Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROGRAMME

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Teradevice Compting

D4.7 — Advanced Version of the Compilation Tools

Due date of deliverable: $March 2014
Actual Submission: T9May 2014

Start date of the project: Januafy 2010 Duration: 51 months

Lead contractor for the deliverable: INRIA

Revision: See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU Public

PP | Restricted to other programs participant (includimg Commission Services)

RE | Restricted to a group specified by the consortiunti§ding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Deliverable numbeiD4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 1 of 25



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Change Control

Version# Author Organization Change History

1 Albert Cohen INRIA Template

2 lan Watson UNIMAN Scala tool flow

3 Albert Cohen INRIA First complete version

4 Laurent Morin CAPS Fixes

5 Laurent Morin CAPS HMPP tool flow

6 Albert Cohen INRIA Corrections after review |
Somnath Mazumdar (UNISI
Stéphane Zuckerman (UDEL

7 Roberto Giorgi UNISI Review

Release Approval

Name Role Date

Albert Cohen Originator 07/04/2014
Albert Cohen WP Leader 07/04/2014
Roberto Giorgi Project Coordinator for formal deliverable 10/05120

Deliverable numbeiD4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 2 of 25




Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

TABLE OF CONTENTS

1 GLOSSARY 5
2 EXECUTIVE SUMIMARY .....ccuirenirenreenerenneresceesssresesessssssssssssssssssasssssssssssssssssnssssssssnssssssessssssssensssssnssssnsssnnes 6
3 INTRODUCGTION ....ceeueiteeneerenncerrenneesenssessensesssnssssssnssssssnssesssnssssssnssssssnsessssnsenss 7
3.1 DIOCUMENT STRUCTURE vvvvvvvuvsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 7
3.2 RELATION TO OTHER DELIVERABLES .+vvvvvvvvvvsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 8
3.3 ACTIVITIES REFERRED BY THIS DELIVERABLE .. .eeettvtttueeeeeerertsuneseeeeesessssnaeeeesesssssnnaseessssssssnneseesssssssnnnaeeessesssnnnnnns 8

4 TOOLS 9
5 RUNNING SCALA PROGRAMS ON THE TERAFLUX ARCHITECTURE .....ccceveuertenerenereencrenceesceenseresssensesnnenes 10
5.1 CURRENT STATUS et titiiieieeeeeeeeeeee et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eaeaeaeaeeeeeeeaaeaeaeaes 10
5.2 ONGOING WORK ...eetetvruuneeeeererrstuaeeeeessssssneeeesssessssseseesssssssnnaseessssssssnaeeessssssssnnseeessssssssnmeeesssssssssaneeesssssssns 11

6 DIRECT TRANSLATION OF C-CODE INTO T* INSTRUCTIONS 12
7 HMPP AND OPENACC TOOL FLOW FOR TERAFLUX .....ccuttiuirtencrenerencreeserenesenseeessssnssssssssssssssssssssssnsssnseses 13
7.1 BASIC CONGCEPTS 1vvvvvvvsssssssssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssrene 13
7.1.1  « Remote Procedure COll » (RPC)...........uuuuue et eeteaeeeea e e et e e etaa e e st s e eeaasaaeesanns 13

7.2 BASIC DIRECTIVES 1vvvvvvvsssussssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssesens 15
7.3 EXECUTION AND COMPILATION ...uieeeetttuieeeeereesssneeeeeesssessnaeeessssssssnaeeeessssssssnseessesssssnsaeeesssssssnneeessssssssnnnnns 16
7.4 CONSEQUENCES OF EXPERIMENTATIONS ON THE TERAFLUX ARCHITECTURE ....eeevvvvtieeeeeeeeeenneeeeeeseennnnnaneeesesenens 16
7.5 DEFINITION OF A NEW INNOVATIVE DEPLOYMENT ARCHITECTURE FOR HIMPP ....ovvvviiiiiiiiiiiieieieveeereeeveveveveveeeveeeeens 17
7.5, HMPP SEIVEI AICRITOCTUI . ...cooceoeeeevieee et eeeetteee e eee st a e e e ettt e e e e e es st asseeeseeensssssesees 18

7.5.2 Implementation on the Xeon Phi architecture using low level API ...............ooeeeeeeeeviveeeieeeceiievennn. 19

8 PERFORMANCE ANALYSIS AND PORTABILITY EXPERIMENTS.....ccccceeitttncerrenncerrenseenrensecssensesssensesssnsssssns 21
9 CONCLUSION. ......cceiteeertenerenereenerenetresesesseresssssssssssssssssasssssssssssssnssssssssssssssssssssssnssssssssnssssssesnsssansennssssnsennns 24
10 REFERENCES 25

Deliverable numbeiD4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 3 of 25



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The following list of authors will be updated tdfleet the list of contributors to the writing ofdh
document.
Albert Cohen, Francois Gindraud, Feng Li, Antoniu Rop
INRIA

Rosa Badia, Nacho Navarro, Tomasz Patejko
BSC

lan Watson, Behram Khan and Mikel Lujan
UNIMAN

Roberto Giorgi, Andrea Mondelli
UNISI

Laurent Morin
CAPS

© 2009-14 TERAFLUX Consortium, All Rights Reserved

Document marked as PU (Public) is published iryJtidr the TERAFLUX Consortium, on theww.teraflux.euweb site
and can be distributed to the Public.

The list of author does not imply any claim of owsigp on the Intellectual Properties describedis tliocument.

The authors and the publishers make no expressiaaptied warranty of any kind and assume no resibdigs for errors
or omissions. No liability is assumed for inciddr@aconsequential damages in connection with iray out of the use of
the information contained in this document.

This document is furnished under the terms of tBRAFLUX License Agreement (the "License") and majyde used or
copied in accordance with the terms of the Liceree information in this document is a work in preggs, jointly
developed by the members of TERAFLUX Consortium ("FERUX") and is provided for informational use only.

