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1 Glossary 

OpenMP – Parallel programming pragma language on top of C, C++ and FORTRAN. In this deliverable, we 
refer to the OpenMP specification version 3.1. 

http://www.openmp.org  

OpenStream – Dataflow streaming extension of OpenMP, for the C language, implemented as a patch to GCC 
and a dedicated runtime system for dataflow tasks. It is called OpenStream, and comes with a performance 
analysis tool called Aftermath, coupling high-level programming model concepts with low-level hardware 
counter statistics. 

http://www.openstream.info 

StarSs – StarSs is a task-based programming model that enables the exploitation of the applications' inherent 
parallelism at the task level. To mark the tasks in a StarSs application, annotations (pragmas) extending those of 
the OpenMP ones are used. A uniqueness of StarSs tasks are the input, output or inout clauses that applied to 
tasks' parameters enable the runtime to track tasks' data dependences. These pragmas have been adopted to form 
the dependent task construct of OpenMP 4.0. 

http://pm.bsc.es/ompss 

OpenHMPP - OpenHMPP (for Hybrid Multicore Parallel Programming) is a programming standard for 
Heterogeneous and many-core computing. Based on a set of compiler directives, it has been designed to handle 
hardware accelerators without the complexity associated with the low level programming. Compilers take 
C/C++ or FORTRAN code in input and generate the corresponding CUDA or OpenCL code and the integration 
with the original application. 

http://en.wikipedia.org/wiki/OpenHMPP 

OpenACC - Initially developed by PGI, Cray, NVIDIA, and CAPS entreprise, OpenACC is an open parallel 
programming standard designed to enable the usage of heterogeneous CPU/GPU computing systems. The 
OpenACC Application Program Interface describes a collection of compiler directives to specify loops and 
regions of code in standard C, C++ and FORTRAN to be offloaded from a host CPU to an attached accelerator. 
OpenACC is designed for portability across operating systems, host CPUs, and a wide range of accelerators, 
including APUs, GPUs, and many-core coprocessors. 

http://www.openacc-standard.org 
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2 Executive Summary 

We report on the finalization of the TERAFLUX compilation flow that took place in the fourth year, validating 
the integrated programming models, compilation algorithms and runtime systems targeting the TERAFLUX 
instruction set. 

As a “Prototype” deliverable (P), we provide a survey of the achievements and match them to the goals of the 
associated task in WP4. We refer to associated documents, papers and online sources for a more detailed, 
technical discussion. 

As planned in Task T4.4, we validated the complete flow from the StarSs efficiency language down to the 
TERAFLUX instruction set running on 1024 cores, considering realistic applications from WP2. We also 
conducted performance analysis and performance portability experiments. 

The tool flow is distributed as free software, primarily as a patch to GCC 4.7.1, and with accompanying runtime 
libraries and tools. It comes with a complete set of benchmarks selected from the comprehensive list of 
applications characterized in WP2, and with tutorial examples introducing the language constructs of 
OpenStream. 

Performance experiments on the TERAFLUX instruction set simulator, scaling to multiple node configurations, 
have been conducted on the different applications characterized in WP2. 

• The tool flow for the efficiency programming model relies on the OpenStream language and its 
implementation in GCC 4.7.1. The backend of this compiler has been modified to generate T* 
instructions targeting the TSUF branch of COTSon. This backend compiler has been extended to 
support OWM. The systematic conversion of StarSs to OpenStream has been validated and applied to a 
number of TERAFLUX applications. 

• The CAPS many-core compiler supporting the OpenHMPP and OpenACC standards has been adapted 
to support shared-memory manycore architectures, building on the experience of the TERAFLUX 
compilation flow and programming models. The development of the TF infrastructure implies the 
extension of existing programming models to support legacy application. This document describes the 
extension of the OpenHMPP programming language, and using this extension, the design and 
implementation of a prototype HMPP Workbench able to target TF resources. The study proposes a new 
HMPP Server platform able to provide a generic and powerful infrastructure for the development of 
multiple CPU targets using the HMPP Workbench compiler suite. 

• The tool flow for the productivity programming model is based on Scala and a Scala to C++ compiler, 
and on the T*-extended backend of GCC. Detailed experiments with Scala transactional memory and 
dataflow libraries have been reported in previous years. 

• A specific tool for the performance debugging of OpenStream applications has been designed and 
implemented, called Aftermath, which is distributed as part of the OpenStream platform. Performance 
portability experiments leverage GCC's intermediate representation for OpenStream programs and a 
polyhedral compilation flow adapted to the needs of dataflow architecture. 
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3 Introduction 

The overall objective of WP4 is the development of compilation and runtime support tools tailored to the 
TERAFLUX architecture and programming models. The compiler(s) need to map the parallelism and locality as 
available from the source program and programming model to the target execution model and architecture. The 
distribution of the roles among the compilation tools and the runtime tools is guided by the efficiency and 
robustness of handling the challenges statically or dynamically, respectively. 

