for the
separation lies in the D-FDU, since a missing heartbeat message indicates the loss of a processor core
(without the distinction of a broken core or a disconnected core).

1.1.1.2 Fault Localization on NoC-Level
The fault localization within the interconnection network is also based on the periodic heartbeat
messages. Together with a deterministic routing strategy and a prioritization method (Quality of
Service, QoS), we are able to calculate the estimated arrival times of all heartbeat messages. The
precise arrival time is used to check whether a heartbeat message was transmitted correctly (in terms
of its route through the network), or not. When a message is delivered late, we can infer that it was not
transmitted via the intended route, which indicates that there is a faulty element somewhere on this
route. In this first step, we assume all the network components corresponding to this route to be
suspicious. On the other hand, if a heartbeat message is delivered in time, we may rehabilitate former
suspected elements corresponding to this route. Doing this for all heartbeat messages and their routes
through the network, we are able to localize precisely single faults within the interconnection
network. For a detailed presentation we refer the reader to Section 3.1.1 of Deliverable D5.3.

1.1.2 Leveraging Dataflow for Fault Detection and R ecovery
As stated before, the fault detection and recovery mechanisms exploit the TERAFLUX dataflow
execution model.

1.1.2.1 Fault Detection by Double Execution
The concept of fault detection is implemented by redundant execution of dataflow threads, called
Double Execution. The basic Double Execution mechanism is able to support special and temporal
redundancy. Double Execution leverages the dataflow execution semantic to provide efficient
solutions for thread duplication, input replication, and output comparison.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 12 of 60

Thread Duplication. Since dataflow threads are side-effect free and twrites are only assigned
once before the thread starts (for the T* instructions s. D6.2, D7.4 and [16]), only the continuation of
a thread needs to be copied for Double Execution within a node. The dataflow execution model
thereby eases the dynamic duplication of the threads for Double Execution.

As Double Execution uses the dataflow threads for redundant execution, the input data of the
redundant dataflow threads must be consistently replicated.

Input Replication The execution of a dataflow thread only depends on its thread frame. Since the
thread frame is immutable after the synchronization count has reached zero, both redundant threads
are allowed to read the input data from the same thread frame, because data inconsistencies between
redundant threads induced by race conditions of concurrent tread and twrite operations are
impossible.

Figure 1: Input replication for tschedule instruction.

However, beside the input data from the thread frame, a redundant dataflow thread can issue
tschedule instructions to dynamically create subsequent threads. In Deliverable D5.3, we have
described a technique to guarantee consistent thread IDs for redundant threads (see Figure 1).

Synchronization and Output Comparison. Double Execution threads are synchronized for result
comparison on thread level. Therefore, the synchronization frequency depends on the executed
application and the length of the dataflow threads. In order to reduce the synchronization overhead,
CRC-32 signatures of the redundant threads’ write sets are created and compared. Faults can only be
detected, when the thread pairs synchronize, which means that the average fault detection latency
directly depends on the application's average dataflow thread length.

Optimizing Double Execution Based on the original Double Execution concept, we further
developed two different Double Execution variants, which have influence on the recovery mechanism
and the containment of errors in the architecture:

• Pessimistic Double Execution pessimistically assumes that faults are frequent and recovery is
often triggered.

• Optimistic Double Execution tries to optimize the fault-free case by an optimistic commit of
the dataflow threads.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 13 of 60

1.1.2.2 Recovery
In the Deliverables D5.2 and D5.3, we developed a thread restart mechanism and a node recovery
mechanism, which both make use of the dataflow execution model.

Thread Restart Recovery The functional semantic of the execution model prevents dataflow threads
from accessing the global memory before the tdestroy instruction (for the T* instructions s. D6.2,
D7.4 and [16]) is called by a thread. This enables the D-TSU to directly control all memory accesses,
which are able to manipulate the global system state. Accordingly, the dataflow thread boundaries can
be seen as inherent execution checkpoints.

Based on the side-effect free execution model, which is supported by the TERAFLUX architecture
through the core-local write buffers and the speculatively created continuations (see Deliverable
D5.3), the D-TSU can restart dataflow threads to recover from faults.

Optimizing Recovery Although the thread restart recovery is transparent to the application level, the
programmer, and the compiler, its recovery capability is restricted to the length of the dataflow
threads of the application. This means, long latency fault detection mechanisms are not supported by
the thread restart recovery. Furthermore, optimistic Double Execution makes it impossible to use
thread restart recovery. Therefore, we proposed a node checkpoint mechanism in Deliverable D5.3. In
this Deliverable we extended node checkpointing to a coordinated global checkpointing mechanism
which supports global checkpointing of the TERAFLUX system across nodes.

1.2 Document structure
In Section 2 we present pessimistic and optimistic versions of Double Execution of dataflow threads.
Additionally to the thread restart recovery, we describe a global recovery mechanism for the
TERAFLUX system. Section 2 also includes quantitative results regarding the induced overhead of
these mechanisms.

Section 3 presents extended work on the fault localization mechanism, including an investigation of
the impact of prioritized heartbeat messages upon application messages, an extensive investigation on
multiple faults within the interconnection network, and an extension to our previously started network
topology consideration from a fault tolerance perspective.

 Section 4 describes the operating system fault tolerance mechanism across different TERAFLUX
nodes.

1.3 Relation to other deliverables
• The monitoring concept, the heartbeat message protocols and the D-FDU MAPE cycle are

part of Deliverable D 5.1.
• The Double Execution principle and fault tolerant hardware extensions are described in the

Deliverables D5.2 and D5.3.
• The described recovery mechanisms are also used in the TERAFLUX abstraction layer

described in D6.4.
• Deliverable D7.5 describes the example execution of an optimistic and pessimistic Double

Execution run for one TERAFLUX node for the Fibonacci benchmark.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 14 of 60

1.4 Activities referred by this deliverable
This deliverable refers to the research carried out in Task 5.4 – System Integration Analysis,
Measurement and Tuning of the Reliability System and also concerns the fulfillment of Milestone
M5.4.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 15 of 60

2 Core-Level Fault Tolerance in TERAFLUX
This section starts with a description of pessimistic and optimistic Double Execution. Furthermore, a
global recovery mechanism will be described and finally evaluation results of the execution overhead
are given.

2.1 Fault Detection
Compared to prior redundant execution mechanisms, like [5] [6] [7], Double Execution (see
Deliverables D5.2 and D5.3) makes extensive use of the TERAFLUX dataflow execution principle.
As described, dataflow execution is leveraged for efficient solutions of input replication, redundant
thread synchronization, and output comparison. Beside the advantages inherent to loosely-coupled
redundant execution mechanisms, Double Execution does not require permanent coupling between
redundant execution units, reducing the performance degradation when an odd number of processing
elements is permanently broken and provides support for dynamic time and spatial execution.

In the remainder of this section, pessimistic and optimistic Double Execution mechanisms are
introduced to either optimize for fast recovery or fast redundant thread execution. Finally, both
Double Execution variants are qualitatively compared with redundant execution schemes for control-
flow based multi-cores, regarding their input replication, thread synchronization, and output
comparison techniques and the implications for their use in massively-parallel architectures.

2.1.1 Sphere of Replication for Double Execution
The sphere of replication defines the hardware region, where faults can be detected by a redundant

execution mechanism. Input data that enters the sphere must be replicated in a consistent way for both
execution instances. Likewise, data that leaves the sphere of replication must be checked for faults,

otherwise faults cannot be detected at a later stage of execution.

Figure 2: Sphere of Replication for Double Execution.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 16 of 60

Figure 2 shows the sphere of replication for transient, intermittent, and permanent faults used for the
enhanced fault tolerant TERAFLUX architecture.

Each sphere is restricted to one processor core, incorporating all core-local hardware components, i.e.
the core itself, the private cache, the frame memory (FM), and the L-FDU. However, the write buffer
must be safeguarded by ECC, since the write set of a thread is kept in this buffer after the signature
has been created. Hence, a fault in the write buffer after the CRC-32 signature was created cannot be
detected by Double Execution.

For the rest of the system, i.e. interconnection networks, off-chip memory, and the memory controller,
we assume that efficient information redundancy mechanisms, like ECC or EDC, are employed.
Furthermore, we assume that the D-TSU and the D-FDU are safeguarded by special hardware
designs.

2.1.2 Pessimistic Double Execution
Pessimistic Double Execution is a variant of Double Execution, which pessimistically assumes that
faults occur frequent and recovery operations must be triggered often. As a consequence, Pessimistic
Double Execution tries to reduce recovery costs at the expense of redundant execution performance.

Figure 3: Pessimistic Double Execution.

2.1.2.1 Execution Principle
Figure 3 shows, how Pessimistic Double Execution works:

1. Thread start: The leading thread is immediately started, when a core is available and ready
for execution. The trailing thread is started, when the next core in the node becomes available.
The time between the start of the leading thread and the trailing thread is called start slack.
Since threads are started on their availability, the start slack is determined by the utilization of
the node.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 17 of 60

2. Thread execution: During execution, the core of the trailing thread buffers all twrite (and
twritep) instructions in its write buffer. Simultaneously, the L-TSU creates a CRC-32
signature of all twrites (and twriteps) instructions, incorporating the target thread ID,
the target address, and the data. The L-FDU of the leading thread’s core also creates a CRC-
32 signature of all twrites (and twriteps); however, after signature creation the
twrites (twriteps) of the leading thread are discarded. Since only the trailing thread
buffers twrites, the leading thread’s core can immediately schedule waiting threads, when
the leading thread has finished. Other write operations to the thread local storage (heap or
stack) do not need to be buffered or incorporated in the signature, since they will be
automatically overwritten after recovery.

3. Thread end: When a thread has finished execution, indicated by a tdestroy instruction,
the core's L-FDU sends the CRC-32 signature to the D-FDU. Since the results of the leading
thread are not buffered by its core, the core is immediately ready to execute the next dataflow
thread. In contrast, the trailing thread's core has buffered the results in the write buffer and
must wait until result comparison to be able to commit them to global memory.

4. Result comparison: The D-FDU, which has been notified by the D-TSU about duplication of
the redundant continuation, waits for the signatures of both the leading and the trailing
threads, compares them and informs the D-TSU and the waiting trailing thread about the
result.

5. Thread commit or recovery: In case of a non-faulty execution of both threads, the PE
redirects the buffered writes of the trailing thread to the TSU, which commits them to the
global memory and reduces the synchronization counts of the succeeding dataflow threads.
Finally, the D-TSU subsequently deletes the continuations of the leading and the trailing
thread. If a fault was detected, the D-TSU instructs the D-TSU to flush the core-local write
buffer with the write set of the leading thread and discards all continuations created by the
faulty thread.

2.1.2.2 Performance Overhead
Beside the doubled core utilization inherent to all redundant execution schemes, the overhead of
Double Execution compared to a conventional dataflow execution is influenced by two factors:

A longer thread execution time (slack and signature verification) and the idle time of the trailing
thread (in case the leading thread finishes later than the trailing thread).

2.1.2.2.1 Longer Thread Execution Time
For the global progress of the system, Pessimistic Double Execution behaves like a conventional
dataflow execution, since only the trailing thread is allowed to commit its results to global memory.
However, compared to conventional dataflow execution, the time between start (of the leading thread)
and commit (of the trailing thread) is longer than for a non-redundant dataflow execution. The longer
execution time is affected by two factors: The start slack and the comparison latency both lead to a
deferred commit of the trailing thread, and hence to longer thread execution time.

