Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROGRAMME

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Teradevice Compuing

D3.5 — Overall Computational Model Final Report

Due date of deliverable: 31 March 2014
Actual Submission: T9May 2014

Start date of the project: Januafy 2010 Duration: 51 months

Lead contractor for the deliverable: UNIMAN

Revision See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU Public

PP | Restricted to other programs participant (includimg Commission Services)

RE | Restricted to a group specified by the consortiuntiding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Change Control

Version# | Author Organization | Change History

1 Mikel Lujan UNIMAN

2 Mikel Lujan UNIMAN Improvements based on interfe¢dback
3 Mikel Lujan UNIMAN Improvements based on intermaview

4 Roberto Giorgi UNISI Coordinator’s review

Release Approval

Name Role Date

Mikel Lujan Originator 31/Mar/2014
Mikel Lujan WP leader 30/Apr/i2014
Roberto, Giorgi Project Coordinator for formal deliable 11/May/1014

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 1 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

TABLE OF CONTENT

TABLE OF CONTENT

GLOSSARY

EXECUTIVE SUMMARY

1 INTRODUCTION

1.1 RELATION TO OTHER DELIVERABLES.......uvviiiittieeeeteeeeeteeeeeeseeeesesseeesesseesessseressssseeesenseesesnnes
1.2 ACTIVITY REFERRED BY THIS DELIVERABLE......cciiitiettitieeeeeeieitrteeeeeeeeeiiaseeeseessessaasaeesessseenns
1.3 SUMMARY OF PREVIOUS WORKueiiiiutieeiiteeeeeeeeeeeeteeeeesseeseessseesssseeesssssesesssesssssseessssssesesns

2 HIGH PRODUCTIVITY PROGRAMMING MODEL: SCALA

21 MANCHESTER UNIVERSITY TRANSACTIONS FOR SCALA (MUTS) ...vvevieieeie e ceeseeeste e
2.2 SCALA DATAFLOW LIBRARY (DFSCALA) ...eeiiitiieeetieeeeitee e ettt e ettt e e ettt e e eeatee e esateeeeetaeeeensaeeennraaaens
2.3 BUILDING A PARALLEL FRAMEWORK: PREGEL ..uvveuvieureeereseeeseeesseessessesessseesseesseessessesssesssesseesseesses
2.4 USER ASSISTED SCHEDULING OF DATAFLOW PROGRAMSeevveieetieieeneeeseeseeesseesseenseensesssesssesseessens
2.5 TOWARDS DETECTING AUTOMATICALLY THE MEMORY TYPE OF PROGRAM VARIABLESccoveeveereennenns

3 HIGH PERFORMANCE DEVELOPERS: C PRAGMAS

3.1 T A RS ettt ettt e ettt e e e e e bttt e e e e e e et e et e e e e e e abhet e e e e e e e e abbeaeeeeee e e bbrteeeeeeeaannrreeeeeeeeaannren
3.1.1 SPECUIALION 1N SEAISS...eeeeereeeeeee ettt e et e et e e et e e e sttt e e st e e s sseeeesateaaeessteaesnsees
3.1.2 Overhead of STM in the context of task speculationccccceeeeeeevvvveeeeeeeeciiiievenannn.

3.2 - INTEGRATING DATAFLOW IN CAPS COMPILER (TF-OPENACC) ..ccouvieiveeriieeieesieeeieesieeeveesveesnee s
3.2.1 NeW DirCtivVes OVEIVIEWuuueeeieieaeieeeeee ettt e e et a e e e e esaseeeeaaeas
3.2.2 Kernels in dataflow regions and DFCOEIELS.............ccoeceeeeeecrereeeciisesiiieeesieeeeciea e
3.2.3 Data FIOW Region GNGA DOLQeeeeeeeeeieiieeeeeeeeeteeee e e eeectteeaa e e e e et tttaaaa e e e e essasanaaaaens
3.2.4 Implementation, features and restriCtionscccovcveeeeevereeecieeeecieeeesceeeeeieeaeecseens