The source program exhibits high levels of concurrency, but it still has to be exploited effectively on the target. 
The compiler tools need to coarsen the grain of synchronization, to issue bulk communications, overlap 
communication and computation, balance computation with communication bandwidth, and harness temporal 
locality of code and data, taking into account the features of the memory hierarchy. It also needs to generate 
tightly scheduled computation kernels, possibly targeting accelerators. 

The deliverable also covers the design and implementation of a TERAFLUX specific flow for the OpenHMPP 
programming model proposed by CAPS entreprise. OpenHMPP offers a language, methods, and tools to 
express both the hybrid and the parallel execution of critical code sections on an accelerator. It is already used 
on by a large set of high performance applications and does not require a massive rewriting of the code for 
exploiting many-core architectures such as GPUs. The principles used by the OpenHMPP programming model 
can be applied with little modifications to the virtualization of computing resources and in particular to the 
programming of TF systems. A dedicated section recalls the basis of the OpenHMPP programming model 
available with the HMPP Workbench; it continues with the description of the impact of the prototype 
development in the design of the new compilation infrastructure able to address virtualized computing resources 
in complex systems. 

We report on the achievements of the TERAFLUX project in Task T4.4. We succeeded in closing the gap 
between the efficiency and productivity programming models and a multi-node 1024-core execution using the 
TERAFLUX instruction set. We also provided tools for performance analysis and to enable the performance 
portability of dataflow applications. 

3.1 Document structure 

Section 4 surveys the main tools covered by this “Prototype” deliverable and refers to online sources with more 
detailed information. 

Section 5 reports on the integration of the Scala tool flow with the backend compiler for execution on the 
TERAFLUX architecture. 

Section 6 presents a tool for the direct translation of the C-code into T* extended code. 

Section 7 is a more extensive descript on the HMPP and OpenACC tool flow for TERAFLUX. 

Section 8 surveys the performance analysis and performance portability experiments conducted with 
OpenStream and polyhedral compilation methods. 
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3.2 Relation to other deliverables 

This deliverable extends the compilation algorithms discussed in D4.4 and D4.6, and evaluates them on a range 
of representative benchmarks. It also complements D3.4 with a description of the Scala to T* compilation flow. 

3.3 Activities referred by this deliverable 

This deliverable is associated with and represents the results of Task 4.4. 
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4 Tools 

The prototypes available at the end of the project year can be sorted in 3 categories. 

• The first ones are Scala-specific and support the productivity programming model. They are based on 
runtime libraries from UNIMAN, described in D3.3 and D3.4, and on a C++ compilation flow for the 
execution of Scala programs on the TERAFLUX architecture. 

Technical information and code are available online and updated regularly: 
http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS 

• The different efficiency programming models all come with their source-to-source compilation 
framework. The TFlux language and tools have been extended to support transactions (see D3.3). 
Locality optimizations and multi-level parallel programming extensions have been implemented in the 
HMPP Workbench 3.0 (now renamed “CAPS many-core compiler”). The dataflow extensions have 
been prototyped. A new framework supporting shared-memory manycore architectures has been 
designed and evaluated on the Intel® Xeon Phi™ coprocessor. In addition, in the same compiler, the 
OpenACC standard has been extended to support a high level dataflow extension described in WP3. 
The Mercurium compiler for StarSs is embedded into a comprehensive tool suite within the OmpSs 
infrastructure. Enhancements for multi-level parallelization and transactional memory have been 
integrated to the OmpSs tool flow, including the support libraries and code generators for different 
devices. Note that OmpSs and HMPP model the TERAFLUX architecture as an accelerator device. 

Technical information and code are available online and updated regularly: http://nanos.ac.upc.edu 

• The TERAFLUX backend compiler is maintained as a patch to GCC version 4.7.1. It supports both 
native execution on x86 with a software runtime, and direct compilation of OpenMP dataflow streaming 
pragmas to T* extensions for execution on the TERAFLUX architecture. It supports Transactional 
Memory (TM) and Owner Writable Memory (OWM). It also supports parallel performance 
debugging/analysis, and performance portability experiments using polyhedral compilation. 

The final release of the prototype was made available to the partners and to the public parties on 
October 1st 2013. The distribution and maintenance are managed through an automated installation and 
source code repository process: 

http://www.openstream.info 

The development and exploitation of OpenStream will be continued in collaboration with UNIMAN, 
UPMC, and Kalray (the leading European low-power many-core processor company). Third party users 
include researchers at Ohio State University, and Politecnico di Torino. Technical information and code 
are available online and updated regularly. 
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5 Running Scala Programs on the TERAFLUX Architecture 

The motivation for and the basic approach to translating from Scala to C++ were described in deliverable 4.6. 
To summarize, after two unpromising attempts to translate from Scala to executable code were abandoned, it 
was decided to translate from Scala to C++ using plugins to the Scala compiler. An existing experimental plugin 
produced by EPFL was identified which transformed the Scala AST into a form which was amenable to further 
processing into an executable form. A new plugin was then produced by UNIMAN which took the resultant 
AST and emitted C++ code. 