2.1.2.2.2 Idle Time of the Trailing Thread

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 18 of 60

While the core of the leading thread is immediately released for subsequent threads after tdestroy
has been retired, the trailing thread has to buffer the results of the dataflow execution in its write
buffer. During result comparison, the core of the trailing thread cannot execute subsequent dataflow
threads, since the core's write buffer would be otherwise overwritten. Therefore, the core of the
trailing thread is blocked for further dataflow threads until the D-FDU has finished the result
comparison and the core’s write buffer has been committed.

The blocking time is minimized, when the leading thread always finishes execution before the trailing
thread. In this case, the core is only blocked for other leading threads until the D-FDU has compared
the results and confirmed a fault free execution to D-TSU, which triggers the commit of the redundant
execution.

2.1.2.3 Error Containment
Since pessimistic Double Execution buffers the computational results of the trailing thread in the
core-local write buffer, possible errors cannot be distributed to the global system state, i.e. the global
memory, which can be accessed by all cores of the system. In other words, error propagation for
pessimistic Double Execution is contained by the sphere of replication. As no global memory is
written until pessimistic Double Execution ensures the fault-free execution by comparison of the
signatures, the global system state does not need to be recovered. Furthermore, since communication
between threads is only allowed, when dataflow threads commit their results, no faults are propagated
until the fault-free execution is guaranteed. This means that only the core must be recovered in case of
a faulty thread execution.

2.1.3 Optimistic Double Execution
To eliminate the performance overhead introduced with pessimistic Double Execution for longer
thread execution time and the core’s idle time and to increase the parallelism of Double Execution, the
D-FDU can dynamically decide to use Optimistic Double Execution. Hence, the D-FDU may analyze
that faults are very rare events and most threads can be executed without suffering from a fault.
Accordingly, there is no need for a fast and simple recovery mechanism, but for an efficient redundant
execution. In this case the D-FDU can choose Optimistic Double Execution to speed up the fault free-
case of Double Execution.

2.1.3.1 Execution Principle
In detail, Optimistic Double Execution works as follows:

1. Thread start: Similar to Pessimistic Double Execution, the redundant threads are started on
core availability.

2. Thread execution: During execution, the leading thread's core buffers all twrite
operations in its core-local write buffer. Simultaneously, the L-TSU creates a CRC-32
signature of all twrites (and twriteps). The L-TSU of the trailing thread’s core also

creates a CRC-32 signature of all twrites, however, the (twrites) of the leading thread
are discarded immediately after signature creation.

3. Thread end: When the leading thread has finished execution, indicated by tdestroy, the
L-FDU sends the CRC-32 signature to the D-FDU. Furthermore, the core executing the

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 19 of 60

leading thread immediately commits the results to global memory without waiting for the D-
FDU to compare both signatures and the synchronization counts of the succeeding threads are
decremented. Unlike in pessimistic Double Execution, the D-TSU can immediately start
threads, when their synchronization count has reached zero without waiting for the redundant
threads.

4. Result comparison: The D-FDU waits for the signatures of both the leading and the trailing
threads and compares them.

5. Thread commit or recover: In the case of a non-faulty execution, the D-TSU can proceed as
usual. If a fault was detected, the FDU must trigger the global system recovery, described in
Section 2.2.

Figure 4: Optimistic Double Execution with reduced waiting time.

2.1.3.2 Performance Overhead
Compared to the pessimistic variant, optimistic Double Execution increases the utilization of
additional parallelism, since unchecked threads are allowed to commit their results and to
optimistically spawn succeeding threads. Furthermore, result checking can be deferred to a later point
in time without reliability implications. The direct commit of the leading thread completely eliminates
the core blocking and hence the idle time.

In other words, optimistic Double Execution may reduce the performance overhead induced by
Pessimistic Double Execution. The increased thread execution time is reduced, since the leading
thread is allowed to immediately commit to the global system state without waiting for the trailing
thread. As a consequence, the trailing thread's core does not need to be blocked to wait for signature
comparison by the FDU, since the results have already been committed by the leading thread.

2.1.3.3 Error Containment
The anticipated commit of the leading thread, makes it possible that erroneous results have already
been written to the global system state and may be consumed by subsequent threads. As such, errors
may be spread over the whole system until detection.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 20 of 60

Since errors can be at any address in the distributed shared memory after detection, the recovery
mechanism must recover the complete global memory across DF-thread boundaries. In Section 2.2,
we propose an efficient global system recovery mechanism for single-node and multi-node
TERAFLUX systems, based on the coarse-grained dataflow execution model, which can be used
together with optimistic Double Execution.

2.2 Recovery
The TERAFLUX dataflow execution model does not only provide advantages for fault detection, but
also for recovery from faults.

In this section, we will describe a global recovery mechanism, which exploits the coarse-grained
dataflow execution model. Since we must assume that fault rates in future systems will raise, we
propose a hierarchical fault recovery approach. This means, that we expect that some components,
like the cores’ pipelines and the local caches are more often affected by faults. In this sense, we use a
local recovery mechanisms at core level, which exploits the functional semantic of the dataflow
execution model to restart threads. This enables all other cores to make forward progress without
global synchronization and wasting fault free computations due to recovery actions. On the other side,
some faults may have longer detection latencies than the shortest thread runtime. Furthermore, some
faults may affect components, which are not covered by the sphere of recovery of the thread restart
mechanism. For instance, intermittent faults within the D-TSU, may lead to wrong scheduling
decisions or synchronization counts of the system. Furthermore, in some cases longer checkpoint
intervals are required, e.g. to store the global system state on a fail-safe storage. As a consequence, we
developed coordinated node local checkpointing, which is based on the TERAFLUX dataflow
execution.

The optimistic Double Execution mechanism in particular requires a global recovery mechanism,
since a dataflow thread is allowed to commit possibly faulty results to the main memory without
waiting for the redundant thread to compare the results.

2.2.1 Global Error Recovery
Global Error Recovery in TERAFLUX implements a coordinated node-local backward error recovery
scheme for a highly parallel architecture. Hence, the TERAFLUX system periodically creates global
checkpoints, which describe a global state of the system. Coordinated means that the node’s D-FDUs
coordinate the point in time, when a checkpoint will be created, while node-local means that after the
nodes have agreed on a checkpoint, each D-FDU will create a checkpoint of its node.

2.2.1.1 Node Checkpoints
The coordinated global checkpointing uses the node checkpointing already described in Deliverable
D5.3. This Section presents a recap of node checkpointing.

The D-TSU can establish a checkpoint of its node’s state after each thread’s commit. To create the
checkpoint, the D-TSU determines the start and end addresses of the current frame memory region in
the node memory (We assume that the D-TSU can access the global address space, where the frame
memory regions are mapped). Furthermore, the D-TSU creates a backup of its current context and
stores it in the stable external main memory (see next subsections for the evaluation).

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 21 of 60

After the checkpoint has been established all subsequent twrites to the checkpoint’s memory
region will be logged. This means, the D-TSU maintains a log of all changes to the thread frames
within the checkpoint’s memory region. Newly allocated thread frames must not be recovered and are
created outside of the checkpoint’s frame memories.

When a fault is detected, the D-TSU recovers to the last checkpoint by restoring the frame memory
log and its backup context.

Maintaining a new global checkpoint is done by updating the start and the end addresses of the current
frame memory region and storing the current D-TSU context in the stable main memory. Finally, the
log of the previous checkpoint is discarded. Compared to global checkpoint mechanisms, with this
mechanism, we do not explicitly have to track the communication between the cores. Additionally, we
only need to keep a backup of the current frame memory region, instead of maintaining a log of the
complete main memory.

2.2.1.2 Coordinated Global Checkpoint
Creating a global checkpoint of the whole system is composed of two steps. First, all nodes
synchronize to agree that a global checkpoint will be taken.

Therefore, all nodes complete the dataflow write operations currently in flight and forbid subsequent
threads to commit their results to the distributed shared memory. Second, when all nodes have agreed
on the checkpoint, each node starts to create a node-local checkpoint. After this has been done, the
system can proceed with the thread execution.

To create a checkpoint, the system complies with the following checkpoint protocol to coordinate a
new global checkpoint (see Figure 5):

• Synchronise
1. Synchronise with all D-FDUs

� D-TSUs finish their outstanding commits
2. ACK from all D-FDUs

• Create Node Checkpoint
3. Send messages to start checkpoint

� All nodes create node checkpoints
� During checkpoint creation local nodes can proceed without committing to

main memory
4. ACK that the new checkpoints have been created

• Resume Execution on all Nodes

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 22 of 60

 Figure 5: Establish Global Checkpoint for 4 Nodes.

When the D-FDU has detected a fault, it triggers the Global Error Recovery. The global recovery
works in the same way as the global checkpoint mechanism:

• Synchronise
1. Synchronise with all D-FDUs
2. D-TSUs stop their execution
3. ACK from all D-FDUs

• Restore Node Checkpoint
1. Send messages to restore prior checkpoint
2. All nodes rollback their state
3. ACK from all D-FDUs that node recovery has been finished

• Resume Execution on all Nodes

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 23 of 60

2.3 Quantitative Results
In this section, we present quantitative results for optimistic and pessimistic Double Execution and
local and global recovery mechanisms.

2.3.1 Simulation Methodology
The simulation results were obtained from the TERAFLUX simulator. We extended the TERAFLUX
simulator to support optimistic and pessimistic Double Execution and thread restart recovery and
global checkpointing. We used 4 Benchmarks, which were compiled with the TERAFLUX
OpenStream compiler:

• Cholesky (256x256 Matrix, Block Size: 8x8)

• Fibonacci (31, cut off: 19)

• Seidel (256x256 Matrix, Block Size: 8x8)

• Sparse LU (256x256 Matrix, Block Size: 8x8)

Furthermore, we hand-coded a matrix multiplication (160x160 Matrix, Block Size: 16x16), which
also uses the T*-instruction set extension (see also D6.2, 7.4 and [16]).

Finally, we show results that the redundant execution approach is able to scale with the number of
nodes in the system.

2.3.1.1 System Configurations
We evaluated different single-node and multi-node configurations of the fault-tolerant TERAFLUX
architecture.

2.3.1.2 Baseline Node Configuration Parameters
The baseline node configuration has 1, 2, 4, 8, 16, or 32 cores, respectively. Each core is operating at
1GHz and consists of an out-of-order pipeline with 5 stages, a maximum instruction window size of
128 and a maximum fetch and commit width of 2 instructions per cycle. The private cache hierarchy
of each core is comprised of separate 64kB L1 instruction and data caches and a 256kB unified L2
cache. A special frame cache, which is exclusively used to store thread frames, is optional. The
assumed memory bus latency is 30 cycles, while the memory latency is 150 cycles. Table 1 depicts
the parameters of the baseline machine in more detail.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 24 of 60

Table 1: Baseline Node Configuration

Parameters Values

Cores 1, 2, 4, 8, 16, 32
Core Parameters Out-of-Order, Pipeline length: 5, Fetch Width: 2,

Commit Width: 2, Instruction Window: 128
L1 I- and D-Cache (private per core) Size: 64kB, Line Size: 64, Sets: 2,

Hit Latency: 1 cycle
Unified L2-Cache (private per core) Size: 256kB, Line Size: 64, Sets: 16,

Hit Latency: 13 cycles
Frame Memory (FM) (private per core) Size: 64kB, Line Size: 64, Sets: 2,

Hit Latency: 1 cycle
Memory Bus Latency(L2/FM to memory) 30 cycles

Memory Latency 150 cycles

2.3.1.3 TERAFLUX specific parameter
For the TERAFLUX specific parameters we assume that twrites to write buffer take 3 cycles,

while twrites to local main memory take 30 cycles, in average. For the inter-node twrites, we
assume 150 cycles.