The technology disclosed herein may be protecteshieyor more patents, copyrights, trademarks andde secrets owned
by or licensed to TERAFLUX Partners. The partneserve all rights with respect to such technology related materials.
Any use of the protected technology and relateceristbeyond the terms of the License without thierpwritten consent
of TERAFLUX is prohibited. This document containsiterial that is confidential to TERAFLUX and its miers and
licensors. Until publication, the user should assuimat all materials contained and/or referencethis document are
confidential and proprietary unless otherwise iatéd or apparent from the nature of such mate(fals example,
references to publicly available forms or documgnts

Disclosure or use of this document or any matedaltained herein, other than as expressly permisgarohibited without
the prior written consent of TERAFLUX or such otlparty that may grant permission to use its progrietaterial. The
trademarks, logos, and service marks displayedhis document are the registered and unregister@dermarks of
TERAFLUX, its members and its licensors. The coglyriand trademarks owned by TERAFLUX, whether tegéd or
unregistered, may not be used in connection with @neduct or service that is not owned, approvediistributed by
TERAFLUX, and may not be used in any manner théikédy to cause customer confusion or that dispasalERAFLUX.
Nothing contained in this document should be caoestras granting by implication, estoppel, or othieewany license or
right to use any copyright without the express teritconsent of TERAFLUX, its licensors or a thirary owner of any
such trademark.

Printed in Sena, Italy, Europe.

Part numberplease refer to the File name in the document footer.

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUXPBECIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT AQHIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER(INCLUDING, WITHOUT
LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOT BUSINESS, REVENUE, PROFITS, DATA
OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENTCLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT,RICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF &IH DAMAGES.

Deliverable numbeiD4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 4 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

1 Glossary

OpenMP - Parallel programming pragma language on top,d€-€+ and FORTRAN. In this deliverable, we
refer to the OpenMP specification version 3.1.

http://www. openmp. org

OpenStream— Dataflow streaming extension of OpenMP, for @hkanguage, implemented as a patch to GCC
and a dedicated runtime system for dataflow takkis. called OpenStream, and comes with a perfoo@an
analysis tool called Aftermath, coupling high-ley@logramming model concepts with low-level hardware
counter statistics.

http://www. openstream. info

StarSs— StarSs is a task-based programming model ttediles the exploitation of the applications' inhéren
parallelism at the task level. To mark the taska BtarSs application, annotations (pragmas) eiktgridose of
the OpenMP ones are used. A uniqueness of Stasks dae the input, output or inout clauses thatiegbpo
tasks' parameters enable the runtime to track'tdaks dependences. These pragmas have been atiofuied
the dependent task construct of OpenMP 4.0.

http://pm.bsc.es/ompss

OpenHMPP - OpenHMPP (for Hybrid Multicore Parallel Programming) is aogramming standard for
Heterogeneous and many-core computBased on a set of compiler directives, it haslesigned to handle
hardware acceleratonsithout the complexity associated with the lowdkeprogramming Compilers take
C/C++ or FORTRAN code in input and generate theesponding CUDA or OpenCL code and the integration
with the original application.

http://en.wikipedia.org/wiki/OpenHMPP

OpenACC - Initially developed by PGI, Cray, NVIDIA, and &S entreprise, OpenACC is an open parallel
programming standard designed to enable the ushdeterogeneous CPU/GPU computing systems. The
OpenACC Application Program Interface describesobection of compiler directives to specify loopeda
regions of code in standard C, C++ and FORTRANea®ffloaded from a host CPU to an attached acdelera
OpenACC is designed for portability across opegasgstems, host CPUs, and a wide range of acoaisrat
including APUs, GPUs, and many-core coprocessors.

http://www.openacc-standard.org

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 5 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

2 Executive Summary

We report on the finalization of the TERAFLUX corigtion flow that took place in the fourth year, idating
the integrated programming models, compilation @igms and runtime systems targeting the TERAFLUX
instruction set.

As a “Prototype” deliverable (P), we provide a syrwof the achievements and match them to the gialse
associated task in WP4. We refer to associatedndects, papers and online sources for a more dataile
technical discussion.

As planned in Task T4.4, we validated the compfkte from the StarSs efficiency language down te th
TERAFLUX instruction set running on 1024 cores, sidering realistic applications from WP2. We also
conducted performance analysis and performanceakility experiments.

The tool flow is distributed as free software, ity as a patch to GCC 4.7.1, and with accompangimtime
libraries and tools. It comes with a complete setbenchmarks selected from the comprehensive fist o
applications characterized in WP2, and with tutoexamples introducing the language constructs of
OpenStream.

Performance experiments on the TERAFLUX instrucgBehsimulator, scaling to multiple node configimas,
have been conducted on the different applicatitiasacterized in WP2.

« The tool flow for the efficiency programming modedlies on the OpenStream language and its
implementation in GCC 4.7.1. The backend of thigsngiter has been modified to generate T*
instructions targeting the TSUF branch of COTSohisTbhackend compiler has been extended to
support OWM. The systematic conversion of StarS3pgenStream has been validated and applied to a
number of TERAFLUX applications.

« The CAPS many-core compiler supporting the OpenHMRE& OpenACC standards has been adapted
to support shared-memory manycore architectureiibg on the experience of the TERAFLUX
compilation flow and programming models. The depgaient of the TF infrastructure implies the
extension of existing programming models to supfewacy application. This document describes the
extension of the OpenHMPP programming language, asidg this extension, the design and
implementation of a prototype HMPP Workbench ableatget TF resources. The study proposes a hew
HMPP Server platform able to provide a generic pagerful infrastructure for the development of
multiple CPU targets using the HMPP Workbench cdeniuite.

« The tool flow for the productivity programming mdde based on Scala and a Scala to C++ compiler,
and on the T*-extended backend of GCC. Detaileceerents with Scala transactional memory and
dataflow libraries have been reported in previoeey.

« A specific tool for the performance debugging ofe@ftream applications has been designed and
implemented, called Aftermath, which is distributesl part of the OpenStream platform. Performance
portability experiments leverage GCC's intermedr&gresentation for OpenStream programs and a
polyhedral compilation flow adapted to the needdaifflow architecture.

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 6 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

3 Introduction

The overall objective of WP4 is the developmentcompilation and runtime support tools tailored e t
TERAFLUX architecture and programming models. Tampiler(s) need to map the parallelism and localgy
available from the source program and programmindeahto the target execution model and architectline
distribution of the roles among the compilationlsoand the runtime tools is guided by the efficierand
robustness of handling the challenges staticalyyoamically, respectively.

The source program exhibits high levels of conawyebut it still has to be exploited effectively the target.
The compiler tools need to coarsen the grain ofclssonization, to issue bulk communications, overlap
communication and computation, balance computatith communication bandwidth, and harness temporal
locality of code and data, taking into account fb&tures of the memory hierarchy. It also needgetoerate
tightly scheduled computation kernels, possiblgesing accelerators.