At the time D4.6 was written, a pilot version of the translator had been produced which was able to handle small 
test programs. It was noted that the following features were not yet supported: 

• Generics; 

• Threads; 

• Transactions; 

• Exceptions. 

When the provision of these features was investigated in the context of more complex programs, it became 
apparent that the approach used had limitations. A re-implementation of the translator plugin was therefore 
produced. 

It became apparent that the use of Generics together with complex inheritance hierarchies made it very difficult 
to determine the types of variables to use in the translation. The pilot translator resorted to the use of void* in 
many circumstances, which resulted in total loss of type information. This in turn made dynamic binding very 
difficult or impossible in certain cases. 

It was therefore decided to use the type inference mechanisms in C++11 as provided by the ‘auto’ feature. In 
addition C++ templates appeared to provide mechanisms for the implementation of generics as well as 
significantly reducing the amount of library code which needed to be produced. In the previous version of the 
translator, Scala basic types were mapped on to the corresponding C++ basic types. In the new version all basic 
types have been represented as objects to enable the full flexibility of the approach to be achieved. 

5.1 Current Status 

The new translator is able to deal with all the original features of Scala programs described in D4.6 together 
with those extras listed above. 

The compiler can produce code for the following: 

• Standalone Scala programs which can be translated to C++ and then directly compiled to standard 
executable code. 
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• Dataflow style Scala programs which can be translated to C++ and then linked with a software version 
of the TERAFLUX TSU (Thread Scheduling Unit). This uses pthreads to provide multithreading and, 
depending on the underlying machine and pthreads implementation, make use of multiple cores. 

• Dataflow style Scala programs which can be translated as above but to target the TERAFLUX T* 
interface. This can then run on the COTSon simulator of the TERAFLUX machine. This provides full 
simulation of the support for Transactional Memory. 

There are still a few limitations on Scala which can be handled. Much of this is simply a lack of implementation 
of library code which can readily be provided with further effort. The use of C++ templates, although successful 
in many respects, has added complexity in the implementation which was not anticipated and some of this may 
place restrictions on the range of Scala features which can be supported. 

The translator has been evaluated on over 20 test programs exploring a wide range of features of Scala. Three 
applications have been used for an evaluation of the dataflow simulation route: i) a double recursive Fibonacci 
function to verify basic functionality, ii) a blocked Matrix Multiply to evaluate numerical performance and iii) a 
3 dimensional (2 layer) Lee routing algorithm to exercise the use of transactions. 

Unfortunately the new approach, although more flexible has proved less efficient both in terms of speed and 
memory usage. As a consequence, we have only been able to simulate relatively small versions of the 
benchmarks. This has led to limited parallel speedups to be achieved. For example a 64x64 blocked matrix 
multiply produces speedups of around 16 on 32 cores. In addition, the execution speed of the translated Scala, 
when run directly, has reduced by a factor of approximately 3 compared to the previous translator. 

5.2 Ongoing work 

It is believed that the majority of both the performance and memory issues are a consequence of the decision to 
use objects for basic types. It is believed that this can be reversed in the new translator with moderate effort and 
this is underway. It is hoped that a much more comprehensive evaluation can be performed and demonstrated 
before the TERAFLUX review meeting. 
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6 Direct translation of C-code into T* instructions 
In the task T4.4 (last period), UNISI has continued to support the deployment of the T* ISA extension (cf. all 
WP6 and WP7 deliverables) in close cooperation with INRIA (cf. D4.3 for the initial T* mapping), and relying 
on the minimalistic T* instruction initially presented [12], i.e., mainly relying on the 
TSCHEDULE/TDESTROY, TREAD/TWRITE, TALLOC/TFREE instructions. 

In relation to this task and general workpackage objectives, UNISI has explored the possibility to translate a 
generic C program (referring to the C89 specification) directly into programs that use the T* instructions. 

This effort does not overlap with other efforts, but provides a practical demonstration of the theoretical ability of 
translating any program in a form that only exploits the initially devised DF-Threads (cf. D7.1). In particular, 
we focused on the translation of what we call “T*C” that we used in WP7 (cf. D7.4) in order to show how to use 
the COTSon simulator more easily rather than coding directly into T* assembly instructions.  

The T* ISA allows us to: i) execute a subprogram and then another subprogram (sequence), dynamically, 
through the TSCHEDULE instruction; ii) executing two subprograms according to the value of a boolean 
expression (selection) through the predicate of TSCHEDULE; iii) executing a subprogram until a predicate is 
true (iteration), again through the predicate of TSCHEDULE. Therefore, by the Bohm-Iacopini theorem, any 
algorithm can be expressed using the T* instruction set extension so that the classical control structures are 
translated into dataflow dependences. 