Table 2: TERAFLUX-specific Parameters

Parameters Values
twrite inter-node Latency 150 cycles

twrite Latency (write buffer) 3 cycles

twrite Latency (commit to memory) 30 cycles

tschedule Latency 40 cycles

tdestroy Latency 40 cycle

We simulated single node configurations with 1, 2, 4, 8, 16, and 32 cores.

We also simulated different multi-node configurations with 16 cores from one to 8 nodes in order to
determine the scalability of our fault tolerance solutions.

2.3.2 Fault-free Execution
This Section presents the overhead for pessimistic and optimistic Double Execution and optimistic
Double Execution in combination with node checkpointing.

2.3.2.1.1 Execution Overhead for Double Execution
It is inherent to all redundant execution approaches that they consume twice of the resources
compared to a non-fault-tolerant execution. Since this overhead is inevitable, we compare Double
Execution in relation to a non-fault tolerant execution with half of the cores.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 25 of 60

The Execution Overhead describes the fraction of increase in execution time (in case of no-faults)
compared to a non-fault-tolerant execution with half of the cores. Figure 6 shows the results for
single-node execution for pessimistic Double Execution. It can be seen that the overhead for
pessimistic Double Execution without global checkpointing induces an overhead between 2% and
23% compared to a non-fault tolerant execution with half of the cores. Furthermore, the results depict
that the overhead remains constant even when the cores per node are scaled-up.

As described in Section 2.3, the main overhead for pessimistic Double Execution is induced by the
increased idle time for the result comparison of the D-FDU. This is also the reason for the higher
overhead for Seidel, Cholesky, and Sparse LU, since these benchmarks have a high number of inter-
thread dependencies, which prevent subsequent threads to get started until the trailing thread has
committed.

Figure 6: Execution Overhead of pessimistic Double Execution compared to non-redundant execution with

half of the cores per node.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 26 of 60

Figure 7 depicts the overhead for optimistic Double Execution. Compared to pessimistic Double
Execution, the execution overhead can be reduced for all benchmarks. In particular, Cholesky and
Seidel can now better utilize the node. This results from the effect that Cholesky and Seidel are not
able to fully utilize the cores over the complete execution time (cf. Table 3), due to parts with low
parallelism. However, the idle cores can be used by the optimistic Double Execution, since the trailing
threads have no data dependencies and must never wait for input results. Instead, they can be
immediately scheduled for execution, whenever a core becomes available for execution. The Seidel
kernel, by contrast, is not able to fully utilize the node, due to the small workload. As a result,
optimistic Double Execution is also not able to fully utilize the nodes with higher core counts. In this
case, the speedup of optimistic Double Execution remains low.

Figure 7: Execution Overhead of optimistic Double Execution compared to non-redundant Execution with

half of the cores per node.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 27 of 60

Table 3 shows the node utilization for pessimistic and optimistic Double Execution. It can be seen that
optimistic Double Execution increases the node utilization for all benchmarks. The increased node
utilization comes from the reduced idle time, which is eliminated by Double Execution. Furthermore,
the Cholesky and Seidel benchmark are not able to fully utilize the node, which in turn leads to a
negative overhead, since Double Execution can use the under-utilized cores for the redundant threads.

Table 3: Node Utilization of pessimistic and optimistic Double Execution (no-faults)

Benchmark/Cores 2 4 8 16 32

 Pes. Opt. Pes. Opt. Pes. Opt. Pes. Opt. Pes. Opt.

Cholesky 94% 99% 88% 98% 87% 96% 82% 92% 74% 80%

Fibonacci 99% 99% 99% 99% 99% 99% 99% 99% 99% 99%

Matmul 99% 99% 99% 99% 99% 99% 98% 99% 97% 97%

Seidel 97% 99% 93% 99% 93% 99% 92% 98% 90% 96%

Sparse LU 97% 99% 98% 99% 98% 99% 95% 97% 89% 90%

Table 4 depicts the speedup of optimistic Double Execution for all benchmarks compared to
pessimistic Double Execution.

Table 4: Speedup of optimistic Double Execution compared to pessimistic Double Execution (no-faults).

Benchmark/Cores 2 4 8 16 32

Cholesky 9% 17% 16% 18% 14%

Fibonacci 0% 1% 1% 2% 4%

Matmul 0% 4% 7% 5% 7%

Seidel 6% 13% 15% 16% 16%

Sparse LU 1% 0% 3% 7% 7%

2.3.2.2 Node Checkpointing Overhead
As mentioned in Section 2.1.3, optimistic Double Execution cannot use thread restart recovery, since
possible faulty results may be committed to the main memory before the fault can be detected by the
D-FDU. Therefore, we use node checkpointing in the case of optimistic Double Execution to recover
from faults. However, node checkpointing induces additional overhead, when a checkpoint is created,
since the D-TSU finishes all thread commits and prevent subsequent threads from committing.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 28 of 60

Figure 8: Overhead of speculative optimistic Double Execution with node checkpointing at an interval of

10,000 cycles compared to non-redundant Execution.

Figure 8 shows the overhead for speculative optimistic Double Execution in combination with node
checkpointing at an interval of 10,000 cycles. Compared to the non-redundant execution, the overhead
is between 10% for Fibonacci and over 200% for Matrix Multiplication. The main reason for high
overhead in the case of Matrix Multiplication is the high number of twrites in the benchmark. This
increases the possibility of core idle times due to checkpoint creation. By contrast, Fibonacci, which
has a low communication to computation ratio, shows low overhead for node checkpointing. The
reason for the lower overhead in the 32-cores node comes from the low utilization in the regular
dataflow case.

Table 5 shows the overhead of optimistic Double Execution and node checkpointing at an interval of
10,000 cycles compared to pessimistic Double Execution without node checkpointing. Based on these
results, it can be seen that node checkpointing can lead to high performance degradation for most
dataflow benchmarks in case of checkpoint intervals of 10,000 cycles or below.

We therefore conclude that optimistic execution may introduce a high overhead for short node
checkpoint intervals.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 29 of 60

Table 5: Overhead of optimistic Double Execution compared to pessimistic Double Execution without node

checkpoints.

Benchmark/Cores 4 8 16 32

Cholesky 1.2% 9.2% 6.2% 1.2%

Fibonacci 1% 1.3% 1.8% -2.8%

Matmul 50% 101.8% 165% 40.5%

Seidel -0.9% -5.7% -3.8% 11%

Sparse LU 5% 16.2% 5.5% 6.6%

2.3.3 Execution under Faults
Since we must assume increasing fault rates in future parallel architectures, we also simulated the
overhead induced by a very high transient fault rate of 0.01 faults per second.

Figure 9: Overhead of pessimistic Double Execution in the case of a fault rate of 0.01 faults per second

compared to non-faulty pessimistic Double Execution.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 30 of 60

Figure 9 shows the execution overhead for pessimistic Double Execution using the thread restart
recovery. It can be seen that faults lead to an overhead of between 1% and 38 %. The high overhead
of Matrix Multiplication comes from the long uniform dataflow threads of Matrix Multiplication,
which lead to wasted execution time in the case of a thread rollback. Additionally, the results show
that faults have lower performance impact in nodes with more cores. This comes from the fact that
parallel architectures can exploit more possible idle resources in the case of a thread restart.

Figure 10 depicts the overhead of optimistic Double Execution. Due to side-effects in some
benchmarks, we were only able to simulate Matrix Multiplication and Sparse LU for node
checkpointing and optimistic Double Execution. As expected, the recovery of Matrix Multiplication
leads to high execution overhead of over 20%. This overhead is mainly induced by the long dataflow
threads of Matrix Multiplication in combination with the node recovery leading to more wasted
execution cycles by also recovering fault free threads.

Figure 10: Overhead of optimistic Double Execution in the case of a fault rate of 0.01 faults per second

compared to non-redundant execution without faults.

2.3.4 Multi Node Behavior
Fault Detection Mechanisms for parallel architectures must be also efficiently scalable with the
number of cores in the system. Since both Double Execution variants restrict redundant execution to

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 31 of 60

one node and only the trailing or the leading thread is allowed to commit its results, the inter-node
communication is not influenced by the Double Execution mechanisms. However, the high inter-node
commit latency may result in under-utilized cores, since cores are blocked as long as the write buffer
is written to thread frames of waiting threads in different nodes. This may lead to long idle times, in
the case of numerous inter-node twrites. Please note that we assume inter-node write latency in our
simulations of 150 cycles, as shown in Table 2. We simulated optimistic and pessimistic Double
Execution on 1 to 8 nodes, where each node has 16 cores. This means, we simulated Double
Execution on systems from 16 cores to 128 cores.

Figure 11: Scalability of pessimistic and optimistic Double Execution for 1 to 8 nodes. Each node comprises

16 cores.

Figure 11 shows the scalability of the regular dataflow execution, pessimistic and optimistic Double
Execution of Matrix Multiplication normalized to the execution on one node. Since Matrix
Multiplication uses numerous twrite operations for the write-back of the submatrices into the result
matrix, Matrix Multiply suffers from higher idle times in this case.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 32 of 60

Nevertheless, it can be seen that both Double Execution variants are able to scale in the same way as
the regular dataflow execution.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 33 of 60

3 NoC-Level Fault Tolerance in TERAFLUX
In this section we will show improvements and extensions to the work previously reported in the
Deliverables D5.2 and D5.3 and in [8]. In the previous work, we already discussed by means of an
analytical approximation the impact of a fault detection mechanism based status message with respect
to application messages (done in D5.2). In addition to that, we designed and implemented a fault
localization mechanism, which only uses the timing behavior of the status messages from the message
based fault detection as an indicator for faults within the interconnection network (done in D5.3).
Furthermore we started in the Deliverable D5.3 a brief consideration of different network topologies
and on how they are suitable from a fault tolerance perspective.

Given this previous work, we extended our investigations by a quantitative evaluation by means of
network throughput, delay, and jitter regarding the impact of the status messages for the fault
detection/fault localization techniques. We present and discuss the results from that evaluation in
Section 3.1. Although, we already demonstrated the functionality of the fault localization technique
for the interconnection network, we extended the fault model from single faults to multiple faults
within the interconnection network. This includes an extensive investigation on fault patterns, which
may prohibit a precise fault localization of any given faults within the network. Therefore, we include
spatial and temporal distributions for the fault patterns (Section 3.2). The section concludes with a
discussion on an extension of the assumed network on chip topology towards a toroidal topology in
Section 3.3.

3.1 Impact of HB Messages on App. Messages
The maximum load that can be handled by a network has a strong influence on the overall
performance of a processor. An undersized interconnection network can quickly lead to long periods
in which a processor is idle while waiting for a response message that is stuck in the network. Such
waiting periods for application messages can be amplified by the prioritized processing of heartbeat
messages. Since the heartbeat messages have the highest priority in the network, it is expected that it
takes more time on average for an application messages to travel the path through the network. These
waiting periods are – if the response time of the communication partner itself is ignored – basically
dependent on the metrics throughput, latency and jitter. The definitions and explanations of the
evaluation metrics are based, unless otherwise indicated, on [9] [10].

3.1.1 Metrics of interest
The throughput describes the maximum amount of data that a network can receive and process.
Emitting more data than the maximum throughput to the network will effectively lead to network
saturation. That is, more messages are injected to the network, than messages that drain from it. If one
keeps the injection rate at this level, the message delivery will suffer very high latencies and can also
lead to deadlocks.

The latency is defined as the period of time that is needed to transmit a full message. The period starts
at the creation of the first part of the message at the sending core1 and ends with the full reception of
the last part of the message. At low network loads, the data can be transmitted almost without delay

1 Even before actually injecting the message to the network

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 34 of 60

and therefore latency is dominated only by the router’s processing pipeline and the delay of the
interconnections between the routers. If the load of the network, however, reaches the maximum
throughput, it is possible that the latency in the network greatly increases2.