33 OPENSTREAM AND OWNER WRITEABLE IMEMORY ...ceiiiiiiiitieeeseeaiiieteeeeeeseiiieteeeeeeseeisneeeeaeesesnnneee

4 SUMMARY

APPENDIX A — CAPS COMPILER: REFERENCE CODES ANNEXES

APPENDIX AL: BASIC SYNCHRONIZATION EXAMPLEveeviiuiiniiiitieitieie ettt sttt sttt
APPENDIX A2: CONTROL FLOW SYNCHRONIZATION EXAMPLEcvviitiiitieteiie st ettt et ne e
APPENDIX A3: BASIC SYNCHRONIZATION EXAMPLEeoiviiiiiitiiitieitiete ettt ettt

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 2 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

List of contributors to the writing of the document

Daniel Goodman, Chris Seaton, Salman Khan, Behram lkan, Pareskevas Yiapanis, Christos
Kotselidis, Mikel Lujan, lan Watson
University of Manchester

Rahul Gayatri, Rosa M. Badia, Eduard Ayguadé
BSC

Albert Cohen, Léonard Gérard, Feng Li, Antoniu Pop
INRIA

Laurent Morin
CAPS Enterprise

© 2009 TERAFLUX Consortium, All Rights Reserved.
Document marked as PU (Public) is published inyjt&r the TERAFLUX Consortium, on theww.teraflux.euweb site and can be
distributed to the Public.

The list of author does not imply any claim of owsiep on the Intellectual Properties describedis tocument.

The authors and the publishers make no expressidptied warranty of any kind and assume no resipdites for errors or omissions.
No liability is assumed for incidental or consectiErdamages in connection with or arising outt# tise of the information contained in
this document.

This document is furnished under the terms of tBRAFLUX License Agreement (the "License") and mayydbe used or copied in
accordance with the terms of the License. The métion in this document is a work in progress, tigideveloped by the members of
TERAFLUX Consortium ("TERAFLUX") and is provided ffinformational use only.

The technology disclosed herein may be protectednieyor more patents, copyrights, trademarks artidide secrets owned by or licensed
to TERAFLUX Partners. The partners reserve alltdghith respect to such technology and related mad¢de Any use of the protected
technology and related material beyond the termthefLicense without the prior written consent &RAFLUX is prohibited. This
document contains material that is confidential EBRAFLUX and its members and licensors. Until pcdtion, the user should assume that
all materials contained and/or referenced in tioisughent are confidential and proprietary unlesgmifse indicated or apparent from the
nature of such materials (for example, referenagriblicly available forms or documents).

Disclosure or use of this document or any mateoatained herein, other than as expressly permigeztohibited without the prior written
consent of TERAFLUX or such other party that magrgrpermission to use its proprietary material. Tademarks, logos, and service
marks displayed in this document are the registemd unregistered trademarks of TERAFLUX, its memtend its licensors. The
copyright and trademarks owned by TERAFLUX, whetregjistered or unregistered, may not be used imexiion with any product or
service that is not owned, approved or distribuigdlERAFLUX, and may not be used in any manner thdikely to cause customer
confusion or that disparages TERAFLUX. Nothing eméd in this document should be construed asiggahy implication, estoppel, or
otherwise, any license or right to use any copyngithout the express written consent of TERAFLLUKX,licensors or a third party owner
of any such trademark.

Printed in Siena, Italy, Europe.

Part numberplease refer to the File name in the document foote

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFKUSPECIFICATION IS PROVIDED BY TERAFLUX TO MEMBERSAS IS"
WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR BATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIOLAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RI&TS.
TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES ORNY KIND
OR NATURE WHATSOEVER (INCLUDING, WITHOUT LIMITATION ANY DAMAGES ARISING FROM LOSS OF USE OR LOST BUSESS,
REVENUE, PROFITS, DATA OR GOODWILL) ARISING IN CONBCTION WITH ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TRT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THE®Y, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 3 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Glossary
™

Dataflow
computation

DFR

Transaction
Atomicity

Consistency
Isolation

™
mechanisms

Conflict

Eager conflict
detection

Lazy conflict
detection

Eager
versioning

Lazy versioning

Nested
transaction

Transactional Memory

A dataflow computation is defined by a graph whéhe nodes are side-effect-free
computations (functional computation) and the amegresent dependencies. A node is
activated and executed when its input dependenbiese been satisfied, generating
seamlessly parallel execution.