Please note that by releasing totally the need of synchronous calls, an asynchronous dataflow execution-model is 
then generated by relying on the T* ISA extension, while the programmer doesn’t have to specify anything in 
the source C-code, thus allowing a large base of legacy code to be re-used. This effort also helped INRIA and 
BSC develop the algorithm used for the systematic conversion of StarSs programs to OpenStream: both 
problems boil down to the principles established in the Bohm-Iacopini theorem. 

We are not making any claim on the quality of the generated code, in particular in respect to any parallelization 
that might be applied through tools like PLuTO or other polyhedral compilers. The methodology that we applied 
relies on the SCALE compiler, by modifying the backend of that research compiler in other to target first a pure 
dataflow representation of the program in term of DF-Threads, and then mapping such representation to the 
T*C. From the T*C representation (which is again C-code), we translate the code into x86+T* extension by 
relying on the already presented GCC toolchain (cf. D7.4). The generated programs can run directly on the 
COTSon simulator as modified thanks to this project, and on future machines that may support the T* 
extension. 

The aim of this toolchain is therefore to provide an additional path for translating C-code into executable T* 
code, directly. This tool can be demonstrated on demand but it is not yet available for distribution. 
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7 HMPP and OpenACC Tool Flow for TERAFLUX 

HMPP Workbench is a feature-rich tool that simplifies the utilization of GPUs and many-cores systems. This 
section provides the basic information about how to get started with the OpenHMPP directive set. We introduce: 

1. The basic concepts of OpenHMPP (e.g. RPC, codelet, memory model, gridification); 
2. The basic directives (e.g. codelet / callsite); 
3. Code generation and optimization directives. 

Furthermore, the HMPP Workbench supports the OpenACC [7] [8] standard directives – a parallel-
programming standard announced at Supercomputing 2011 and supported by NVIDIA, Cray Inc., the Portland 
Group (PGI), and CAPS entreprise. 

For more information, refer to the HMPP Workbench documentation [9]. 

7.1 Basic concepts 

7.1.1 « Remote procedure call » (RPC) 

HMPP allows to program hardware accelerators (HWA) using the Remote Procedure Call paradigm. Hardware 
accelerators commonly come in the form of discrete cards connected to the CPU through a fast bus interconnect 
like PCI-Express. This interconnect link is in the case of a Cloud target a network bus. In both cases, the bus 
shows two important properties: first, the accelerator uses a remote memory with a separate address space; 
secondly, the performance of the bus is significantly lower than the CPU memory system (up to several orders 
of magnitude). The RPC Protocol is used to proceed with the offloading of the computation from the host. 

An RPC sequence, exposed Figure 1, consists of 5 steps: 

1. Allocate the HWA and the memory; 
2. Transfer the input data: Host => HWA; 
3. Execute the sequence of the instructions; 
4. Transfer the output data: HWA => Host; and 
5. Release the HWA and the memory. 

 

Figure 1, the five steps of an RPC sequence in HMPP 

With HMPP directives, these steps may be performed somewhat implicitly or controlled using the relevant 
directives inserted in the source code. 
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7.1.1.1 Memory model 

Host and devices usually do not reside in the same memory space (see Figure 2). The application and the HWA 
have their own private memory only accessible via explicit memory transfers. HMPP deals with this in a 
transparent way for the user; it can be seen as the glue between target-specific programming environments and 
general-purpose programming techniques. 

 

Figure 2, Memory model of OpenHMPP 

The memory model can be completed depending on accelerators with some local memories that will have to be 
managed directly inside the codelet. 

7.1.1.2 Codelet 

A codelet is a computational part of a program located in a function inside the application. It takes several 
parameters, performs a computation on these data and returns. A codelet is typically a C function or a 
FORTRAN subroutine automatically translated by HMPP into HWA-specific code such as CUDA or OpenCL 
[10]. Parameters of the codelet defined the data allocated and manipulated on the accelerator. They can be 
specified as IN, OUT, INOUT, or CONSTANT. The execution of a codelet is considered atomic: the execution does 
not have an identified intermediate state or data. 

A codelet has the following properties: 

1. It is a pure function; 
2. The number of arguments is fixed (i.e. no variable number of arguments like C vararg); 
3. It is not recursive; and 
4. Its parameters are assumed to be non-aliased. 

These properties ensure that a codelet RPC can be remotely executed by a HWA. This RPC and its associated 
data transfers can be performed asynchronously. The codelet itself does not specify the parallelism but define 
the computation area deported on the accelerator. 
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7.1.1.3 Parallelism / Gridification 

In the context of HMPP, “gridification” refers to the transformation of codelets’ loop nests into computations 
that can run in parallel on a hardware accelerator such as a GPU. Gridification is about translating blocks of 
loop iterations into a set of parallel kernels. This translation is done by the conversion of the loop nest iteration 
space into a set of equivalent grid computations with as many dimensions as there are induction variables. The 
grid computation kernel is the minimal computational object. It is characterized by its number of dimensions 
(from one to three) and proceeds to the computation by the execution of multidimensional sub-blocks, with all 
the iteration space executed in parallel by the hardware. Sub-blocks can be executed out-of-order by one or 
multiple multi-processors until completion. 