Both metrics depend essentially on two factors. The first factor is the injection rate at which the
messages are generated during a simulation. The injection rate is thus the temporal distribution of
message generation in the simulation. The second factor is the actual used traffic pattern. It
determines the communication pairs of the processor cores. The traffic patterns are thus the spatial
distribution of the messages in the simulation. Both factors have a great impact on both, the maximum
throughput and the latency. Some traffic patterns allow higher injection rates before the network
saturates and consequentially a higher maximum throughput than others.

Jitter is an important indicator to determine the uniform rate of message processing by the network.
Applications that expect a constant and uniform data stream may being stalled from high jitter values,
as parts of the expected messages do not arrive after a specific period of time. Especially execution
models similar to a pipelined execution are prone to high jitter values. The effects are noticeable, as
the high jitter values may stall the entire progress of a program in a certain pipeline stage. An
example, in which the user experiences a fairly quick high jitter, is the video decoding. High jitter
values, can easily result to the famous "picture judder", which stalls the motion picture playback
temporarily.

3.1.2 Evaluation Methodology
All NoC results were obtained from an extended version of the NOXIM simulator3. The simulations
cover different experimental setups regarding the use of heartbeat messages and using different
routing strategies. The setup ranges from:

• Baseline measurements without heartbeat messages.
• With heartbeat messages

o XY routing strategy
o Staircase routing strategy

The application messages are always routed with the XY routing strategy through the network.

The simulated scenario was the communication structure of a processor with 25 cores. The cores
themselves only act as a sender and a receiver module. For application messages, we applied two
different traffic patterns, which are Hot-Spot and Random [11] [9]. Additionally several injection
rates ranging from 0.00001Flits/Core/Cycle to the throughput saturation point have been used. The
actual execution of a program is not supported and is not part of the evaluation. However, as part of
the evaluation the processor cores take different roles which are partly defined by the traffic pattern:

• Acting as FDU: One core takes the role of the FDU and sends out heartbeat messages
implementing the poll-method to gather the status information from the cores. Furthermore,

2 For simulation purposes we sized the injection buffer of a processor core to infinite. That theoretically leads at
extreme high injection rates to an infinite latency value.
3 http://noxim.sourceforge.net/

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 35 of 60

the FDU core is configured with a proper TDMA-Scheme. No other communication is
allowed for this type of core.

• Asynchronous communication: The processor cores consume application messages, but they
do not answer them directly. This can be used to simulate loads for different execution
models, such as pipelining and fork join execution models.

• Synchronous communication: The processor cores consume application messages and answer
them. This simulates the behavior of a client-server execution model or the access to other
devices on the chip, such as memory controller and I/O controller.

In addition, all processor cores answer the heartbeat messages from the FDU with their own heartbeat
messages.

From the interconnection point of view, each processor core is connected to one router and uses it to
communicate with other components on the chip. The cores and routers are coupled by a bi-
directional link with the router, which allows a full-duplex communication between the core and
router. The same coupling has also been established for the link between the routers, wherein the
topology of the connected router corresponds to a homogeneous two dimensional mesh.

A router internally connects each link in a demux unit which redirects the incoming messages based
on a packet flag into two input buffers. The reason for the two input buffers is the spatial isolation
among application messages and heartbeat messages as required by the fault detection techniques. In
addition, the routing logic is applied at the arrival of a message. Since the routing logic of the XY
strategy and the Staircase strategy is relatively lightweight, it can be assumed that it returns the result
of the message routing function within the same network clock cycle.

The flow control is based on a two staged wormhole switching, which has been extended for the
usage of Quality of Service (QoS). The arbiter unit firstly checks the contents of the buffer for high
priority messages (heartbeat messages) and reserves at the same time the I/O interface of the router's
internal crossbar. In the second stage, this process is repeated for the lower priority messages. Again,
it can be assumed that the channel arbitration and the actual traversal of messages are completed in
one network clock cycle. Thus, for the simulation of a router pipeline, the router needs two network
clock cycles to process a heartbeat message. Application messages need, due to their variable size of
2-4 flits, 4-8 network clock cycles. However, this assumes that the message is not blocked by another
message due to concurrent access to the same output link.

The traffic pattern for the application messages were carried out with a number of different injection
rates as a simulation parameter. This injection rate controls the network load varying from
0.00001Flits/Core/Cycle to the theoretical maximum network throughput for a given traffic pattern.
The aim of the different injection rates is to determine the saturation point of the network. To
determine this point of the network configuration the average throughput was observed. A stagnating
throughput by simultaneously increasing injection rates signals that more flits are generated than the
network is capable to deliver and thus the network saturates. Beyond the saturation point, increasing
injection rates also generate sharply rising message latencies. At this point the messages are loaded in
the upload buffer of the processor core straight after creation and stay there until the connected router
can process them from there.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 36 of 60

As indicated before, a full buffer would cause the sender not to create new messages and thus
changing actual the traffic pattern. Therefore an infinitely large buffer for the sender was implemented
to ensure the consistency of the traffic pattern. This solution may be unrealistic in the real world;
however, it is a viable solution for simulation purposes [9] [10].

In addition to the traffic patterns for application messages, a closely staggered TDMA-Scheme was
used to generate different network loads with the prioritized heartbeat messages. The scheme x1
produces the narrowest heartbeat pattern, thus ensuring the highest load on the links nearby the FDU.
In addition, the schemes x2 (load halved) and x4 (load quartered) have been used as less closely
staggered patterns.

3.1.3 Quantification

3.1.3.1 Throughput of Application messages
As already described, the throughput of a specific traffic pattern is an important indicator of the
effectiveness of a communication network. The throughput shows with stagnant values that the
saturation point of the network has been reached, and therefore the upper limits for the subsequent
analysis of latency and jitter. A total of three series of experiments were performed for each traffic
pattern, where two of them include heartbeat messages routed with XY (RXY) or the staircase strategy
(RST), respectively. The third series of experiments was carried out without heartbeat messages and
serves as a baseline for comparison.

In order to put the different traffic patterns among themselves in relation, the injection rates were
normalized in relation to the respective network capacity4. Figures 12 and 13 summarize the
simulation results in terms of throughput for the traffic patterns Random and Hot-Spot. For better
illustration and comparison, the injection rates were (X-axis) normalized to the respective traffic
pattern. On the Y-axis the amount of draining flits per network clock cycle and processor core is

4 The network capacity is the theoretical maximum throughput of a network considering the traffic pattern used.

Figure 12: Throughput of application messages

under traffic pattern Random.

Figure 13: Throughput of application messages

under traffic pattern Hotspot.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 37 of 60

shown.

The traffic pattern Random shows a constant stagnant throughput after reaching the saturation point.
This is also referred to as a stable network regarding saturation. Looking at the throughput
performance under Hot-Spot traffic pattern, one can observe a clear drop in the throughput of 0.08 to
0.07, but stabilizing again with rising injection rates. The drop in throughput is due to the fact that
about 60% of the total communication must be processed directly on the connecting lines, which are
already heavily burdened by the heartbeat messages. Additionally, there is no fairness in the treatment
between the heartbeats and the application messages due to the prioritization of heartbeat messages.
Considering both facts explain the loss of throughput performance. Since for the traffic pattern
Random all communication pairs are determined by a uniformly distributed probability, also the
network load is uniformly distributed. This ensures the network stability after reaching the saturation
point.

3.1.3.2 Latency of Application messages
In addition to the ability to transmit as many messages as possible in parallel, the speed at which a
single flit is handled by the network is also critical to the performance of the network. In the absence
of heartbeat messages the expected average latency for this network configuration is ideally at 12
cycles5 [10]. Figure 14 and Figure 15 show the results of the simulation with respect to the latency of
application messages. In addition, the x-axis has a logarithmic scale for the sake of better
representation. Even with the use of closely staggered heartbeat messages (x1xy and x1st); there is no
significant difference between the baseline simulation and those with heartbeat messages. While this
observation was mainly expected at lower injection rates, the uniform development of latency close to
the saturation point of the network is unusual. At these injection rates significant backlogs of
application messages is expected and heartbeat messages should have an obvious impact on

5 , with as average path length in Hops

Figure 14: Application message latency under

traffic pattern Random.
Figure 15: Application message latency under

traffic pattern Hotspot.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 38 of 60

application messages.

The reason for this uniform development of latency can be answered by the router internal input
buffers. The size of the input buffer equals the maximum length of the application messages. Thus,
this means that a blocked message can be held entirely by the input buffer of a router and thus the
message occupies only the resources of a single router. Thereby, the overall likelihood for backlogs
decreases, even for injection rates close to the saturation point. For the sake of completeness it should
be mentioned that further (equally prioritized) virtual channels may reduce the effect of backlog for
application messages even with larger message lengths.

3.1.3.3 Jitter of Application messages
The study of jitter is carried out differently. Along with the traffic pattern and the injection rate, we
also put the path length into consideration. The results of the investigation are based on the
measurement of the maximum delay, which an application message was exposed during the
simulation. Therefore, the measured transmission latency and the path length of a message were
determined. With the help of the path length |p|, the measured latency can be adjusted and thus gives
the duration of the delay in which the message could not make any progress in the network. Finally,
the maximum delay was determined for all path lengths.

Referring to the results we mention beforehand that messages with a mean path length of 3-6 hops are
more affected by the delays than the messages with path lengths of 1-2 hops and 7-8 hops. That
statement holds also for all traffic patterns. This effect has two reasons. The first aspect of this effect
is the time a message spent in the network. Messages with short paths (1-2 hops) stay a short time in
the network. Hence, on average, the probability of multiple delays through heartbeat messages is
lower for application messages with short paths than with longer paths. The second aspect is the route
through the network. Application messages with a path length of 7-8 hops are indeed a longer time
within the network. However, the XY routing strategy generates paths that run along the edge of the
network. In this area, the presence of Heartbeat messages is fairly low.

The Figure 16, Figure 17, and Figure 18 plot the respective values of maximum delay for the traffic
pattern Random with different injection rates and ascending sorted by the path lengths. The x-axis
divides the results in the respective path lengths. On the y-axis the maximum delay is shown, wherein

Figure 16: Jitter at 0.0001 for

traffic pattern Random.

Figure 17: Jitter at 0.001 for traffic

pattern Random.

Figure 18: Jitter at 0.01 for traffic

pattern Random.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 39 of 60

a delay having a value = 0 corresponds to the ideal latency without any delays for the given path
length.

At low injection rates, a constant value of the maximum delay is observable for simulations without
heartbeat messages. Hence, it is obvious, that the network is evenly loaded with application messages.
The slight reduction of latencies starting from a path length of 7 hops can be explained by the above-
mentioned routes messages with longer path lengths.

Significantly longer delays, however, are observable (x1xy and x1st) from the results of the simulations
with heartbeat messages. If the XY routing strategy is used for heartbeat messages, the maximum
delay for application messages is about 60% higher than in the reference simulation without heartbeat
messages. By using the Staircase routing strategy, the delays increase at most to about 40%.

With an increasing injection rate also the amount of application messages in the network increases.
This results in frequent collisions of application messages with each other, whereby the maximum
delay also in the reference simulation increases. This can be easily observed on the basis of Figure 17.
The maximum delay increases from 6 clock cycles to 14 clock cycles. Furthermore, it can be seen that
the values for simulations with heartbeat messages, do not scale to the same extend as it is the case of
the simulation without heartbeat messages. The maximum delay recorded from the simulation with
heartbeat messages is 20% (XY strategy) and 13% (Staircase strategy) higher compared to the
reference simulation. This relative degradation of the maximum delay is due to the mutual collisions
of the application messages. That means the delays become more dominated by the increasing rate of
mutual collisions of application messages.