Dataflow region

A set of individual operations that need to be exed atomically, with guarantees of
consistency and isolation

Transactions must appear to other tratisas as if they occur in a single operation, omdo
occur at all.

One transaction must take the program éne consistent state to another.
Transactions must act on isolation oheaiter.

The implementation of a TM system normally requaleseans for detecting conflicts among
executing transactions, and a means for versiodatg used within a transaction to allow
restoring the system state back to its origin sthome or more transactions conflict.

Two transactions conflict when the twortsactions cannot be executed in parallel preserving
the atomicity, consistency and isolation propertiElsere are data dependencies across the
transactions (e.g. read-after-write or write-afteite) which would invalidate the parallel
execution of those two transactions

The TM system has a choice about when to checkhghet number of transactions have a
conflict. Eager attempts to detect the conflictidgithe execution of the transaction.

Lazy attempts to detect conflicts among the exagutransactions when one of these
attempts to commit.

Eager versioning modifies directly memory and reggiian undo log to restore the original
state.

Lazy versioning buffers memory nfieditions done by a transaction and only once such
transaction is allowed to commit, these modificasi@re propagated to memory visible by
other threads.

A transaction is nested when its execution is doath within the context of another
transaction. Flattening treats the nested trarmastas a merged single transaction. Open
nesting has been proposed as a means to reduamegassary conflicts by allowing nested
transactions to commit before their parent transadtas been done so.

Strong vs weak Strong isolation is where nothing can see the stéten a transaction while it is executing.

isolation

Weak isolation is where only other transactionsuarable to see intermediate state, but other
threads will not be prevented by the programmingl@hérom viewing the intermediate state.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 4 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Executive Summary

This report contains descriptions of work withire throgramming model development, which has
normally being split into three parts covering tligh productivity model, the synchronous dataflow
model and the high performance models.

The specific achievements and discussions for ¥eae:

High Productivity Model — Scala (Section 2)

. Manchester University Transactions for Scala (MBYand Dataflow Scala library (DFScala)
have been combined to develop complex paralleldvaonks such as Pregel and MapReduce.

. Work understanding how to combine dataflow amehgactional memory has been extended
to Pregel

. Development of a Scala compiler plugin to helpnigfy which variables should be protected
with transactions.

. Analysis of whether of scheduling based on saftwdevelopers knowledge, presented in
DFM 2013.

High Performance Model — C directives (Section 3)

. StarSs (from BSC) has improved their compiler amttime system to support speculation
and developer more complex applications includind analysis of the overheads incurred by using
Software Transactional Memory.

. CAPS has a proposal for their pragma directivesupport dataflow programming on GPUs.

. INRIA has extended the streaming data-flow ext@rsof OpenMP, called OpenStream, with
support for Owner Writable Memory and Transactidviaimory.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 5 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1 Introduction

This document is the final deliverable of the wed¢ried out in WP3. Work within WP3 has been
split into three distinct sections covering the kvoarried out on the high productivity programming
model (Scala), on the synchronous concurrency @dgpt) and on high performance models. Within
the latter models, we have covered progress withr€stive-based dataflow models (StarSs, HMPP,
OpenStream). This final year the work has focuse&ceala, StarSs, OpenStream and HMPP and this
is reflected in the contents of this deliverabler Eompleteness we also summarize the work of UCY
with TFLUX in this workpackage, although no new d®pment has occurred in Year 4.