#pragma hmppcg gridify(i,j) 
for( i = 0 ; i < n; i++ ) { 
  for( j = 0 ; j < n; j++ ) { 
    float prod = 0.0f; 
    for( k = 0 ; k < n; k++ ) { 
      prod += A[k*n+i] * B[j*n+k]; 
    } 
    C[j*n+i] = alpha * prod + beta * C[j*n+i]; 
  } 
} 

Listing 1, Gridification of a matrix multiplication 

The gridification process is controlled by a specific set of directives prefixed by “hmppcg”. Combined with loop 
transformations, they control how the original loop nests are converted into grid computations. This 
optimization phase is critical to get the maximum performance from the accelerator architecture. In the example 
showed in Listing 1, the hmppcg gridify directive is used to set the <i, j> loop nest as parallel. 

The gridification is complementary to other parallelization methods like the “vectorization” or the “multi-
threading”. 

7.2 Basic directives 

This section describes the two main directives needed to program the remote execution of a computation. More 
directives are described in the workbench manual. 

HMPP directives follow the same principle as in OpenMP. Each directive starts, in C, with: 

#pragma hmpp <commands and arguments ...> 

In FORTRAN: 

!$ hmpp <commands and arguments ...> 

 

The pair of directives codelet/callsite is the minimum required to get a function to run on an HWA. The codelet 
directive must be placed on the function declaration, and the callsite directive must be placed on the occurrence 
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of the function call to be offloaded to the HWA. The codelet is declarative and lead to the generation of the code 
for the target accelerator (specified by the argument “target”). The function should contain parallel loops to get 
performance on manycore devices. 

#pragma hmpp myCall codelet, args[*].transfer=atcall, target=CUDA 
void myFunc(int n, int A[n], int B[n]) { 
  int i; 
  for (i=0; i<n ; ++i) 
    B[i] = A[i] + 1; 
  } 
 
void main(void) { 
  int X[10000], Y[10000], Z[10000]; 
  // ... 
  #pragma hmpp myCall callsite 
  myFunc(10000, X, Y); 
  // ... 
  myFunc(1000, Y, Z); 
  // ... 
} 

Listing 2, Codelet/Callsite C example 

The callsite directive is set before the function call of the declared codelet. This directive tells the HMPP 
compiler to change the original source code to operate the RPC of the codelet on the accelerator. The code in 
Listing 2 proposes a condensed view of the OpenHMPP program. 

Real applications require the execution of multiple code sections on accelerators, so the HMPP programming 
model provides the definition of “groups” assembling a set of codelets and their arguments into one single 
object. Inside a group, codelets arguments are visible and shared. This mechanism reduces the memory 
consumption and the memory transfers on the accelerator. 

7.3 Execution and compilation 

A program with HMPP directives can be compiled by prefixing the original compiler command with the 
keyword “hmpp”. Note that only sources codes with OpenHMPP directives, and eventually the final link, need 
to be completed this way. The regular building system can be left untouched for other parts of the application. 

hmpp gcc basic_codelet_callsite_example.c -o tstC.exe 

Listing 3, compiling a C source file with HMPP directives using the GNU C compiler and HMPP 

An application compiled with HMPP – i.e. a codelet application – can be executed by simply running the 
resulting binary. 

7.4 Consequences of experimentations on the TERAFLUX architecture 

Experiments made on the implementation of a TERAFLUX target (“TF” for short in the following) in the 
HMPP Workbench have led to the design of a new software architecture for the HMPP compiler. The former 
approach, applied to OpenCL type languages, was relying as much as possible on tools and interfaces available 
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for these languages, and very often, also on proprietary API provided by accelerating boards: initialization and 
allocation API, parallel programming paradigms. The code generation and the runtime management in the 
CAPS compiler were significantly limited by these restrictions. They have been an important constraint in the 
implementation of a TF target in the compiler, but also in the implementation of various target in other fields 
(embedded processors, native support of the Intel Xeon Phi accelerator). 

The new software architecture must offer the following features: 

1. the decoupling of the parallel programming model from the hybrid programming, 
a. necessary to deport any type of parallel programming models, 
b. simplify the programming of the hybrid management; 

2. the introduction of a boot protocol independent of the regular device allocation, 
a. takes in charge the upfront reservation of TF resources, 
b. takes in charge the authentication and secure access of resources; 

3. an abstraction of communications, 
a. enables the implementation of serialization and un-serialization of complex data, 
b. enables the topology conversion of structured data (performance oriented), 
c. implements the secure data transfer configured by the boot protocol; 

4. a dedicated and specialized runtime on the accelerator board, 
a. implements the bufferisation and the secure communication of asynchronous requests, 
b. can handle the allocation and the creation of resources according to the application 

workload; 
5. the creation of an “execution context” independent for all codelet or parallel tasks, 

a. enables the implementation of interleaved RPC kernel calls (with the support of 
lightweight threads), 

b. enables the mixed implementation of different parallel execution models; 
6. the creation of communication channels between execution contexts (in a hierarchical way), 

a. enables the workload distribution over a tree of computation units, 
b. enables the implementation of Active-Message communications. 