Just before the saturation point of the network, there is neither a significant difference between the
simulation including heartbeat messages, nor for those without heartbeat messages (Figure 18). This
means the proportion of collisions between application messages and heartbeat messages has
decreased to a minimum and thus does not contribute to the apparent maximum delays.

As mentioned above, the traffic pattern Random is indeed a good measure for simulating networks
with uniform load distribution, but a purely random load distribution rarely corresponds to a real
application-driven communication pattern. In order to take this fact into account, the synthetic pattern
Hot-Spot was added, and used in the simulation under the same conditions as previously Random. The

result with respect to the maximum delay is plotted in Figure 15.

Figure 19: Jitter at 0.00001 for

traffic pattern Hot-Spot.

Figure 20: Jitter at 0.001 for traffic

pattern Hot-Spot.

Figure 21: Jitter at 0.01 for traffic

pattern Hot-Spot.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 40 of 60

The Hot-Spot traffic pattern used for application messages presents a notably scenario and produces
different results compared to the former measurements regarding the convergence of values at higher
injection rates. As we already pointed out, that the mutual collisions of application messages at higher
injection rates become a dominant factor for the recorded maximum delays, we now observe different
results. The duration of the delays for the application messages due to collisions with heartbeat
messages grows stronger with the increasing injection rates, than previously observed. The reasons for
that different behavior are the locations of the different hot spots and the respective 60% probability
that an arbitrary processor core selects one of the hot spot cores as a destination. These locations were
chosen so that they lie exactly on the axis of the FDU. Therefore, application messages using the XY
routing strategy are forced to move through the center of the network. Since the probability is very
high to be blocked by a heartbeat message, the influence of heartbeat messages to application
messages is preserved even at high injection rates. This scenario also shows no significant differences
for the delays using the different routing strategies for heartbeat messages. This was, however,
expected in this test case, as the application messages were deliberately routed through the center of
the network and thus the delays for both routing strategies could be predicted to be quite similar.

3.1.3.4 Quantification Summary
The results of the evaluation regarding the impact of heartbeat messages on application messages by
applying the different TDMA schemes show that, on average, no significant impact is produced by the
heartbeat messages to application messages (see Table 6: Overview of throughput, latency, and
maximum delay for application messages). The average throughput and latency of the application
messages are also in the presence of heartbeat messages in the network at the level of the simulations
without heartbeat messages.

A closer inspection of application messages with respect to their maximum delays, however, shows
that these delays can be reduced by the use of the Staircase routing strategy. Table 1 summarizes all
relevant results regarding the maximum delays of application messages. Using the Staircase routing
strategy for heartbeat messages and given the traffic pattern decreases the maximum delays up to 25-
30% compared to the XY routing strategy. Almost identical are the maximum delays for the traffic
pattern Hot-Spot. Here the difference between the two routing strategies is below one percent, which
is due to the fact that around 60% of all traffic is routed through the FDU near routers.

The thesis and the analytical approximation from Deliverable 5.2, which states that a more uniform
distributed load of heartbeat messages through the Staircase routing strategy can have a relaxing
effect on the maximum delays of application messages was underpinned.

Table 6: Overview of throughput, latency, and maximum delay for application messages

Traffic
Pattern

Avg. Throughput6 Avg. Latency Max. Delay7
w/o RXY RST w/o RXY RST w/o RXY RST

Random 20% 12 cycles 0% 63,3% 38,3%
Hot-Spot 35% 40% 13 cycles 0% 21,3% 21,6%

6 Percentage values of the theoretical maximum of throughput for this traffic pattern.
7 Percentage values of the maximum delays based on the baseline measurement without heartbeat messages.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 41 of 60

3.2 Fault Localization with Multiple Faults within the NoC
As shown in the Deliverable D5.3 and [12] our investigation regarding the fault localization includes
single faults within the 2D mesh based interconnection network. However, several studies show that
multiple faults in the hardware are not seldom [13] [14] [15]. Therefore, we stressed the localization
technique with multiple faults within the interconnection network and determined if this condition has
an effect on the localization accuracy. The stress tests reveal that there are some specific fault patterns
that are able to either mask other faults or create a phantom fault. In the last case, a specific fault
pattern produces some sort of blind spot, which let a fault appear, although the fault is actually not
present at this point in the interconnection network.

In this section, we will firstly describe the investigation methodology and next to that we group the
problematic fault patterns, which have a negative impact to the localization accuracy. The section
closes with a quantification of the amount of the problematic fault patterns based on different node
sizes.

3.2.1 Investigation Methodology
For this investigation we combined fault patterns with temporal and spatial properties. For this
purpose we firstly differentiate between the simultaneous and successive appearance of faults. The
need to differentiate the temporal property of a fault comes from the fact that the FDU starts its search
for local maxima within the status matrix of suspicious network components after a complete TDMA
round has finished. In combination with the spatial properties the temporal patterns deliver different
results regarding the localization accuracy.

To have a clear definition for the temporal patterns, we define two or more faults to be simultaneous,
if both/all faults appear in the same TDMA round8. Successive faults are defined for any other
temporal appearance.

The spatial patterns consist of two faults that have been applied to the interconnection network. We
applied the faults in a systematic manner by permute all possible fault pairs. After each applied fault
pair, we analyzed the resulting status matrix of faulty network components from the FDU and
compared it with a hypothetical estimated matrix. If both matrices match, the fault pair is
unproblematic. If they differ from each other, we found a problematic fault pair. In order to analyze
the reason for the inaccuracy, we also investigated the status matrix of suspicious network
components9. During the investigation of the status matrix of suspicious network components, we
were able to identify recurrent fault placement patterns. Each pattern leads to its own inaccuracy for
the localization method. We then categorized the faults and grouped them according to their spatial
property.

From the problematic patterns with two faults, complex patterns can be easily generated by combining
the different patterns to new ones. The more complex patterns are then also problematic for our
localization method. For that reason we omitted permutations with a higher number of faults, since
this does not change the results in the localization accuracy.

8 That is, after all cores have sent their Heartbeat-Massages including all different routing strategies as described
in D5.3.
9 This matrix holds the "suspicious values" for each network component after a complete monitoring round.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 42 of 60

3.2.2 Applying fault pairs to the NoC
As described above, the following discussion distinguishes the temporal pattern between
simultaneously and successively. The analysis therefore initially begins with the application of
simultaneous faults and discusses the spatial patterns, which have been identified as problematic.
Subsequently, the discussion is repeated with respect to successive faults and the results are discussed.

3.2.2.1 Simultaneous faults in the NoC
The search for problematic patterns with simultaneously occurring faults yielded three groups, in
which the spatial patterns could be classified:

1) Faults in the immediate vicinity of the FDU.
2) Faults with common partial paths.
3) Closely spaced faults.

For fault patterns of the group “faults in the immediate vicinity of the FDU" there are fault masking
effects, in which a fault at a specific location in the network prevents the localization of other faults.
The problem here is the proximity of a faulty link to the FDU. The closer the faulty component is next
to the FDU, the more heartbeat messages are delayed by this component. This relatively large number
of affected heartbeat messages creates a blind spot (gray triangle in Figure 22), which hides any other
faults within this area.

To illustrate this problematic pattern, we show in Figure 22 a part of the network, in which two links
are assumed to be faulty (marked as f1 and f2). In Figure 23 we show the corresponding status matrix
of suspicious components. The black shadowed values within the matrix indicate the suspicious
components gathered after a complete monitoring round10.

The following search for all local maxima within this matrix would reveal f1 as a faulty component.
But f2 would not be identified as a faulty component. Additionally, as one can observe, the black
shadowed values span a triangle shaped area over the net. Any fault within that area will be masked
by the fault f1.

Another factor is that all heartbeat messages sent from within the blind spot are updated in the TDMA
scheme and the expected arrival times are thereby adjusted according to the fault f1. It is therefore also

10 Please note that the gray rectangles in Figure 22 are for illustration purposes only and do not indicate that the
faults have been already localized. The rectangles only try to assist the orientation.

Figure 22: Blind spot due to f1.

Figure 23: Corresponding matrix of suspicious network

components.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 43 of 60

not possible by subsequent monitoring rounds to detect additional faults from within the blind spot.
This makes this fault pattern critical.

A cost-effective solution to this problem is to let the FDU migrate from their current processor core to
another core, if the FDU consists of software. But it should be noted, however, that the monitoring of
processor cores has to be stopped in the first place in order to prevent a deadlocked FDU. After the
last heartbeat messages of the current monitoring round has arrived at the FDU, the state of the FDU
is frozen and transferred to another core. In this case, the contents of the status matrices are discarded
because by migrating the FDU to another core also changes the distances of the processor cores to the
FDU and thus the arrival times.

How fast this problematic fault pattern can be resolved is shown in Figure 24, which shows the
resulting matrix after a complete round of monitoring. The applied fault pattern is the same as
previously described. This time, however, the FDU has been shifted to a place in the network to the
top and right. The fault is thus no longer in close proximity to the FDU and the effect of the blind

spot has already vanished down enough that both faults are easily locatable by searching for the local
maxima in the matrix.

Similar to the pattern above, the "Closely spaced faults" can also create blind spots. Again, faulty
components produce a, albeit very small, blind spot. The effect can be observed in two different
flavors:

1) The faulty components are to each other in a straight line.
2) The faulty components are located in a particular cluster quadrant mutually orthogonal.

Figure 24: Resolved blind spot by moving the FDU to a different core.

Figure 25: Blind spots due to f1 and f4.

Figure 26: Corresponding matrix of suspicious

network components.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 44 of 60

Figure 25 shows the two flavors of the fault pattern on the basis of two fault pattern examples:
 and . In Figure 26, the resulting state of the suspicious matrix is illustrated. Again,

this matrix does not contain all local maxima corresponding to the faults, which prevents a precise
localization of the two faults f2 and f3.

While the blind spot occurs in all patterns whose faulty components are "in straight line", the
orthogonally oriented fault patterns are only problematic if the pattern has a specific orientation to the
FDU. The orientation of this problematic pattern is additionally depending on a particular quadrant of
a Cluster. Which orientation in each quadrant is problematic, is summarized in Error! Reference
source not found.. The table contains the four quadrants of one FDU-cluster (gray rectangles in the
first column), each with the FDU (black square) in the center. For the orthogonal patterns the
transmission directions of the heartbeat messages are distinguished additionally. This shows that only
those links of the routers are affected that will shorten the path of a heartbeat message its destination.
The position within a quadrant, however, is irrelevant. The effect always occurs when one of these
orthogonal patterns is applied according to the network. Are the faults of the flavor "in a straight
line" there is no distinction of the quadrants. This effect is independent with respect to the position
and orientation of the cluster and preventing in any case the localization of the fault with the higher
distance to the FDU.

Basically, this localization issue has the same criticality as the pattern "in the immediate vicinity of the
FDU". Here, a fault creates a blind spot and prevents the successful search for any faults in that blind
spot, too. As faults are masked again, this group is also classified as critical.

Table 7: Different problematic fault pattern regarding location and orientation

Quadrant Orthogonal In a straight line

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 45 of 60

 “Faults on common partial paths” create illusions and cause that some network components are
wrongly classified as faulty. That is what we call a “phantom fault”. It is the exact opposite of fault
masking by the previous pattern. As described in the Deliverable D5.3, the normal operation of the
localization technique rehabilitates falsely suspected network components by using different routing
strategies for heartbeat messages. However, this fails with multiple faults if all of the following
conditions are met:

• There are two heartbeat messages from the same processor core that use despite different
routing strategies some common partial paths.