The deliverable also covers the design and impl¢éatien of a TERAFLUX specific flow for the OpenHMPP
programming model proposed by CAPS entreprise. BpHIP offers a language, methods, and tools to
express both the hybrid and the parallel execusioeritical code sections on an accelerator. Hlisady used

on by a large set of high performance applicatiand does not require a massive rewriting of thee dod
exploiting many-core architectures such as GPUs. @rinciples used by the OpenHMPP programming model
can be applied with little modifications to thetuglization of computing resources and in partictitathe
programming of TF systems. A dedicated sectionlise¢he basis of the OpenHMPP programming model
available with the HMPP Workbench; it continues hwihe description of the impact of the prototype
development in the design of the new compilatidrastructure able to address virtualized comput@spurces

in complex systems.

We report on the achievements of the TERAFLUX mbja Task T4.4. We succeeded in closing the gap
between the efficiency and productivity programmimgdels and a multi-node 1024-core execution ugieg
TERAFLUX instruction set. We also provided tools feerformance analysis and to enable the perforenanc
portability of dataflow applications.

3.1 Document structure

Section 4 surveys the main tools covered by thistt®ype” deliverable and refers to online sounsith more
detailed information.

Section 5 reports on the integration of the Scatd flow with the backend compiler for execution the
TERAFLUX architecture.

Section 6 presents a tool for the direct transtatibthe C-code into T* extended code.
Section 7 is a more extensive descript on the HisiRPOpenACC tool flow for TERAFLUX.

Section 8 surveys the performance analysis andommeaince portability experiments conducted with
OpenStream and polyhedral compilation methods.

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 7 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

3.2 Relation to other deliverables

This deliverable extends the compilation algorithaistussed in D4.4 and D4.6, and evaluates themrange
of representative benchmarks. It also complemeBtd ith a description of the Scala to T* compaatiflow.

3.3 Activities referred by this deliverable

This deliverable is associated with and represietsesults of Task 4.4.

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 8 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

4 Tools

The prototypes available at the end of the projear can be sorted in 3 categories.

« The first ones are Scala-specific and support thduyztivity programming model. They are based on
runtime libraries from UNIMAN, described in D3.3diD3.4, and on a C++ compilation flow for the
execution of Scala programs on the TERAFLUX arcititee.

Technical information and code are available onlinend updated regularly:
http://apt.cs.man.ac.uk/projects/ TERAFLUX/MUTS

« The different efficiency programming models all eomvith their source-to-source compilation
framework. The TFlux language and tools have bedeneded to support transactions (see D3.3).
Locality optimizations and multi-level parallel gr@mming extensions have been implemented in the
HMPP Workbench 3.0 (now renamed “CAPS many-core pil@ni). The dataflow extensions have
been prototyped. A new framework supporting shanedhory manycore architectures has been
designed and evaluated on the IRt¥eon Phi" coprocessor. In addition, in the same compiler, the
OpenACC standard has been extended to supporthaldugl dataflow extension described in WP3.
The Mercurium compiler for StarSs is embedded mtcomprehensive tool suite within the OmpSs
infrastructure. Enhancements for multi-level palahtion and transactional memory have been
integrated to the OmpSs tool flow, including themort libraries and code generators for different
devices. Note that OmpSs and HMPP model the TERAfht¢hitecture as an accelerator device.

Technical information and code are available ondind updated regularlittp:/nanos.ac.upc.edu

« The TERAFLUX backend compiler is maintained as tclpao GCC version 4.7.1. It supports both
native execution on x86 with a software runtimej direct compilation of OpenMP dataflow streaming
pragmas to T* extensions for execution on the TERAK architecture. It supports Transactional
Memory (TM) and Owner Writable Memory (OWM). It alssupports parallel performance
debugging/analysis, and performance portabilityeexpents using polyhedral compilation.

The final release of the prototype was made availéd the partners and to the public parties on
October $2013. The distribution and maintenance are manttigedgh an automated installation and
source code repository process:

http://www.openstream.info

The development and exploitation of OpenStream kglicontinued in collaboration with UNIMAN,
UPMC, and Kalray (the leading European low-powenyneore processor company). Third party users
include researchers at Ohio State University, asldelenico di Torino. Technical information and eod
are available online and updated regularly.

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 9 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

5 Running Scala Programs on the TERAFLUX Architecture

The motivation for and the basic approach to tativgl from Scala to C++ were described in delivkrah6.
To summarize, after two unpromising attempts todiae from Scala to executable code were abanddned
was decided to translate from Scala to C++ usingips to the Scala compiler. An existing experiraéptugin
produced by EPFL was identified which transfornteel $cala AST into a form which was amenable tdé&urt
processing into an executable form. A new plugirs wWeen produced by UNIMAN which took the resultant
AST and emitted C++ code.

At the time D4.6 was written, a pilot version oéttranslator had been produced which was ablertdi@amall
test programs. It was noted that the followingdiea¢ were not yet supported:

« Generics;
 Threads;
« Transactions;

» Exceptions.

When the provision of these features was invedtyan the context of more complex programs, it bexa
apparent that the approach used had limitationse-Anplementation of the translator plugin was ¢fere
produced.

It became apparent that the use of Generics tageftle complex inheritance hierarchies made it vaifficult
to determine the types of variables to use in thestation. The pilot translator resorted to the akvoid* in
many circumstances, which resulted in total losg/pé information. This in turn made dynamic birglvery
difficult or impossible in certain cases.

It was therefore decided to use the type infereneehanisms in C++11 as provided by the ‘auto’ featin
addition C++ templates appeared to provide mechanifor the implementation of generics as well as
significantly reducing the amount of library coddigh needed to be produced. In the previous versidhe
translator, Scala basic types were mapped on toditesponding C++ basic types. In the new veraibhasic
types have been represented as objects to enabiidltfiexibility of the approach to be achieved.

5.1 Current Status

The new translator is able to deal with all thegioidl features of Scala programs described in Ddgéther
with those extras listed above.

The compiler can produce code for the following:

- Standalone Scala programs which can be translatect# and then directly compiled to standard
executable code.