All these features shall be implemented with in mind the best balance between two objectives: a possible 
generalization or extension to various types of architectures available on the market, and with a higher priority, 
the performance. 

7.5 Definition of a new innovative deployment architecture for HMPP 

The design of the new software architecture has led to the implementation of a new hybrid execution platform 
for general purpose CPU: “HMPP Server”. The objective of this module is to propose a unified code generation 
platform for high performance, hybrid, and massively parallel machines. It should be able to support all current 
and future hybrid or parallel architectures for both the OpenHMPP and the OpenACC programming models. 

Major properties of the OpenHMPP programming models are kept: the code generated is preserved from the 
original application by the directive approach, the hybrid compilation chain is automatic and autonomous, and 
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finally, the model relies on the RPC execution of codelets, functions containing the code to be deployed with 
massively parallel sections.  

7.5.1 HMPP Server Architecture 

The architecture is presented Figure 3. It is composed of two major sections: the HOST section and the DEVICE 
section. The already existing modules in the architecture are in green, and the new modules are in orange. 
Hardware blocks are in yellow. 

 

Figure 3, HMPP Server Architecture 

7.5.1.1 Host section 

The host section takes in a large part the original design of the HMPP Workbench, with an instrumentation of 
application's directives with runtime requests, and the usual HMPP runtime. We added the target specific 
runtime part, in our case the generic Multi-CPU runtime, and a new boot module for some new accelerating 
targets like the generic Multi-CPU target. 

7.5.1.2 Accelerator management 

The device section is totally renewed. First of all, the boot module is the only element that can be placed out of 
the accelerator runtime: it can be placed depending on cases on the host side, or in an external and remote 
machine in charge of the global administration of resources. Its duty is to answer all requests of creation or 
allocation of devices at a global scale. 
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Then, an accelerator runtime is implemented on the accelerator itself. Its implementation has to be conformed to 
the constraints and to the specificities of the machine: cooperation with the device OS, adaptation to available 
API. A target can enforce restrictions about the execution models available on the device. The boot module and 
the accelerator runtime are the basis of the virtualization of the device, and of the dynamic management of 
resources (data or computations). 

Communications between runtimes and accelerator codes are done through “Socket” type interfaces: the 
channels. They can be quickly implemented using any interconnection protocol available on the system: TCP/IP 
or UDP/IP sockets, DMA channels, SSL tunnels, Infiniband interconnects, etc. In order to achieve the best 
performances, different channel types can be used depending on the type of connection and the type of target. 
System channels for the Boot module (socket boot) shall be robust and efficient for control type messages; 
runtime command channels (system channels) should have low latencies; operational channels (execution 
sockets) should have both low latencies and high bandwidth using preferably a specialized hardware (e.g., 
DMA). All channels have to support natively the serialization and optionally the secure transmission of data. 

7.5.1.3 Execution management 

The execution model is composed of a various parallel code generation back-ends, each proposing to the user a 
different parallel programming paradigm. They are all designed to extract the maximum performance for one 
specific machine architecture with a specific input code. Execution schemes can vary from a pure task parallel 
code execution, to a massively parallel execution in grids. A sequential back-end generating a standard “C” code 
is available for basic hybrid or remote executions and can be useful for validation. The OpenMP back-end can 
be used with parallel loops to exploit the parallelism using the native OpenMP target compiler: this one is of the 
simplest way to get performance with parallel code on multi-core targets. The OpenStream compiler can be used 
as well in the same way. The MCPU back-end is a massively parallel execution scheme in grid designed to 
extract performance on multi-core machines with lightweight threads. 

When generated, the code is sent on the accelerator with its own execution context. This context is linked to the 
application with a unique operational execution channel. From this context, the code can create new regular or 
simplified contexts. In the case of a regular context, a complete operational execution channel will be created 
and connected with its parent. In the case of a simplified context, the link will be made with Active-Messages. 
By construction, all contexts are asynchronous and are executed in parallel. The global execution creates a 
hierarchical distribution of the computation with eventually different local execution models. This architecture 
permits the implementation of complex recursive and parallel computations with an automatic workload 
adaptation, and a better scalability for large systems. 

7.5.2 Implementation on the Xeon Phi architecture using low level API 

The new architecture has been implemented on a beta branch of the HMPP Workbench version 3.0.8 for the low 
level support of a Xeon Phi accelerating board.  

At time of development of this prototype, the access to the OpenCL library and compilers for the board was not 
available: the OpenCL programing model usually simplifies the programming of this type of machines. Only 
low level API could be used to connect and generate both hybrid and parallel codes on Xeon Phi. The new 
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HMPP Server architecture has been an opportunity for the implementation this new target in the HMPP 
workbench, and this machine, enabled us the evaluation and the validation of the architecture on a real case. 