• In the network there are two faults that lie on one of the two actually disjoint paths of the
heartbeat messages.

• One common partial path is located between the sending processor core and the faults.

If these properties are satisfied, the partial path with the higher distance to the FDU cannot be
rehabilitated and creates a phantom fault. Figure 27 illustrates this in an example scenario. In the
given network, two links at the point and are assumed to be faulty. The processor core at the

router sent two heartbeat messages with different routing strategies.

The figure shows the resulting paths of the messages as dashed lines. In this example, the routing
strategies XY (coarse dashed line) and Staircase routing provide (fine dashed lines) on the links

 and the two common partial paths of the corresponding heartbeat

messages. In Figure 28 the suspicious matrix is illustrated after a complete monitoring round. After
searching the for the local maxima, additionally to the faults and , another fault on link

 is determined (The value “2” in the button-right corner of the matrix is a local

maximum). The latter fault is thus a phantom fault, which actually does not exist.

The group "common partial paths" has, however, a weak impact on the localization. Although the
results shown in the example lead to a wrong classification of a network component, this has no

impact on the actual performance of the network. The link will still be used by the

router to transmit messages of all types. Only the FDU internal representation of the network is in this
case not 100% accurate and includes a pessimistic assumption about the state of the interconnection
network. There is also the possibility that a migration of the FDU to another processor core changes
the paths of the affected heartbeat messages, and thus corrects the misdiagnosis.

Figure 27: Phantom fault due to f1 and f2.

Figure 28: Corresponding matrix of suspicious

network components.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 46 of 60

3.2.2.2 Successive faults in the NoC
If the faults occur successively in the network, the effect of a blind spot or phantom fault is partly
vanished. The effect of successive faults is illustrated below. The discussion on how this temporal
pattern affects the spatial pattern is quantified in the next section.

The example scenario for two successive faults occurring in an FDU cluster is illustrated in Figure 29.
From a timing perspective the scenario is divided into two phases. Each phase consist of a complete
round of monitoring including the transfer of all of heartbeat messages, the analysis of the arrival
times, and the adjustment of the TDMA scheme. In this example, the paths of the heartbeat messages
result from the Staircase routing strategy. Additionally the protocol of the artificial delay is applied
for blocked heartbeat messages and the final path is indicated by the dashed arrows.

In phase #1 the fault is applied to the network. The dashed arrows show how the protocol of the

artificial delay affects the arrival of the heartbeat messages of the processor cores , and

 by a detour.

In the analysis of the first phase, the different arrival times of these messages are evaluated and the
fault is localized11. Since the paths of the affected heartbeat messages will follow this route to the

FDU in the long run, the TDMA scheme is adjusted accordingly to ensure the mutual isolation of the
heartbeat messages12. This resets also the matrix of suspicions components and phase # 2 can start
over. In the following phase # 2, a further fault () is applied to the network. Here again, the

protocol of the artificial delay is triggered and detour the heartbeat messages. But this time at the
Router . Although the heartbeat messages are delayed, in this case, however, the FDU expects

this delay by the formerly performed adaptation of the TDMA scheme. The resulting status matrix is

11 As shown in Deliverable D5.3 single faults can be localized precisely.
12 The mutual isolation requirement is also part of the Deliverable D5.3 and ensures that heartbeat message do
not interfere with each other.

Figure 29: Example scenario for the implication of successive occurring multiple faults

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 47 of 60

shown in Figure 30. Since all values of the matrix are ≤ 0, there is no evidence for the FDU that the
messages were delayed by the fault .

Critical to the occurrence of a dead spot like this, however, is the order in which the faults occur.
Consider a reversed order of occurrence for both faults from the example above. This reordering
results in a status matrix at the end of phase #2, shown in Figure 31. The black shadowed positive
value indicates the position of the fault after the search for local maxima. The reason for the

successful localization in this case is that with the help of the heartbeat messages of and ,

the fault could be initially localized in phase # 1. The subsequent occurrence of in phase #2 now

affects only on the delay of heartbeat messages from . Since the heartbeat messages of

arrived without a delay beforehand, the fault can now also be located.

Although the paths of the heartbeat message given in the scenario above were formed by the staircase
strategy, the masking effect is not limited to this routing algorithm. In fact, similar patterns can be
generated with the same result for all four of the routing algorithms used here.

3.2.3 Quantification
At the conclusion of the study of multiple faults, it will be shown, how many of the fault patterns are
considered to be problematic regarding the fault localization method. Thus, the performance of the
localization for multiple faults is shown quantitatively. The basis of quantification consists on
counting the respective problematic fault patterns. The results presented here correspond to the
percentage of the three problematic spatial fault groups discussed above. In addition, three different
cluster sizes (5 × 5, 7 × 5 and 7 × 7) are applied in the quantification and summarized in Table 8.

One positive point is that the identified critical fault pattern “in the immediate vicinity of the FDU”
occurs in about 1.5% of all fault patterns, in the worst case. Taking into account the order in which the
faults occur, this value decreases further to 0.725%. Significantly higher is the percentage of the fault
pattern “closely spaced faults” in the network. The compact shape of this spatial pattern, and the two
different forms “orthogonal” and “in a straight line” result in 6.5% (simultaneous) and 1.6%
(successive) of all patterns in a problematic pattern.

The spatial pattern "faults with common partial paths" stands out with two special properties. Firstly,
since this pattern requires a minimum distance between the two faults when placing them, there is a
case of small cluster sizes, without a chance to place the pattern. If the minimum distance is not

Figure 30: Status matrix after phase #2 for

simultaneously occurred faults.

Figure 31: Status matrix after phase #2 for

successively occurred faults.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 48 of 60

satisfied, the pattern will turn into "closely spaced faults". Secondly, the pattern is only problematic if
the faults occur simultaneously in the network. For successive faults of the phantom fault, however,
does not occur at all.

Summarizing all problematic fault patterns shows that about 2.4% of successively occurring fault
patterns lead to fault masking or a phantom fault. If simultaneous occurrence is assumed, the
proportion of problematic faults pattern increases to about 10%. Nevertheless with increasing cluster
sizes a continuous reduction in the percentage of the critical fault pattern can be observed. In addition,
it should be noted that simultaneous faults in the network are indeed possible, but it can be expected
that the probability of multiple faults of successive nature in the network is much more likely. This
assumption is supported by the consideration of the causes of faults. Apart from wear-out faults
caused by physical effects, it can be assumed that the reduction of feature sizes yield more permanent
faults, but these faults, however, are more distributed over the chip and in time.

Table 8: Quantification of Patterns

 Simultaneous Successive
5x5 7x5 7x7 5x5 7x5 7x7

I.V.13 1,449 0,713 0,355 0,725 0,357 0,177

C.P.P.14 6,522 6,061 5,674 1,631 1,515 1,419

C.S.F.15 - - 3,901 - - -

Sum 7,971 6,774 9,929 2,356 1,872 1,596

13 I.V.: Faults in the Immediate Vicinity of the FDU.
14 C.P.P.: Faults with Common Partial Paths.
15 C.S.F.: Closely Spaced Faults.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 49 of 60

4 OS-Level Fault Tolerance in TERAFLUX
An operating system prototype facilitating research on various parallel, distributed and reliable
execution algorithms, supporting data flow principles on multi-core and many-core (1,000-10,000+)
shared-memory devices. Specifically, the operating system supports distributed execution of an
application over the device using dataflow threads, it was designed to handle core soft (transient)
errors and can handle node hard-failures such that the application can transparently continue
execution as the work that was pending on the failed node is recovered and performed by the
remaining nodes. The operating system does not rely on strong consistency of the shared-memory but
only a weak, acquire/release, consistency model is assumed on all communication mechanisms
between nodes.

Please note that what follows has been all experimentally implemented and made available in the
public COTSon repository (branches/tflux-test/tfos), see D7.5 section 11 for usage details.

4.1 Basic Architecture
While this future machine has all of the thousands of cores on a single die, it is unlikely that they can
all be efficiently managed using the same hardware and software architecture like the ones used on
contemporary processors. To name a few reasons: much of the hardware support that exists today
does not scale well as core number increases (e.g. maintain cache coherency across all cores), and
traditional operating systems that were designed for a few cores also do not perform well as the
number of cores increases. Since the workload of managing this massively parallel chip is impossible
for a single kernel, another level of abstraction is needed: a single-chip distributed operating system.

4.1.1 Clustered Architecture
The cores are divided into small groups, nodes, which share communication links and hardware
elements, such as caches and interconnect to the rest of the chip. The nodes can all be symmetric or
heterogeneous, so there can be several types of nodes with different hardware capabilities. Each node
runs its own kernel/microkernel that is responsible for managing its cores, local memory and other
resources, schedule tasks and collaborate with the other nodes. A possible architecture could be
similar to those that operate on contemporary super-computers and include (Figure 32):

• Front-end nodes that are responsible for user interactions, they run a general-purpose
operating system such as Linux. They delegate the computational and communication
workload to the other nodes.

• I/O nodes responsible for communication with the network, storage or other hardware
devices, they can run a specialized kernel for that purpose.

• Compute nodes that run only computational tasks in a power-efficient manner. These nodes
can have a very basic kernel and have no access to the outside world, so all communication
and system operations are performed by the nodes running a full kernel.

The volatile memory is also partitioned, either physically or logically, into private per-node memory
regions and a globally addressable shared memory. It is assumed that a hardware based coherency is
maintained between over each node's private memory, such as in current general-purpose processors,
but only a weaker consistency model is supported over the shared memory, which is more likely to

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 50 of 60

exist on such a system. A plausible consistency model for shared memory is acquire/release, meaning
a reader must explicitly acquire a region of the memory to see its latest version, and a writer must
release a region it modified, before the changes are visible on subsequent acquires. This is in line with
the initial proposal in this project (cf. D7.1).

Figure 32: Logical system view.

4.2 Operating System Goals

4.2.1 Execution Model
The TERAFLUX operating system is aimed to support high task parallelism. To maximize
parallelism, application execution is divided into many tiny threads; thread execution is governed by
the dataflow model. DF-threads include the following properties:

• Scheduled to run only when all their inputs are ready.
• Have no side effects until completed in a non-faulty manner.
• When completed, the results are published and the dependents are notified.

• On error or core/node failure they can be safely restarted.

4.2.2 Fault Tolerance
Furthermore, the operating system must maintain reliability facing potential faults:

• Cores can permanently fail.
• Whole nodes can temporary or permanently fail.

• Cores can suffer from soft (transient) errors.

4.3 Runtime Environment
4.3.1 Memory Arrangement
Each node has a memory region assigned to it, which is only accessible from within the node. This
space holds the local kernel structures and its runtime services, as well as the needed environment to
support the execution of dataflow tasks (e.g. stacks, heaps, scheduler information). Each node also has
a part of the shared memory under its control. This region can be read from and written to by all
nodes. The shared region of each node holds the communication channels to the other nodes, and vital
information on the threads running on that node, which is needed for recovery in the case of node
failure (this is in-line with the TERAFLUX architectural template defined in 6.2, more on this later).
Since this region is not consistent across all nodes, and explicit synchronization operations are needed
to work with it (acquire/release), no atomic instructions such as compare-and-swap can be used by

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 51 of 60

several nodes on the same memory location. This means that conventional synchronization
mechanisms modern operating systems rely on to synchronize between several cores, like spin-locks,
cannot be placed in the shared memory as a means to synchronize between nodes. These limitations
pushed the solution to use static allocations from shared memory wherever possible. To simplify and
accelerate development, dynamic allocations are still used in a few cases. In those cases only the
owner node of the shared region is allowed to allocate and de-allocate memory, thus avoiding the
problems and overhead of multiple nodes synchronization.