C/C++ pragmas H
Scala UCY, BSC, INRIA, CAPS eptagon
TFLUX, StarSs, HMPP INRIA
OpenStream

UNIMAN

Computational
Transactional Model Synchronous

dataflow
Memory Dataflow

Teraflux
architecture

Multi-cores

1.1 Reation to other deliverables

This deliverable describes the existing work cdrraut to extend and implement dataflow and
transactional models and it is a continuation ofID®3.2, D3.3 and D3.4 and WP2 contains some of
the performance results for applications implemgnising programming tools developed in this
workpackage.

1.2 Activity referred by this deliverable
This deliverable covers the work being carriedunder WP3 in year 4 (i.e. T3.4).

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 6 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1.3 Summary of previous work

The previous deliverable reported the progress aéfining the programming models and the
outcome of the initial experiments completed susftdly. We had developed working software
prototypes able to execute on standard multi-ctaiégoms. In particular we present below an
executive summary, for convenience of reading,ezigions taken to combine Dataflow and
Transactional Memory (for more details we refedétiverable D3.1, D3.2, D3.3 and D3.4).

In particular, we recall that Appendix-A of D3.4n3marizes the need for shared data in dataflow,
which motivates combining Transactional Memory &adaflow.

The architecture and semantics is simplified whéramsaction executes only within a single thread.
Once a good understanding of Transactional MemodyRataflow has been achieved, we intend to
look into weakening these constraints.

Versioning and Conflict Detection

Because the project is fundamentally interestedain extensible system, it is felt that the

communication required to provide the global obsgon needed to implement eager conflict
detection coupled with the complexity it adds imlerto provide correct execution and progress
guarantees mean that it is better to opt for lamyflict detection. This lazy detection can alwags b

strengthened by checks at specified points withénttansaction.

Nesting

Although true closed nested transactions are pefedue to finite hardware resources and after a
given depth, it will be reverted to flattened tractions. The first TM prototypes will implement
flattening. Because of its non-intuitive semantpen nested transactions are not an option.

Syntax

Because of its clarity at a programmer level intended that TM syntax in the form of atomic blsck
will be provided complete with supporting extension

Synchronization

In addition to providing atomic blocks it is intesdl that all forms of non-transactional
synchronization construct are excluded as theykreaatomicity of transactions.

As an update to these decisions, we note that it We are investigating how to optimize the
detection mechanism by taking advantage of thectstrer within a node (a set of cores) by having
conflict detection options more frequent than lazy.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 7 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2 High Productivity Programming Model: Scala

In this section we will describe the work carriedt @n the development of a high productivity
programming model based on extensions to the $catpamming language.

In the previous reporting period we realized twanrdraries which provide transactional memory
and dataflow execution.

MUTS http://apt.cs.manchester.ac.uk/projects/TERAFLUX/N8J

DFScalahttp://apt.cs.manchester.ac.uk/projects/TERAFLUX3o&a/

We provided updates on the new developments faetlibraries and in particular how they can be
applied to Lee’s routing algorithm in D3.4. Thididerable focuses on how we have used these open
source tools to develop on top more complex framksye.g. Google’s Pregel & MapReduce.

2.1 Manchester University Transactions for Scala (MUTS)

We briefly recall that in D3.4 we provided a deptian of the implementation of software
transactional memory in Scala without making maadifions to the Scala compiler. This was possible
thanks to a novel mechanism reliant on closuresnfanking the transactional areas of the code. This
removes the need for programmers using this mode$¢ a special version of the Scala compiler, so
making our work more widely applicable.

The syntax provided by the closures is very sinaplé an example can be seen below.
/I Program code before a transaction

/I The transaction

val id = atomic {
threadld +=1
threadld

/I More none transactional code

We conducted a survey considering all the mainrtiegtes to bring software transactional memory
into Scala as well as fully explored the capal#itof our closure-based approach. This has been
published as a journal publication [5].

2.2 Scala Dataflow Library (DFScala)

We also briefly recall that in D3.4, to complimé@AUTS and to enable the development of dataflow
code for a number of the applications selecteddérhewve constructed a library to support the creatio
and execution of dataflow threads.