Low level API were on one side the COI library used to access and initialize the Xeon Phi, and on the other side 
the proprietary SCIF library capable of performing fast transfers using hardware DMA. The native compilation 
chain supports OpenMP. 

At the end of the implementation phase, the architecture could be nearly completely validated. The validation 
could qualify: 

1. the management of the unified boot system; 
2. the management of the compilation chain and of the hybrid code generation; 
3. the preliminary support of execution contexts and of interleaved kernel executions; 
4. the support of boot, system, and operational channels by a proprietary DMA. 

The full chain of the beta version of the HMPP server was validated – from the directive programming to the 
execution on the device – using the “HydroC” application. This real life C application performs a simulation of 
hydrodynamic flows using the “Godunov” algorithm. The validation was performed on two versions of the 
application: a first version using OpenHMPP (version 2 and 3) and a second version using the OpenACC 
language. In both cases, the application used the OpenMP code generation back-end. 
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8 Performance Analysis and Portability Experiments 

So far, the project's activities in WP4 have focused on optimizations and compilation flow to support dataflow 
programming and transactional memory. One long-term objective of advanced compilers remains to offer one 
more level of abstraction to programmers: performance portability. Loop tiling and thread-level parallelization 
are two critical optimizations to exploit multi-processor architectures with deep memory hierarchies. These 
optimizations are some of the most effective ones, when exposing coarse grain parallelism, to adapt the program 
to a given architecture and execution context. 

The dataflow model of execution does not involve the scalability drawbacks of barrier-based parallelization: 
tasks can execute as soon as the data becomes available (i.e., when dependences are satisfied) and lightweight 
scheduling heuristics exist to improve the locality of this data in higher levels of the memory hierarchy. But 
adaptation and advanced optimizations remain key to reach efficient levels of performance. 

Loop transformations for the automatic extraction of data parallelism have flourished. Unfortunately, the 
landscape is much less explored in the area of task parallelism extraction and in particular the mapping of tiled 
iteration domains to dependent tasks. We describe below the three key contributions: 

• Experimental: we demonstrate strong performance benefits of task-level automatic parallelization or re-
optimization of parallel programs over state of the art data-parallelizing compilers, and we further 
characterize these benefits within and across tiled loop nests.  

• Algorithmic: we design a task parallelization scheme following a simple but effective heuristic to select 
the most profitable synchronization idiom to use. This scheme exposes concurrency and favors temporal 
reuse across distinct loop nests (a.k.a. dynamic fusion), and further partitions the iteration domain 
according to the input/output signatures of dependences. Thanks to this compile-time classification, 
much of the run-time effort to identify dependent tasks is eliminated, allowing for a very lightweight 
and scalable task-parallel runtime.  

• Compiler construction: we implement the above algorithm in a state-of-the-art framework for affine 
scheduling and polyhedral code generation, targeting the OpenStream research language. 

We use the Ring-Roberts kernel below as an illustrating example, with N=4000 and using double precision 
floating point arithmetic. 

for (i = 1; i < N - 1; i++) 
for (j = 1; j < N - 1; j++) 

S1: B[i][j] = (A[i][j] + A[i][j-1] + A[i][1+j] + 
A[1+i][j] + A[i-1][j] + A[i-1][j-1] + 

A[i-1][j+1] + A[i+1][j-1] + A[i+1][j+1])/8; 

for (i = 1; i < N-2; i++) 
for (j = 2; j < N-1; j++) 

S2: A[i][j] = abs(B[i][j]-B[i+1][j-1]) + abs(B[i+1][j] - B[i][j-1]); 
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Table 1 below shows the performance obtained when using ICC -O3 -parallel as the compiler. The original code 
reaches 1.2 GigaFlop/s (GF/s) on an AMD Opteron 6274 (16 cores, 16x16KB L1, 2 GHz) and 2.7 GF/s on an 
Intel i7-2600 (4 cores, 4x32KG L1, 3.4 GHz). This program is memory bound but contains significant data 
reuse potential, so tiling is useful to improve performance. We leverage the power of the PLuTo compiler to tile 
simultaneously for coarse grained parallelism and locality, considering the two fusion heuristics "min-fusion" 
(do not fuse loops) and "smart-fusion" (fuse loops with common dimensions). 

Table 1: Performance of Ring Roberts on Opteron and Core i7 

Proc-cores ref ICC pluto minfuse pluto smartfuse our work 

opt-1 1.25 0.4 0.7 0.9 

opt-8 1.25 2.7 3.9 4.7

opt-16 1.25 2.0 0.7 6.8 

i7-1 3.4 2.6 2.3 2.8

i7-2 4.2 3.6 4.0 5.4

i7-4 4.1 3.5 4.3 10.1 

 

One strategy, referred to as “minfuse” in the PLuTo compiler, tiles and parallelizes each loop nest 
independently, requiring 2 barriers. The symmetric strategy, referred to as “maxfuse”, attempts to fuse loops 
even at the expense of resorting to more complex sequences of loop transformations such as loop skewing, 
pipelining and peeling to enable the fusion of program statements under a common loop nest. The “maxfuse” 
strategy exhibits an outermost sequential loop and a second outermost parallel loop followed by its implicit 
barrier. However, the performance does not increase linearly with the number of processors, instead the 
performance either reaches a plateau with the Intel i7, or drastically drops in the Opteron’s case. 