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 10 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

- Dataflow style Scala programs which can be traedléd C++ and then linked with a software version
of the TERAFLUX TSU (Thread Scheduling Unit). Thises pthreads to provide multithreading and,
depending on the underlying machine and pthreagkementation, make use of multiple cores.

- Dataflow style Scala programs which can be traedlats above but to target the TERAFLUX T*
interface. This can then run on the COTSon simulatdhe TERAFLUX machine. This provides full
simulation of the support for Transactional Memory.

There are still a few limitations on Scala whicim ¢g handled. Much of this is simply a lack of igmpkentation
of library code which can readily be provided witinther effort. The use of C++ templates, althosghcessful
in many respects, has added complexity in the impigation which was not anticipated and some of ity
place restrictions on the range of Scala featutdshacan be supported.

The translator has been evaluated on over 20 tegtgms exploring a wide range of features of ScHisee
applications have been used for an evaluationeft#taflow simulation route: i) a double recurdfigonacci
function to verify basic functionality, ii) a bloed Matrix Multiply to evaluate numerical performanand iii) a
3 dimensional (2 layer) Lee routing algorithm t@eise the use of transactions.

Unfortunately the new approach, although more fllexhas proved less efficient both in terms of dpaed
memory usage. As a consequence, we have only belent@ simulate relatively small versions of the
benchmarks. This has led to limited parallel sppedio be achieved. For example a 64x64 blockedimatr
multiply produces speedups of around 16 on 32 cdmeaddition, the execution speed of the trandl&eala,
when run directly, has reduced by a factor of agipnately 3 compared to the previous translator.

5.2 Ongoing work

It is believed that the majority of both the penfiance and memory issues are a consequence ofdiseodeo
use objects for basic types. It is believed thist ¢tAn be reversed in the new translator with metdezffort and
this is underway. It is hoped that a much more getmpnsive evaluation can be performed and demoedtra
before the TERAFLUX review meeting.

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 11 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

6 Direct translation of C-code into T* instructions

In the task T4.4 (last period), UNISI has contintedupport the deployment of the T* ISA extensfoh all
WP6 and WP7 deliverables) in close cooperation MNRIA (cf. D4.3 for the initial T* mapping), ancelying
on the minimalistic T* instruction initially preswd [12], i.e., mainly relying on the
TSCHEDULE/TDESTROY, TREAD/TWRITE, TALLOC/TFREE instctions.

In relation to this task and general workpackagieatlves, UNISI has explored the possibility tonskte a
generic C program (referring to the C89 specifaatidirectly into programs that use the T* instroics.

This effort does not overlap with other effortst provides a practical demonstration of the theocaéability of
translating any program in a form that only ex@dhe initially devised DF-Threads (cf. D7.1). larficular,
we focused on the translation of what we call “T*@at we used in WP7 (cf. D7.4) in order to showvho use
the COTSon simulator more easily rather than codirectly into T* assembly instructions.

The T* ISA allows us to: i) execute a subprogrand @dhen another subprogram (sequence), dynamically,
through the TSCHEDULE instruction; ii) executingavsubprograms according to the value of a boolean
expression (selection) through the predicate of HBBULE; iii) executing a subprogram until a prededs
true (iteration), again through the predicate oCHEDULE. Therefore, by the Bohm-lacopini theoremy a
algorithm can be expressed using the T* instructieh extension so that the classical control sirastare
translated into dataflow dependences.

Please note that by releasing totally the neegruflgonous calls, an asynchronous dataflow exeacutiodel is
then generated by relying on the T* ISA extensiwhile the programmer doesn’t have to specify amghn

the source C-code, thus allowing a large basegaiche code to be re-used. This effort also helpdgliANand
BSC develop the algorithm used for the systematioversion of StarSs programs to OpenStream: both
problems boil down to the principles establishethenBohm-lacopini theorem.

We are not making any claim on the quality of teaerated code, in particular in respect to anyligdization
that might be applied through tools like PLUTO they polyhedral compilers. The methodology thatapplied
relies on the SCALE compiler, by modifying the bew# of that research compiler in other to targst i pure
dataflow representation of the program in term &+Threads, and then mapping such representatidheto
T*C. From the T*C representation (which is agaircégle), we translate the code into x86+T* extengign
relying on the already presented GCC toolchain af.4). The generated programs can run direcththen
COTSon simulator as modified thanks to this prgojestd on future machines that may support the T*
extension.

The aim of this toolchain is therefore to provide additional path for translating C-code into exabie T*
code, directly. This tool can be demonstrated anatel but it is not yet available for distribution.

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 12 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

7 HMPP and OpenACC Tool Flow for TERAFLUX

HMPP Workbench is a feature-rich tool that simpkfithe utilization of GPUs and many-cores systéins
section provides the basic information about hogdbstarted with the OpenHMPP directive set. Wieduce:

1. The basic concepts of OpenHMPP (e.g. RPC, codrlatjory model, gridification);
2. The basic directives (e.g. codelet / callsite);
3. Code generation and optimization directives.

Furthermore, the HMPP Workbench supports the Opé&hAC] [8] standard directives — a parallel-
programming standard announced at Supercomputibdy 20d supported by NVIDIA, Cray Inc., the Portland
Group (PGl), and CAPS entreprise.

For more information, refer to the HMPP Workbenolcumentation [9].
7.1 Basic concepts
7.1.1 « Remote procedure call » (RPC)

HMPP allows to program hardware accelerators (HW#ihg the Remote Procedure Call paradigm. Hardware
accelerators commonly come in the form of disceetels connected to the CPU through a fast buscorteect

like PCI-Express. This interconnect link is in ttese of a Cloud target a network bus. In both ¢abesbus
shows two important properties: first, the accataraises a remote memory with a separate addreg®;sp
secondly, the performance of the bus is signifigaloiver than the CPU memory system (up to severdérs

of magnitude). The RPC Protocol is used to proeaddthe offloading of the computation from the hos

An RPC sequence, exposed Figure 1, consists efps:st

Allocate the HWA and the memory;
Transfer the input data: Host => HWA;
Execute the sequence of the instructions;
Transfer the output data: HWA => Host; and

Release the HWA and the memory.
RPC sequence

a bR

. transfer transfer
start N compute ouT end
1 2 3 4 5

Figure 1, the five steps of an RPC sequence in HMPP

With HMPP directives, these steps may be perforsmudewhat implicitly or controlled using the reletan
directives inserted in the source code.