One distinguishing feature of DFScala is the steliecking of the dynamically constructed dataflow
graph. This static checking ensures that at runtimeee will be no mismatch of the arguments to
functions. DFScala does not require the usageeaffiaptypes and thus a node can be generated from
any existing Scala function without complex refaictg of code. Each node in the dataflow graph is a
function which cannot be subdivided; a functioséguential.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 8 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

a Scala - DL simar MypeError scala - Eclipse (SIRCYAE.S)
File Edit Refactor MNavigate Search Project Run Scala Window Help
Fiv v [Ov v @ [B & 3| v lv K Gy I %Debug >
O outli | % Pac 32) = O || (gl TypeError.scala 52 i}
0 & = package eu.teraﬂux.uniman.dataﬂuw.examfgles A
=+ || &import eu.teraflux.uniman.dataflow.DFApp|]
§ i EUlerafluzuniman.d A -
v B » euteraflux.uniman - object ThreadCreation extends DFApp{
[§) TSP_DF scala 35
+ [TSP_Generator.si // A function that will be called from a dataflow thread
I " = def fl{a:Int, b:Double, c:String):String = {
i TaRscala 3t var output = ¢ + a*b
> [F} TSPBaseGenearat println("The output is: " + output)
3 [> euteraflux uniman output
» 3 euteraflux uniman.d
e 2Ll leninang // The function that will construct the thread around fl
+ [ThreadCreation.s [/ = def example() {
i //Create the thread
3 eu teraflux uniman.d val t = createThread(fl)
3 f euteraflux.uniman.d I //Set ‘the arguments
» £ euteraflux uniman.d térgl L -
» £ euteraflux.uniman.tr //Attempts to pass the wrong type are detected and prevented
+ H euteraflux uniman tr t.arg2 = List(1.5, 2.5..3.5) -
3 £ scala.collection 34 L i e el
o < {//Mow the arguments are all set the thread will start
1 [scope 322 1
+ ff} scope lib_managzd
+ £ scope lib_managed | ||| a-'lflqirw method, starts as the root of T!E; dataflow graph.
s = S .
3 5 seope.sremainyesa| || ! ef DFMain(agrs:Array[Stringl) { example() }
3 fH} scope src.main resc =
+ £} scope.sre.main.resc .
3 [scope.sre.main.scal L)1 [Je2 -
+ B scopesrctestscala | |[F) problems 3 = =g
1 Eﬁtt‘m'S 348 1 error, 53 warnings, 0 others i
Abuild sh 255 | Description Resource Path Lacation Type
|- [0 stresstest 293 v €@ Ermors (1 item) D
|5 testdata bt 349 : @ type mismatch; found : ListDoublg] required: Double TypeError.scala IDFLibfrunkleutter: line 22 Scala Problem v
< > < T : - : B <>

=0 a2

Figure 1 DFScala static type checking - error found by Eclipse IDE.

The performance results published in [6] and surrr@drbelow cover the scenario on desktop multi-
cores. For next year, we will expand this analgdigthe application and run on the TERAFLUX
architecture and larger many-core systems.

2.3 Building a Parallel Framework: Pregel

Google has put into production several framewoekg. MapReduce, Pregel and Percolator) to
facilitate the software development of parallellaggpions running on their datacenters. MapReduce
and Pregel follow dataflow principles and we haegedoped on top of DFScala and MUTS
equivalent frameworks which run on many-core aegtitres rather than at datacenter level. We will
focus on Pregel in this deliverable as MapReduseaéeeived much more attention and it is well
understood by now.

Pregel targets at stepwise graph based computatitisthis framework a graph structure is
constructed where each node in the graph has sowagepstate, a function that it can execute aheac
step, and a possibly empty set of vertices to atbdes. On each step each node will:

» Receive messages from other nodes.

» Execute the nodes function taking any received agessand the private state of the node as input.
* Send messages to other nodes.
 Initiate changes to the graph.