4.3.2 Inter-node Communication
Since the shared memory is inconsistent across nodes, and requires explicit acquire and release calls
to communicate through it, standard (library) data structures could not simply be placed in it to pass
information between nodes. Custom structures were made that account for the inconsistency and
acquire/release semantics.

4.3.2.1 Block Transfer Layer
In the beginning of each node's shared region, space is statically allocated for communication buffers
of data from all the other nodes. There is one slice of memory dedicated for each node, each slice is a
buffer for a FIFO “ring buffer” of small memory blocks of fixed size (Optimal size can be found from
typical message size, currently 64 bytes). Each ring buffer is only written to by one “remote” node,
and only read by the local node – it is a one-way communication channel between them. Since each
node has one input buffer for all other nodes and one loopback buffer to itself, there are a total of n2
buffers in the shared memory, which create a complete graph of bi-directional communication
channels among the nodes.

With the assumption that each channel is only written to by one node and read by one node (SPSC), it
was made lock-free over the inconsistent memory using appropriate acquire and release calls.

Node Memory

Accessible only by the local kernel.
Holds:
• DF thread frames
• Kernel structures
• …

Private

Shared

Dynamic allocation pool
(Allocation performed only by the local kernel)

Holds DF threads code, shared buffers,
node health information, etc.

Input queue from node 1

Input queue from node 2

Input queue from node N
…

Critical data backup
Enables recovery from node failure

…

Figure 33: Memory Arrangement

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 52 of 60

4.3.2.2 Messaging Layer
Messages are packetized to fixed size frames and sent over the queue to the destination node. Each
node polls on the input queues from the other nodes and processes the pending messages. Primary
messages:

• ThreadLoad: Contains the actual thread binary to execute or its identifier, inputs information
and shared memory requirements.

• ThreadWrite: Contains the destination address (Combination of the thread ID and input
offset) and its value.

• Heartbeat: Notifying that the source node is alive and contains state information used for load
balancing.

4.3.3 Node Failure Tolerance
The system was designed to be able to maintain correct operation of the operating system and the
running applications in case of node failure.

4.3.3.1 Message Recovery
The buffers holding the messaging channels are kept in shared memory and can be accessed if the
node crashed, for recovering the pending messages and handling them on a different node. Two main
steps should be noticed that enable messages recovery:

• When a node processes a message it received, it does not remove it from the input queue until
it performed the required operation.

• The processing of messages that are critical for correct operation (like thread-writes and
scheduling requests) involves carefully updating the shared context backup region of the node
with the new information.

The combination of these steps allows the recovery of all messages that were pending in the crashed
node, and also of the message that was being processed when the node failed. Special care must be
taken however when processing the first recovered message, as it might have already committed its
full or partial results to the backup store before it was removed from the message queue. The backup
region was structured with this in mind, so these cases are easily detected and resolved to avoid
corruption and repeated operations.

4.3.3.2 Context Backup
A node maintains the collection of its pending and running thread descriptors in the shared memory,
each descriptor contains the thread identifier, binary to execute, inputs state etc. - everything needed
to describe the thread. This acts as the backup in case the node failed, and allows the recovery of all
the threads that belonged to that node. A thread descriptor also has room for the input values the
thread requires, so thread-write messages update the destination descriptor with new information until
all inputs are received. This backup is simply a copy of the ThreadLoad messages the node received
but not yet completed. As mentioned regarding messages recovery, while processing a ThreadLoad or
ThreadWrite message we first carefully update the backup in shared memory, before removing the
message from the queue, so critical information is never lost if the node suddenly stops at any point.
The node chosen to recover the abandoned threads can simply process the ThreadLoad messages from
the backup, or (only if all the inputs were received already) forward them to another node completely
as-is. All of the messages still waiting in the queue that were not yet processed could be appropriately

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 53 of 60

processed by the recovery node. Note that if the recovery node chose to forward a thread elsewhere,
this thread will already have all its inputs available and is ready for execution, thus it is not expected
that there will be any pending messages regarding it that the recovery node could not handle.

These mechanisms ensure that the latest state of all threads can always be recovered from a crashed
node, combining the information from the descriptors store and the pending messages queues, no
matter at which point a node crashed.

4.3.3.3 Detection & Recovery from Node Failures
A simple distributed watchdog mechanism was made to detect offline nodes and initiate the recovery
process. Each node sends heartbeat messages to all other nodes periodically. Concordantly, a service
running in each node periodically checks that a heartbeat was recently received from all other nodes.
When a crashed node is detected, a chosen node is assigned to take over the pending work of the dead
node. The recovery node loads the thread descriptors that were kept in the backup segment of the
node, and process the pending messages from the input queues. This node maintains control over the
available resources of the disabled node, like memory and communication channels, so they are kept
utilized by the system to minimize performance loss. Additionally to the life sign the heartbeat
message represents, each node also appends its state to it (workload, temperature, fault rate etc.), this
information is used by other nodes to have smarter scheduling policies and load balancing. Currently
only two extra parameters are included with the message, which are the number of threads the node
holds (considered in load balancing), and the time the message was sent (can be used to measure
latencies). Other useful measurements can easily be added.

4.3.4 Thread Execution Procedure
The process can be described in the following high level stages:

• A scheduling request is created, specifying thread code (by name or actual binary to execute),
the number inputs to wait for and the regions of global memory it needs to access.

• The request is submitted to the local scheduler, which decides what node should be assigned to
execute the thread based on load-balancing and performance considerations. It can use the local
node state, information collected from heartbeats and space and time locality of other threads
with similar properties. Currently only a simple algorithm is implemented; it tries to launch the
threads on the local node until it reached a specified threshold on the number of existing
threads, above which it will pick another node, which owns the lowest number of threads (this
workload information gained from heartbeats), that node might still be itself. Of course many
other algorithms can be investigated. The scheduler assigns a system-wide identifier to the new
thread.

• The scheduling request is sent to the assigned node (can be loop-back), as a message over the
shared-memory communication channels.

• When the target node receives and starts to process the message it will first copy the thread
information to its backup store in shared-memory, before removing the message from the
queue. Thus the thread information is protected from being lost or corrupted in case of a failure
during its processing.

• The node will create a local realization of the thread in its local memory, and add it to the list of
pending threads. It will wait there until all its inputs were also received by ThreadWrite
messages.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 54 of 60

• When a ThreadWrite message is processed, the destination thread descriptor in the shared
memory is first updated with the new information. This, again, is done before the message is
removed from the queue, so the new data is not lost even if the node crashed after a thread
received some of its inputs but not yet executed.

• When the thread received all of its inputs it is ready for execution. At this point another
scheduling decision can be made to forward the thread to be executed on another node, time
passed since the creation of the thread could affect the decision on which is the best node to run
on. The ownership is easily transferred when the thread has all of its inputs, because no further
nodes will be concerned on where to send the ThreadWrite messages.

• The shared memory regions the thread needs to read are refreshed in local memory (acquired)
and the thread is executed. All of the operations it performs which have side-effects are not
actually performed but are buffered in local memory until the thread completes. If Double
Execution is enabled for the thread, it is launched twice (on different cores), with separate
buffers. When both executions complete, their buffers are compared for equality, if they don't
match the thread is launched again until the result buffers match. The buffer contains
instructions of three types:
o Shared-memory write operations. We normally don't want to commit speculative

information to the global memory, before the thread was completed and passed the Double
Execution test. Although depending on the application nature, these might not damage the
application logic, because the writes will not trigger an operation until an appropriate
ThreadWrite will notify of it.

o Thread scheduling requests. Scheduling requests submitted need to return an identifier to
the new thread, which can be used as the target of subsequent ThreadWrite operations or
even their value (allowing the created threads to communicate among themselves). When
this request is handled, a temporary thread identifier is immediately returned to the caller
when the request is buffered, not yet the global identifier that could be used system-wide.
Since we are still unsure that the running thread will complete successfully and will
compare identical to the Double Execution thread, we don't commit the scheduling request
to the rest of the system until the parent thread completed. Besides saving the complicated
cleanup work in the case there was an error later, this also adds no delay in the running
thread execution from invoking the scheduler and load-balancer to assign a global thread
identifier. Another advantage is that when we wait until we have all scheduling requests
from the thread, we can make more informed decisions on how or where we should run
them, possibly combining the requests.

o Writes to threads. These are needed to be buffered in two cases: The target thread that is
written to and/or the value, are the result of a previous scheduling request, and are
therefore only temporary identifiers at this point. The write cannot be performed before the
temporary identifiers are only replaced by their final value when the thread is finalized and
the scheduler has assigned a global identifier for them. Another reason for caching these
when Double Execution is used is obvious; we are unsure of a single result's correctness
and shouldn't publish it before we tested against the Double Execution thread.

• When the thread execution completes (and passed the Double Execution test, if enabled), the
thread is put in a list of completed threads to be finalized, its results from the local buffer need
to be committed system-wide. In turn, the finalization process commits the results from the
buffer as follows:

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 55 of 60

o Commit write requests to the shared memory (a release operation).
o Invoke the scheduler for each scheduling request the thread performed, it will choose a

destination node to run the thread while considering performance optimizations and load-
balancing, generate a global identifier for the new thread and send the request to the
destination node (possibly local loop-back).

o Replace temporary thread identifiers submitted in the buffered ThreadWrite instructions
either in the destination field or the value field with the final ones generated in the
previous step and send them.

4.4 Implementation Details
4.4.1 Thread Identifier
A small dive to the structure of a thread identifier could help understand how these mechanisms could
be implemented efficiently. A thread identifier is 64 bits in size so it can be transferred efficiently; it
is bit-mapped to contain the following fields:

• The ID of the node that created the thread.
• The ID of the node that was originally destined to execute the thread. This field does not

change even if the thread is later re-assigned to a different node (for load-balancing reasons or
when it was recovered from a crashed node).

• Source-local unique identifier of the thread. It is unique only among threads that were created
by the node that created the thread (enables global identifier generation without
synchronization with the other nodes).

• Bits reserved for frame offset in ThreadWrite requests. Using these bits enables a
ThreadWrite request to only contain two 64-bit values, making it efficiently buffered by the
running thread and later transferred if needed. One of the values is the combined destination
thread ID and offset within the thread's frame, and one is the actual value to write. One of
these bits is a 'Translate Value' flag, specifying whether the value associated with the write to
the target thread is a temporary thread identifier, returned to a running thread before its
completion. When this flag is turned on the thread finalizing process knows it should translate
the value to write from a temporary thread identifier to the final one that was assigned to this
thread (and clear the flag). Note that the target of a write might also need translation; this is
detected simply by the target node field containing a predefined invalid node ID.

4.4.2 Thread Binaries
The threads themselves are dataflow tasks, usually small pieces of code and its static data, can be just
a single function. They are not whole programs but work only as a part of a larger application. To
launch a distributed application over the entire system, not all of it needs to be loaded (and possible
copied) to all of the nodes. Only a single node is required to load the whole executable (possible only
the front-end node), and the rest of the nodes will only copy/load the code of the threads that they
need to execute, saving a lot of bandwidth and space when the system contains hundreds of nodes. For
example, the binaries copied to other nodes in the Fibonacci implementation are no bigger than a few
hundred bytes.

Each thread is compiled as PIC (Position-independent code) so it can be copied and executed from the
shared memory which can be mapped differently in each node. There are several ways threads binary
code can be created: It can be compiled to be separate from the user executable, or compiled as a part

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 56 of 60

of it. If the thread binary is separate from the application executable it can be pre-compiled before the
application is launched or at runtime by a JIT (Just-in-time) compiler. These combinations are
supported simultaneously.