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 13 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

7.1.1.1Memory model

Host and devices usually do not reside in the sammory space (see Figure 2). The application amdHiVA
have their own private memory only accessible wplieit memory transfers. HMPP deals with this in a
transparent way for the user; it can be seen agltlgebetween target-specific programming enviroamsand
general-purpose programming techniques.

Host HWA
Miesticiy
upload
Application
Application data
gts ownload

Remote
*rocedurd Call

Figure 2, Memory model of OpenHMPP

The memory model can be completed depending oresilat@s with some local memories that will havés¢o
managed directly inside the codelet.

7.1.1.2Codelet

A codelet is a computational part of a program tedan a function inside the application. It talsseral
parameters, performs a computation on these dadaremrns. A codelet is typically a C function or a
FORTRAN subroutine automatically translated by HMR#® HWA-specific code such as CUDA or OpenCL
[10]. Parameters of the codelet defined the ddtrated and manipulated on the accelerator. Theybea
specified asN, OUT, INOUT, or CONSTANT. The execution of a codelet is considered atothi&.execution does
not have an identified intermediate state or data.

A codelet has the following properties:

1. Itis a pure function;

2. The number of arguments is fixed (i.e. no variatlenber of arguments like C vararg);
3. ltis not recursive; and

4. Its parameters are assumed to be non-aliased.

These properties ensure that a codelet RPC caenheately executed by a HWA. This RPC and its assedia
data transfers can be performed asynchronously.cotelet itself does not specify the parallelisnh define
the computation area deported on the accelerator.

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 14 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

7.1.1.3Parallelism / Gridification

In the context of HMPP, “gridification” refers thé transformation of codelets’ loop nests into cotapons
that can run in parallel on a hardware accelersich as a GPU. Gridification is about translatitacks of
loop iterations into a set of parallel kernels.sTtranslation is done by the conversion of the Ipnest iteration
space into a set of equivalent grid computatiorth ws many dimensions as there are induction Jasalbhe
grid computation kernel is the minimal computatioobject. It is characterized by its number of dirsiens
(from one to three) and proceeds to the computdtjothe execution of multidimensional sub-blockghvall

the iteration space executed in parallel by thalware. Sub-blocks can be executed out-of-order iy ar
multiple multi-processors until completion.

#pragnma hnppcg (1,3)
for(i=0; 1i<n; i++ ) {
for( j =03 3<n; j++ ) {
prod = 0.0f;
for( k =0 ; k < n; kit ) {
prod += A[k*n+i] * B[j*n+k];
}
C[j*n+i] = alpha * prod + beta * C[j*n+i];
}
}

Listing 1, Gridification of a matrix multiplication

The gridification process is controlled by a spedkt of directives prefixed by “hmppcg”. Combingith loop
transformations, they control how the original lomgsts are converted into grid computations. This
optimization phase is critical to get the maximuenfprmance from the accelerator architecture. énekample
showed in Listing 1, the hmppcg gridify directiwetsed to set the <i, j> loop nest as parallel.

The gridification is complementary to other pad@kgion methods like the “vectorization” or the Gfti-
threading”.

7.2 Basic directives

This section describes the two main directives eded program the remote execution of a computaore
directives are described in the workbench manual.

HMPP directives follow the same principle as in Ofd®. Each directive starts, in C, with:

#pragma hnpp

In FORTRAN:

I'$ hnpp

The pair of directives codelet/callsite is the miom required to get a function to run on an HWAe Todelet
directive must be placed on the function declamatémd the callsite directive must be placed orotteirrence

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 15 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe£249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

of the function call to be offloaded to the HWA.€élbodelet is declarative and lead to the generafitime code
for the target accelerator (specified by the arguirfirget”). The function should contain paralebps to get
performance on manycore devices.

#pragma hnpp myCall codel et , [*].transfer=atcall, =CUDA
myFunc( n, A[n], B[n]) {
ig
for (i=@; i<n ; ++i)
B[i] = A[i] + 1;

main( ) {
int X[10000], Y[10000], Z[10000];

#pragma hnpp myCall cal lsite
myFunc(10000, X, Y);

myFunc(1000, Y, Z);

Listing 2, Codelet/Callsite C example

The callsite directive is set before the functiail of the declared codelet. This directive tele tHMPP
compiler to change the original source code to ateethe RPC of the codelet on the accelerator.cbde in
Listing 2 proposes a condensed view of the OpenHtegram.

Real applications require the execution of multipbele sections on accelerators, so the HMPP pragitagn
model provides the definition of “groups” assemblia set of codelets and their arguments into onglesi
object. Inside a group, codelets arguments aréblgisand shared. This mechanism reduces the memory
consumption and the memory transfers on the aateler

7.3 Execution and compilation
A program with HMPP directives can be compiled befing the original compiler command with the

keyword “hmpp”. Note that only sources codes withe@HMPP directives, and eventually the final linked
to be completed this way. The regular building sgystan be left untouched for other parts of theiegton.

hmpp gcc basic_codelet_callsite_example.c -o tstC.exe

Listing 3, compiling a C source file with HMPP directives using the GNU C compiler and HMPP

An application compiled with HMPP — i.e. a codedgiplication — can be executed by simply running the
resulting binary.

7.4 Consequences of experimentations on the TERAFLUX architecture
Experiments made on the implementation of a TERAKLidrget (“TF” for short in the following) in the

HMPP Workbench have led to the design of a newnso# architecture for the HMPP compiler. The former
approach, applied to OpenCL type languages, wgigehs much as possible on tools and interfacasadle

Deliverable number4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 16 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

for these languages, and very often, also on i API provided by accelerating boards: inigation and
allocation API, parallel programming paradigms. Téwde generation and the runtime management in the
CAPS compiler were significantly limited by thesstrictions. They have been an important constraithe
implementation of a TF target in the compiler, hlgo in the implementation of various target ineotfields
(embedded processors, native support of the Irgeh>Phi accelerator).