All actions are completed on all nodes before tne step starts. At the end of any step a nodgoan
into a sleep state until either the computationsemrdthe nodes receives a message. The computation
ends when all the nodes have gone to sleep. Tdresgel a user is only required to provide: the
function that the nodes will execute; a functionctnstruct the initial state of the graph; and a

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 9 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

function to return the final state of the graphefiéis the option of providing aggregator functions
that will combine outputs from the nodes, makingnthavailable to all other nodes at the next step of
the computation.

Similar to MapReduce, Pregel is a dataflow pateoapsulated in a library that takes the required
functions and input data as arguments. Individwaes or sets of nodes will have their computation
at each cycle computed by a dataflow thread. Trirsad will take as arguments the current state of
the node/nodes it is calculating for and any messag these nodes from the dataflow threads in the
preceding step. It will then call the supplied ftioe for each node in its care. These functionscall
will generate lists of messages (possibly emptyictviare passed to the threads in the next stefin Eac
thread includes a flag with the messages markingisf ready for the graph to terminate. When all
threads are ready for the graph to terminate it Whis creates the following 4 step Pregel pattern
computing on 3n nodes:

Aggregate Aggregate Aggregate
Nodes l Execute Execute] Execute Execute Nodes
1.n Step 1 Step 2 Step 3 Step 4 1..n

Nodes Execute Execute Execute Execute Nodes
n+l..2n Step 1 Step 2 Step 3 Step 4 n+l..2n

Nodes Execute Execute Execute Execute Nodes
2n+1..3n Step 1), ;| Step 2), ,\ Step 3) ;|\ Step 4 2n+1..3n

Y Y Y
Message passing Message passing Message passing

While transactions are not required for this frarogiwthe use of shared state to manage message
passing becomes an essential mechanism for pasgagages as the number of threads increases
either because of an increasing problem size axusecfewer nodes are evaluated per thread. Without
the use of shared state threads that have no nesssagommunicate to other threads will have to
send out ever larger numbers of message lists inovdano messages. The effect of this can be

clearly seen in the next graph:

Nodes Execute Execute Nodes
1.n Step 1 Step 2 Step 3 Step 4 1.n

Nodes Execute Aggregate Execute Agaregate Execute Nodes
n+l..2n Step 1 e Step 2 e Step 4 n+1..2n
Nodes Execute Execute Nodes
2n+1..3n Step 1 Step 3 Step 4 2n+1..3n
We have compared the scaling of the two versionte®Pregel framework implemented in Scala, the

first built just using dataflow and the second buiing dataflow and transactions. The next graph
shows that without shared state the problem faifctle as we increase the number of threads.

Aggregate

Execute
Step 2

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 10 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

18

<+Without TM
/AN

16
|With TM / \
14 /

\n-/"/.

/AN
12 -

RSN
S T T T

0 4 8 12 16 20 24
Threads Used

Figure 2 A demonstration of the effect of adding transactional memory to our implementations in Scala of
the Pregel framework to reduce the number of dataflow tokens being passed. In this instance the
framework is computing the single source shortest path (SSSP) problem. This calculates for each node in the
graph the shortest path from a specified node. In this case, a random graph comprising of 100,000 nodes.

Finally, Google’s Percolator is their most receraniework. This framework uses transactions to
address the absence of interactivity in a MapRedneecation. Specifically it was designed to
address the inability to insert new data into aeceting MapReduce computation. This limit on
MapReduce interactivity meant that Google could/@tart the MapReduce to construct a web index
once they had finished a complete crawl of the Wib. have not implemented Percolator in Scala,
but it serves as an example of another frameworkid® of TERAFLUX that is following the
principles investigated in this workpackage.

2.4 User Assisted Scheduling of Dataflow Programs

The determinism and race condition free propertepure dataflow programs make them very
appealing as a means of constructing programs fdti-nore processors. However, pure dataflow
programs are limited by their determinism whichvergs the construction of programs that would
traditionally require shared state for either edincy or to support unstructured interactions.

An example of a problem that requires shared stabee solved efficiently is the travelling salesman
problem. This takes a connected graph as inputyhith the nodes represent cities and the arcs
represent roads with weights recording the distarimtween these cities. It returns a tour where

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 11 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

every city in the graph is visited and the distatmagelled is the shortest possible. Accurate smist
to this problem are used on a daily basis by lagistompanies.