There are two ways a node can get the thread binary it needs to execute a ThreadLoad message it
received, depending on the threads nature, probably one of the following is preferable:

• The ThreadLoad message contains the actual binary for execution. The executing node does
not need to have access to disk or any global storage. This also means a node can execute
threads from any application without preparation. This way is probably preferable if the
threads are small or if many kinds of them are dynamically compiled at runtime.

• Only the binary name is included in the ThreadLoad message, a node receiving this
information will look in its buffer of previously launched threads for the specified thread and
try to load it. If the thread is not in the buffer the node assumes it was pre-compiled and tries
to load it from disk. This option is probably better if threads are only pre-compiled or are
relatively large in size.

Which mode to use is currently determined statically for each thread but it could be automatically
determined at runtime based on the thread size or history.

4.4.3 Fail Tolerant Synchronization Count
The synchronization count field alone is not enough to reconstruct the latest state of a thread after a
node failure. Take the simple case of a thread waiting for two input values, in the case that a node
failed during the commit phase of a completed thread that writes to the waiting thread, but after the
process already sent one value and the target SC was decreased by one. The almost-finished thread
will be recovered and executed again, entering the commit phase and sending the first value again. At
that point the SC of the waiting thread will be decreased to zero and the thread will execute even
though it only received one of its inputs. This problem cannot be solved with the SC aggregation
alone, so additional information tracking the state of individual inputs was added. This responsibility
was assigned to the receiver, where the added logic is simple and ThreadWrite messages are kept
small. A simple solution was to keep a bitmap of offsets written within the frame (in units of 64bit),
so a write of 64bits to the kth position in the frame will clear the kth bit in the map, only after actually
writing and publishing the new value. This way, the latest SC of a thread can always be recovered in
any case of failure, using the 'Original SC' field and the bitmap. Repeated writes from rescheduled
threads will not corrupt thread executions since the receiver will see that the destination offset bit is
already cleared and will not decrease the SC it keeps in local memory. Note that currently the bitmap
is 64 bits in size, limiting the size of a thread frame to a maximum of 512 bytes, of course a more
flexible solution can be made.

4.4.4 Integration into TERAFLUX
Development was aimed to be able to reliably run the dataflow threads devised by TERAFLUX. The
system uses the TSUF variant of TSU that implements a shared memory model of TERAFLUX, with
a shared-memory consistency model similar to acquire/release. The operating system is simulated
over virtual machines, using the COTSon simulator. The host runs a VM instance for each node (with
several cores), each node boots into its own kernel. The host allocates a shared memory region, which
the VMs can access over a simulator layer that implements the acquire/release semantics.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 57 of 60

Acquire/release shared memory

Node Context Node Context Node Context

…

Node Context

COTSon

SimNow

Microkernel

Core Core Core

Core Core Core

Core

Core

SimNow SimNow SimNow

…
Private memory

Microkernel

Core Core Core

Core Core Core

Core

Core

Private memory

Microkernel

Core Core Core

Core Core Core

Core

Core

Private memory

Microkernel

Core Core Core

Core Core Core

Core

Core

Private memory

Messaging layer

Input queues
from other nodes

Pending threads
information

Figure 34: Simulation Overview

4.4.4.1 Shared-Memory Support
Each node runs the normal LTSU and DTSU but their responsibilities are limited to a subset of the
original ones, just the hardware support that deals with shared memory access is relied on by the OS.
They do not communicate to other nodes through any existing strong-consistency shared structures
hidden in the simulator (e.g. by shared DF threads pools), besides the ones that simulate the shared
memory semantics. All communication between nodes is done in software at the OS level, using the
shared memory with the weaker consistency mode (OWM, cf. D3.5, D4.7) supplied by TSUF. Thread
management and scheduling is also done in software only, not relying on TSU mechanisms (tpoll) for
user threads, or the existence of the user executable loaded in all nodes (required user DF threads code
is transferred over OWM). More specifically, all tschedules are immediately followed by a tconstrain
to the local node, and no twrite/tdecrease instructions ever operate on threads from other nodes (i.e.
twrites are mapped to standard MOV operations), thus the reachable space of TSU is constrained only
to the local node.

4.4.4.2 Service Threads
The OS needs access to the shared memory (since the message queues, thread binaries and thread
descriptors are stored there), so it uses a special kind of DF threads internally for some of its service
threads, created with a similar interface as the one to create user DF threads.

These threads are not the normal dataflow threads that have no side-effects, have a short life-span and
just need a single OWM acquire/release, some of them are persistent to the lifetime of the system,
they have side-effects before their completion and they require a more powerful access to the OWM.
They are responsible to maintain the communication channels through the shared memory, poll on
message queues from other nodes and run message pumps. Support for such threads was not
considered in TSUF so some modifications were needed, including the addition of a new T*
instruction, tacquire, which receives a pointer to one of the readable OWM regions the thread

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 58 of 60

subscribed to and reloads it to guest memory. This instruction was not needed in ``normal'' DF
threads, because it is expected that their inputs are already present when the thread starts and do not
change while it runs, contrary to an OS message pump thread for example. Such a thread needs to
repeatedly acquire the queue regions for new messages, and a writer thread may need to write data to
the queue and release several times.

Additionally, to simplify development and possibly increase performance, it was suggested to allow
acquire and release operations only on a part of a region. The existence of this feature is dependent on
the assumed hardware support, but for now at least it was simple to implement in the simulator. This
feature was useful in many cases, for example when dealing with the shared FIFO buffers, the entire
buffer is stored in a single region, but still different blocks can be written to and published
independently, saving the overhead of publishing unmodified data and the bookkeeping of managing
a region for each (relatively small) block.

Being aware of the dataflow instruction set, we can be more detailed with the contents of a thread
descriptor that is passed in ThreadLoad messages and kept in the backup store. A new dataflow thread
is created with additional details, as specified by the TSUF instructions, those need to be kept with the
thread information when it is assigned to a node or restored from backup. Besides obviously
specifying the thread routine (as explained before; we either include the thread name16 or the actual
binary), also the frame size of the thread, the synchronization count and the OWM region definitions
the thread need to access are included with the thread descriptor.

4.4.4.3 Dataflow Threads
The user dataflow threads can be one of the two forms:

• TSUF DF threads, created with tschedule, tsubscribe etc. OWM access from user threads is
only supported in this mode, since normal pthreads cannot currently subscribe to it. This
mode enforces a limit on the number of running DF threads, which is the number of worker
threads that constantly call tpoll for work.

• Normal pthreads. Since all thread management and scheduling is done in software, in this
case, there is no need for the user threads to be on TSUF worker threads. The OS service
threads are still DF threads because they need OWM access but the user threads are not. To
keep user code exactly the same when switching between modes, the runtime creates an
environment similar to that created by TSUF. This mode enables the local operating system to
manage the computation resources in the node and share them among running threads,
making it much more flexible and efficient.

4.5 Related Research
Research on intra-node reliability mechanisms (specifically, for a case of core failure that
does not limit the functionality of the remaining cores in the node) could most likely be
incorporated and utilized by this system, thus completing the picture by providing both a local
and a global solution. The system could handle core errors and failures more efficiently if
some of the problems are handled within the node, preventing the node from failing and
affecting the entire system by the global recovery procedure.

16 Thread name can obviously be replaced with a more efficient identifier.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 59 of 60

References

[1] A. Portero, A. Scionti, Z. Yu, P. Faraboschi, C. Concatto, L. Caro, A. Garbade, S. Weis, T.
Ungerer and R. Giorgi, "Simulating the Future kilo-x86-64 core Processors and their
Infrastructure," in 2012 Spring Simulation Multiconference (SpringSim'12), Orlando, FL, USA,
2012.

[2] M. Solinas, R. Badia, F. Bodin., A. Cohen, P. Evripidou, P. Faraboschi., G.R. Gao, A. Garbade,
S. Girbal, D. Goodman., B. Khan, S. Koliai, F. Li, M. Lujan, L. Morin, A. Mendelson, N.
Navarro, A. Pop, P. Trancoso, T. Ungerer, M. Valero, S. Weis, I. Watson, S. Zuckerman and R.
Giorgi, "The TERAFLUX Project: Exploiting the DataFlow Paradigm in Next Generation
Teradevices," in 2013 Euromicro Conference on Digital System Design (DSD), 2013.

[3] S. Weis, G. A., J. Wolf, B. Fechner, A. Mendelson, R. Giorgi and T. Ungerer, "A Fault Detection
and Recovery Architecture for a Teradevice Dataflow System," in Data-Flow Execution Models
for Extreme Scale Computing (DFM), Galveston Island, Texas, USA, 2011.

[4] S. Weis, A. Garbade, S. Schlingmann and T. Ungerer, "Towards Fault Detection Units as an
Autonomous Fault Detection Approach for Future Many-Cores," in 1st Workshop on Software-
Controlled, Adaptive Fault-Tolerance in Microprocessors (SCAFT 2011), 2011.

[5] E. Rotenberg, "AR-SMT: A Microarchitectural Approach to Fault Tolerance in
Microprocessors," International Symposium on Fault-Tolerant Computing, pp. 84-91, 1999.

[6] C. LaFrieda, E. Ipek, J. Martinez and R. Manohar, "Utilizing Dynamically Coupled Cores to
Form a Resilient Chip Multiprocessor," in 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2007. DSN '07, 2007.

[7] M. Rashid and M. Huang, "Supporting highly-decoupled thread-level redundancy for parallel
programs," in IEEE 14th International Symposium on High Performance Computer Architecture,
2008. HPCA 2008., 2008.

[8] A. Garbade, S. Weis, S. Schlingmann, B. Fechner and T. Ungerer, "Impact of Message-Based
Fault Detectors on a Network on Chip," in 21th International Euromicro Conference on Parallel,
Distributed and Network-based Processing (PDP), Belfast, 2013.

[9] J. Duato, S. Yalamanchili and N. Lionel, Interconnection Networks: An Engineering Approach,
Morgan Kaufmann Publishers Inc., 2002.

[10] W. Dally and B. Towles, Principles and Practices of Interconnection Networks, Morgan
Kaufmann Publishers Inc., 2003.

[11] J. Kim and A. Chien, "An evaluation of planar-adaptive routing (PAR)," in Proceedings of the

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D5.4
Deliverable name: System Integration Analysis, Measurement and Tuning of the Reliability
System
File name: TERAFLUX-D54-v8.doc Page 60 of 60

Fourth IEEE Symposium on Parallel and Distributed Processing, 1992, 1992.

[12] A. Garbade, S. Weis, S. Schlingmann, B. Fechner and T. Ungerer, "Fault Localization in NoCs
Exploiting Periodic Heartbeat Messages in a Many-Core Environment," in 2013 IEEE 27th
International Parallel and Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), Boston, Massachusetts, USA, 2013.

[13] B. Schroeder, E. Pinheiro and W. Weber, "DRAM errors in the wild: a large-scale field study," in
Proceedings of the eleventh international joint conference on Measurement and modeling of
computer systems, New York, NY, USA, 2009.

[14] B. Schroeder and G. Gibson, "A Large-Scale Study of Failures in High-Performance Computing
Systems," IEEE Transactions on Dependable and Secure Computing, pp. 337-350, 2010.

[15] E. B. Nightingale, J. R. Douceur and V. Orgovan, "Cycles, cells and platters: an empirical
analysisof hardware failures on a million consumer PCs," in Proceedings of the sixth conference
on Computer systems (EuroSys '11), New York, NY, USA, 2011.

[16] R. Giorgi, "TERAFLUX: Exploiting Dataflow Parallelism in Teradevices", ACM Computing
Frontiers, pp.303-304, Cagliari, Italy, May 2012.