The new software architecture must offer the follayfeatures:

1. the decoupling of the parallel programming modeifrthe hybrid programming,
a. necessary to deport any type of parallel progrargmmodels,
b. simplify the programming of the hybrid management;
2. the introduction of a boot protocol independenthef regular device allocation,
a. takes in charge the upfront reservation of TF reses)
b. takes in charge the authentication and secure s.ofessources;
3. an abstraction of communications,
a. enables the implementation of serialization angeralization of complex data,
b. enables the topology conversion of structured (fseormance oriented),
c. implements the secure data transfer configuredhéybot protocol;
4. a dedicated and specialized runtime on the acdetdraard,
a. implements the bufferisation and the secure comaatioin of asynchronous requests,
b. can handle the allocation and the creation of nessuaccording to the application
workload;
5. the creation of an “execution context” independengll codelet or parallel tasks,
a. enables the implementation of interleaved RPC HKeoa#ls (with the support of
lightweight threads),
b. enables the mixed implementation of different gata&xecution models;
6. the creation of communication channels betweenwgi@tcontexts (in a hierarchical way),
a. enables the workload distribution over a tree ohpatation units,
b. enables the implementation of Active-Message comaations.

All these features shall be implemented with in énthe best balance between two objectives: a dessib
generalization or extension to various types ohiéectures available on the market, and with a érigiriority,
the performance.

7.5 Definition of a new innovative deployment architecture for HMPP

The design of the new software architecture hasdetie implementation of a new hybrid executioatfolrm
for general purpose CPU: “HMPP Server”. The objectf this module is to propose a unified code gatien
platform for high performance, hybrid, and massiygrallel machines. It should be able to suppibdarent
and future hybrid or parallel architectures fortbtite OpenHMPP and the OpenACC programming models.

Major properties of the OpenHMPP programming modeés kept: the code generated is preserved from the
original application by the directive approach, thyrid compilation chain is automatic and autonomand

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 17 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

finally, the model relies on the RPC execution ofl@ets, functions containing the code to be degaloyith
massively parallel sections.

7.5.1 HMPP Server Architecture
The architecture is presented Figure 3. It is casadmf two major sections: ti#OST section and th®EVICE
section. The already existing modules in the agchire are in green, and the new modules are ingera

Hardware blocks are in yellow.

HOST

DEVICE

Execution
Platforms

Context RT

Main

Application

dasssmrnssasessnnakann e

l.lllllllllllrlllé'lh: Context RT ?Il.lll:

HMPP RT Interface l

HMPP RT

2 fransamawTsaw TR TN R Ay
.............(-,E...G:..ﬁ Context RT .é
t Da : ---------------- a}
=y --E Gt Execution Con-
= D3 text
%«=s%  Codelet Code
Data Allocated

»
T EssEssEEEEEsEEEEE

HMPP Multi-CPU Server RT

MEMORY

Figure 3, HMPP Server Architecture
7.5.1.1Host section

The host section takes in a large part the origileaign of the HMPP Workbench, with an instrumeataof
application's directives with runtime requests, d@né usual HMPP runtime. We added the target specif
runtime part, in our case the generic Multi-CPUtime, and a new boot module for some new accetgrati
targets like the generic Multi-CPU target.

7.5.1.2Accelerator management

The device section is totally renewed. First of @#lé boot module is the only element that canlaeegl out of
the accelerator runtime: it can be placed dependmgases on the host side, or in an external emdbte
machine in charge of the global administration efdaurces. Its duty is to answer all requests ddtione or
allocation of devices at a global scale.

Deliverable numbeD4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 18 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

Then, an accelerator runtime is implemented oratleelerator itself. Its implementation has to befaoned to
the constraints and to the specificities of the @& cooperation with the device OS, adaptatioavailable
API. A target can enforce restrictions about thecexion models available on the device. The boatuteand
the accelerator runtime are the basis of the \idaion of the device, and of the dynamic managanud
resources (data or computations).

Communications between runtimes and acceleratoesc@te done through “Socket” type interfaces: the
channels. They can be quickly implemented usingiat@yconnection protocol available on the systé@P/IP

or UDP/IP sockets, DMA channels, SSL tunnels, ibfnd interconnects, etc. In order to achieve tbst b
performances, different channel types can be uspdmntling on the type of connection and the typergfet.
System channels for the Boot module (socket bdwd)l 9e robust and efficient for control type megs
runtime command channels (system channels) shoaNg tow latencies; operational channels (execution
sockets) should have both low latencies and highdwalth using preferably a specialized hardwarg. (e.
DMA). All channels have to support natively theigkzation and optionally the secure transmissibdata.

7.5.1.3Execution management

The execution model is composed of a various redide generation back-ends, each proposing tastea
different parallel programming paradigm. They altedasigned to extract the maximum performancedcioe
specific machine architecture with a specific inpatle. Execution schemes can vary from a purefasilel
code execution, to a massively parallel executiogrids. A sequential back-end generating a stantircode

is available for basic hybrid or remote executiang can be useful for validation. The OpenMP bauk-ean
be used with parallel loops to exploit the paradhalusing the native OpenMP target compiler: this s of the
simplest way to get performance with parallel codenulti-core targets. The OpenStream compilerbeansed
as well in the same way. The MCPU back-end is asively parallel execution scheme in grid designed t
extract performance on multi-core machines withtligeight threads.

When generated, the code is sent on the accelevdtoits own execution context. This context ikked to the
application with a unique operational executionroted. From this context, the code can create newlae or
simplified contexts. In the case of a regular ceijta complete operational execution channel walldpeated
and connected with its parent. In the case of l#fied context, the link will be made with Activdlessages.
By construction, all contexts are asynchronous aredexecuted in parallel. The global execution tesea
hierarchical distribution of the computation witheatually different local execution models. Thishitecture
permits the implementation of complex recursive gadallel computations with an automatic workload
adaptation, and a better scalability for large esyst

7.5.2 Implementation on the Xeon Phi architecture using low level API

The new architecture has been implemented on abbateh of the HMPP Workbench version 3.0.8 forltire
level support of a Xeon Phi accelerating board.

At time of development of this prototype, the ascwsthe OpenCL library and compilers for the bosess not
available: the OpenCL programing model usually &iies the programming of this type of machines.ly{On
low level API could be used to connect and genebath hybrid and parallel codes on Xeon Phi. The ne

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 19 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

HMPP Server architecture has been an opportunityttfe implementation this new target in the HMPP
workbench, and this machine, enabled us the evatuanhd the validation of the architecture on & caae.

Low level APl were on one side the COI library useéccess and initialize the Xeon Phi, and orother side
the proprietary SCIF library capable of performfagt transfers using hardware DMA. The native cdatipin
chain supports OpenMP.