Figure 4 illustrates the nature of data dependence in the Ring-Roberts code and the parallelization options for 
static affine scheduling, as represented by state-of-the-art polyhedral compilers like Pluto, versus dynamic task 
dataflow. The top half of the figure illustrates the iteration spaces for an unfused form of the code, with the left 
square representing the first loop nest and the right square the second loop nest, along with 1D tiling of each 
loop nest, working on blocks of rows of the matrices. With Pluto minfuse, a barrier is used between execution of 
tiles of the first and second loops. With smartfuse, the two loop nests are fused, but skewing is required to make 
fusion legal. But after fusion, only wavefront parallelism is feasible with 2D tiling (and no parallelism with 1 D 
tiling), with barriers between diagonal wavefronts in the tiled iteration space. Thus there is a trade-off: with 
min-fuse, the tiled execution of each loop nest is load-balanced, but interloop data reuse is not feasible; with 
smart-fuse, inter-loop data reuse is exploited, but load imbalance at start-up results for tiled wavefront 
parallelism. 
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Figure 4: Task-parallel data flow over static affine scheduling 

 

With a task dataflow model, it is possible to get the best of both: increased degree of task-level parallelism as 
well as inter-loop data reuse. This occurs by creating 1D parallel tasks for each loop, but the point-to-point task 
level synchronization enables ready tasks from the second loop nest to be executed as soon as the needed tasks 
(the ones corresponding to the same block row and the ones on either side) have completed. Thus, a “dynamic 
fusion” between the loop nests is achieved automatically, without the problem of load imbalance from the 
wavefront parallelism with a static affine tile schedule for the fused loop nests. 

This problem has been recognized in the linear algebra community and specialized solutions have been 
designed. We propose a general-purpose solution by leveraging properties of the schedule of tiles as computed 
by polyhedral compilers, and utilize it to determine at compile-time the inter-tile-band and intra-tile-band 
dependences. Unlike classical approaches in automatic parallelization, these dependences will then be 
instantiated at run time, and fed to a dynamic task scheduler. The last columns in Table 1 show the performance 
obtained when generating task-parallel code from the PLuTo min-fuse heuristic when compiling the task body 
with ICC -O3 xAVX. As one can see, after optimizing the task body, we obtain near perfect scaling on Intel’s 
i7, yielding a 4x and 2x improvement, over ICC and PLuTo's best, respectively; whereas on AMD's Opteron we 
obtain over 6x relative to the baseline and 2x over PLuTo. 

Our technique can be summarized as follows. We first compute tile-level constructs which are the input to an 
algorithm that selects stream idioms to be used for each tile dependence or to a partition routine which splits the 
loop nests into classes that share identical input/output dependence patterns. This algorithm chooses when to 
extract parallelism across disjoint loops, while the partition routine allows to create a dynamic wavefront of 
tiles. Then a (static) task-graph is constructed to prune redundant dependences and to decorate it with 
dependence information. Finally, code is generated for the OpenStream run-time. 

We conducted systematic performance evaluations on the Polybench suite, comparing task-parallel dataflow 
execution with barrier-based data-parallel versions, on 3 different multicore architectures. The results 
consistently establish the scalability advantages and performance portability of the task-parallel version. 
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9 Conclusion 

We surveyed the final, integrated flow of the project, combining compilation methods and tools, and runtime 
systems, mapping both plain-C and modern efficiency languages such as StarSs, HMPP, OpenACC and 
OpenStream to the TERAFLUX execution model and instruction set. The flow also supports the conversion of a 
high-level productivity language, Scala, for efficient execution on a dataflow architecture. The development of a 
prototype of the HMPP workbench for the TF machine has led to the design of a new compilation infrastructure 
capable of addressing a wide range of accelerating devices using the OpenHMPP programming models. Major 
work has been necessary for the design and the implementation of new runtime systems to support the remote 
execution of codes on new systems like TERAFLUX machines. The new HMPP Server compilation framework 
offers a generic platform for the deployment of hybrid and parallel applications, and proposes a much more 
powerful infrastructure than the previous HMPP Workbench: it provides an extended support of complex 
resources, the securisation and authentication of data transfers, and extends the management capabilities of 
parallel computations. 

Strong publication output and open source tool distribution was achieved as a result of the activities of WP4. 
Performance analysis and portability studies enabled by this tool flow have been demonstrated, with direct 
experimental validation on 1024 multi-node TERAFLUX simulation, the results being reported in WP2 and 
WP7. 
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