At the end of the implementation phase, the arctute could be nearly completely validated. Thedadion
could qualify:

the management of the unified boot system;

the management of the compilation chain and ohtleid code generation;

the preliminary support of execution contexts ahohi@rleaved kernel executions;
the support of boot, system, and operational cHarinyea proprietary DMA.

pwnE

The full chain of the beta version of the HMPP senwas validated — from the directive programmiagdhte
execution on the device — using the “HydroC” amtlimn. This real life C application performs a slation of
hydrodynamic flows using the “Godunov” algorithmhél validation was performed on two versions of the
application: a first version using OpenHMPP (vensi and 3) and a second version using the OpenACC
language. In both cases, the application used ffemKP code generation back-end.

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 20 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

8 Performance Analysis and Portability Experiments

So far, the project's activities in WP4 have focuea optimizations and compilation flow to suppdataflow
programming and transactional memory. One long-tebjective of advanced compilers remains to ofiee o
more level of abstraction to programmers: perforteaportability. Loop tiling and thread-level paedittation
are two critical optimizations to exploit multi-pressor architectures with deep memory hierarcfiieese
optimizations are some of the most effective ond®gn exposing coarse grain parallelism, to adapptbgram
to a given architecture and execution context.

The dataflow model of execution does not involve fitalability drawbacks of barrier-based parabion:
tasks can execute as soon as the data becomeabie/dile., when dependences are satisfied) ahtMeight
scheduling heuristics exist to improve the locabfythis data in higher levels of the memory hiehgr But
adaptation and advanced optimizations remain kegéaoh efficient levels of performance.

Loop transformations for the automatic extractidndata parallelism have flourished. Unfortunatetlye
landscape is much less explored in the area ofgasMlelism extraction and in particular the magpof tiled
iteration domains to dependent tasks. We descelmvthe three key contributions:

- Experimental: we demonstrate strong performancefiisrof task-level automatic parallelization of re
optimization of parallel programs over state of #ré data-parallelizing compilers, and we further
characterize these benefits within and across liled nests.

- Algorithmic: we design a task parallelization scleefmllowing a simple but effective heuristic to el
the most profitable synchronization idiom to uskislscheme exposes concurrency and favors temporal
reuse across distinct loop nests (a.k.a. dynansori), and further partitions the iteration domain
according to the input/output signatures of depeoéeg. Thanks to this compile-time classification,
much of the run-time effort to identify dependeaskts is eliminated, allowing for a very lightweight
and scalable task-parallel runtime.

« Compiler construction: we implement the above atgor in a state-of-the-art framework for affine
scheduling and polyhedral code generation, targetiea OpenStream research language.

We use the Ring-Roberts kernel below as an illtisyaexample, with N=4000 and using double preaisio
floating point arithmetic.

for (i = 1; i < N- 1; i++)

for (j =1, J <N- 1) j+4)

Si: Blil[j] = (Ai]l[j] + Ali][j-1] + Ali][1+4] +
ALL+ ][] + Ali-1][j] + Ali-1][j-1] +

A[i-1][)+1] + Ali+1][j-1] + A[i+1][]+1])/8;

for (i =1; i < N2; i++4)
for (j =2, j < N1; j+4+)
S2: Alil[j] = abs(B[i][j]-B[i+1][j-1]) + abs(B[i+1][j] - B[i][j-1]);

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 21 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

Table 1 below shows the performance obtained wlkerguCC -O3 -parallel as the compiler. The origjiczde
reaches 1.2 GigaFlop/s (GF/s) on an AMD Optero6db cores, 16x16KB L1, 2 GHz) and 2.7 GF/s on an
Intel i7-2600 (4 cores, 4x32KG L1, 3.4 GHz). Thiogram is memory bound but contains significantidat
reuse potential, so tiling is useful to improvefpanance. We leverage the power of the PLuTo caanpd tile
simultaneously for coarse grained parallelism awality, considering the two fusion heuristics "Airsion”

(do not fuse loops) and "smart-fusion” (fuse loajith common dimensions).

Table 1: Performance of Ring Roberts on Opteron and Core i7

Proc-cores ref ICC pluto minfuse pluto smartfuse our work
opt-1 1.25 0.4 0.7 0.9

opt-8 1.25 2.7 3.9 4.7

opt-16 1.25 2.0 0.7 6.8

i7-1 3.4 2.6 2.3 2.8

i7-2 4.2 3.6 4.0 5.4

i7-4 4.1 3.5 4.3 10.1

One strategy, referred to as “minfuse” in the PLudampiler, tiles and parallelizes each loop nest
independently, requiring 2 barriers. The symmetgtiategy, referred to as “maxfuse”, attempts te floops
even at the expense of resorting to more complgxesees of loop transformations such as loop slgwin
pipelining and peeling to enable the fusion of pamg statements under a common loop nest. The “raeXfu
strategy exhibits an outermost sequential loop arsgtcond outermost parallel loop followed by itplinit
barrier. However, the performance does not incrdasarly with the number of processors, instead th
performance either reaches a plateau with the ilhtelr drastically drops in the Opteron’s case.

Figure 4 illustrates the nature of data depend@mdtkee Ring-Roberts code and the parallelizatiotioog for
static affine scheduling, as represented by stiateesart polyhedral compilers like Pluto, versysmamic task
dataflow. The top half of the figure illustrate tiberation spaces for an unfused form of the cuidld, the left
square representing the first loop nest and tha ggquare the second loop nest, along with 1Dgtibh each
loop nest, working on blocks of rows of the matsic&/ith Pluto minfuse, a barrier is used betweestation of
tiles of the first and second loops. With smartfuke two loop nests are fused, but skewing isirequo make
fusion legal. But after fusion, only wavefront gdigtism is feasible with 2D tiling (and no paralksh with 1 D
tiling), with barriers between diagonal wavefrontsthe tiled iteration space. Thus there is a taifiewith

min-fuse, the tiled execution of each loop nedbai-balanced, but interloop data reuse is notilfeEgswith

smart-fuse, inter-loop data reuse is exploited, loaid imbalance at start-up results for tiled wewef
parallelism.

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 22 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe£249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

1-dimensional
Inter-band
parallelism
enabling dynamic
fusion

Skewed and tiled
iteration space
using smart fusion

Figure 4: Task-parallel data flow over static affine scheduling

With a task dataflow model, it is possible to det best of both: increased degree of task-levelllptism as
well as inter-loop data reuse. This occurs by angatD parallel tasks for each loop, but the pompoint task
level synchronization enables ready tasks fromstwnd loop nest to be executed as soon as thedchtasks
(the ones corresponding to the same block row b&dmhes on either side) have completed. Thus, aafdic
fusion” between the loop nests is achieved autaalfti without the problem of load imbalance frohet
wavefront parallelism with a static affine tile eclule for the fused loop nests.

This problem has been recognized in the linearbaigeommunity and specialized solutions have been
designed. We propose a general-purpose solutidevieyaging properties of the schedule of tiles@sputed
by polyhedral compilers, and utilize it to determiat compile-time the inter-tile-band and intradland
dependences. Unlike classical approaches in aumnparallelization, these dependences will then be
instantiated at run time, and fed to a dynamic sleduler. The last columns in Tabhlshow the performance
obtained when generating task-parallel code froenRhuTo min-fuse heuristic when compiling the taskly
with ICC -O3 xAVX. As one can see, after optimizitige task body, we obtain near perfect scalingnbel’s
i7, yielding a 4x and 2x improvement, over ICC &lduTo's best, respectively; whereas on AMD's Optave
obtain over 6x relative to the baseline and 2x &auTo.

Our technique can be summarized as follows. We dompute tile-level constructs which are the injouan
algorithm that selects stream idioms to be use@dch tile dependence or to a partition routinectvisiplits the
loop nests into classes that share identical ioptglt dependence patterns. This algorithm choodes to
extract parallelism across disjoint loops, while tartition routine allows to create a dynamic vieorg of
tiles. Then a (static) task-graph is constructedptone redundant dependences and to decorate ht wit
dependence information. Finally, code is generedethe OpenStream run-time.

We conducted systematic performance evaluationh@rPolybench suite, comparing task-parallel datafl
execution with barrier-based data-parallel versioas 3 different multicore architectures. The resul
consistently establish the scalability advantagesmerformance portability of the task-parallelsien.

Deliverable number4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 23 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

9 Conclusion

We surveyed the final, integrated flow of the pobjecombining compilation methods and tools, anatinoe
systems, mapping both plain-C and modern efficielayguages such as StarSs, HMPP, OpenACC and
OpenStream to the TERAFLUX execution model anduasion set. The flow also supports the conversiba
high-level productivity language, Scala, for effiet execution on a dataflow architecture. The dgpraknt of a
prototype of the HMPP workbench for the TF macHias led to the design of a new compilation infradtire
capable of addressing a wide range of accelerde@wgces using the OpenHMPP programming models. Majo
work has been necessary for the design and theingpitation of new runtime systems to support theote
execution of codes on new systems like TERAFLUX Inaes. The new HMPP Server compilation framework
offers a generic platform for the deployment of hgband parallel applications, and proposes a nmmuohe
powerful infrastructure than the previous HMPP Wankch: it provides an extended support of complex
resources, the securisation and authenticationatd transfers, and extends the management cajesbuit
parallel computations.

Strong publication output and open source tookibistion was achieved as a result of the activibesVvP4.
Performance analysis and portability studies emhble this tool flow have been demonstrated, witfecti
experimental validation on 1024 multi-node TERAFLW$¥nulation, the results being reported in WP2 and
WP7.

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 24 of 25



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

10 References

[1] Antoniu Pop and Albert Cohen. OpenStream: Espireeness and dataflow compilation of OpenMP
streaming programsACM Transactions on Architecture and Code Optimization (TACO), selected for
presentation at the HIPEAC 2013 Conference, January 2013.

[2] Nhat Minh L&, Antoniu Pop, Albert Cohen, andaRcesco Zappa Nardelli. Correct and efficient work-
stealing for weak memory models. Bymposium on Principles and Practice of Paralle Programming
(PPoPP), Shenzhen, China, February 2013.

[3] “Moving Scala ASTs one step closer to C, byntng them into three-address form”, Scala Comjiilemner,
http://lampwww.epfl.ch/~magarcia/ScalaCompilerCoReoaded

[4] Andi Drebes, Antoniu Pop, Karine Heydemann, &ibCohen, and Nathalie Drach-Temam. Aftermath: A
graphical tool for performance analysis and detuggif fine-grained task-parallel programs and ioret
systems. In 7th Workshop on Programmability Isfoesieterogeneous Multicores (MULTIPROG, associated
with HIPEAC), Vienna, Austria, January 2014.

[5] Andi Drebes, Karine Heydemann, Antoniu Pop, &thCohen, and Nathalie Drach-Temam. Topology-aware
and dependence-aware scheduling and memory abactdr task-parallel languages. ACM Transactions on
Architecture and Code Optimization (TACO), 2014.dppear.

[6] Martin Kong, Albert Cohen, R. Govindarajan, Antu Pop, Louis-Noél Pouchet, P. Sadayappan.
Compiler/Run-Time Framework for Dynamic Data-Flowar#lelization of Tiled Programs. Submitted for
publication.

[7] NVidia, "NVIDIA, Cray, PGI, CAPS Unveil 'OpenAC Programming Standard for Parallel Computing,” 11
14 2011. [Online]. Available: http://pressroom.rigidom/easyir/customrel.do? easyirid=A0D622CE9FBBOF
&version=live&prid=821214 &releasejsp=release 1A¢dessed 01 09 2012].

[8] HPCwire, "CAPS Entreprise Now Supports OpenAGEandard,” 02 05 2012. [Online]. Available:
http://www.hpcwire.com/hpcwire/2012-05-02/caps_eptise _now supports openacc_standard.html

[9] CAPS entreprise, HMPP Directives Reference Méndersion 3.2.0, 2012.

[10] The OpenCL Specification v1.1 r36, "The OpenGpecification,” 30 9 2010. [Online]. Available:
http://www.khronos.org/registry/cl/specs/opencl-fdE.

[11] R. D. S. B. Francois Bodin, "Hmpp: A hybrid hicore parallel programming environment,” GPGPU
Workshop, 2007.

[12] Roberto Giorgi, "TERAFLUX: Exploiting DataflowParallelism in Teradevices", ACM Computing
Frontiers, Cagliari, Italy, May 2012, pp. 303-304j 10.1145/2212908.2212959

Deliverable numbe4.7
Deliverable nameAdvanced Version of the Compilation Tools
File name: TERAFLUX-D47-v8.doc Page 25 of 25