A brute force approach to this problem is not pcattas there are n! possible tours for n cities.
Instead efficient techniques for solving this regua shared updatable lower bound which is updated
as better solutions are found. The presence ofdiisr bound allows these techniques to discard any
solution that will exceed this lower bound beforg &urther time is spent on it. As a result the mos
efficient versions are those which can quickly ithe lower bound to represent the length of the
shortest tour, and can efficiently calculate thedobound for the partially constructed.

In pure dataflow applications scheduling can hawggaificant effect on the memory footprint and
number of active tasks for a given program. Howgwerimpure programs (dataflow with shared
state), scheduling not only affects the system uess, but can also affect the overall time
complexity and accuracy of the program.

To address both of these aspects we describe ahgsareffective extensions to a dataflow scheduler
(prototyped in DFScala) to allow programmers tovpe priority information describing the
preferred execution order of a dataflow graph. Wansthat even very crude task priority metrics can
be extremely effective, providing an average sawin@1% over the worst case scenario and 60%
over the best case naive scenario.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 12 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1600+
W Aeady

1400 |—vItng
1200

1000
gsm
H

(ki)

400 -

00 -

o 4

Fifo Lfo Random Priority Uke Firsg

{a) TSP 1 Come
1800 .
® Raady
1600 - ® Walting
1400
1200 4
1000
K
= =
Fm +
400
“ .
i - L i i "
Fila Lifa Randam Priceily
(d) Go & Comes
A
W feady
B Waiting

250 4

200 -

- P - —
£
100

Filo Lile Randam Priarity 1 Priceite 2

{2) 0-1 Knapsack 1 Cor

[mReady

1600 1 B Walting
1400 +
1200
imm
|§ &0
B0
ApQ -
S _. =
1] — T

Fifo Lifa Random Priorty Use First

(b} TSP B Cores

B Ready
B aiting

II-_

Fifo. Lifn Random Priarity 1 Priorty 2
(e} Fibonacci 1 Core

Threads

250

B Feady

u Waiting
00 4
150 - =
..
| I
o . . i !

Fila Lifa Randam Priority 1 Priarity 2

(h) 0-1 Knapsack 8§ Cores

- feady
= 'Waiting

Fite Lifo Random Priority

(c) Go 1 Core

mReady
B Warting

File Lifs Randemn Priority 1 Priority 2

(f) Fibonacci & Comes

2.5 Towards Detecting Automatically the Memory Type of Program

Variables

In TERAFLUX, we defined different kind of memoryptgs (cf. D7.1, program variables belonging to
one memory type will only accept a subset of opama). Having to remember and identify correctly

all these memory usages is not ideal for a softwdeeeloper. We have investigated whether
following certain design patterns coupled with istaompiler analysis can be used to automatically
detect for example whether a given variable wowddréad and written at runtime thus requiring

protection using transactions.

Thread Local Storage (or Thread Local Memory) s themory has no visibility to other threads and
the values contained within this memory cannotédmespd directly to other threads. The data may still

be passed to other threads via either an impliciixplicit copy to a different style of memory.

Deliverable number: D3.5

Deliverable nameOverall Computational Model Final Report

File name: TERAFLUX-D35-v4.doc

Page 13 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Frame Memory (or Constant Memory) - the valuéhc® memory may be modified by the thread
that allocated it. This memory will become constamte it becomes visible outside the allocating
thread. To become visible outside the thread aeete must be passed out of the allocating thread.
This can currently occur either through the passing reference into the frame of another thread or
the setting of the reference into a piece of trati@aal memory and the encompassing transaction
then successfully committing.

Transactional Memory - Transactional memory is roigtat all times, but can only be read from or
written to from within a transaction. The only pidss exception to this is when transactional memory
is in the thread where transactional memory i$ &illecated.

Owner Writable Memory (OWM) - OWM memory is usedagsoptimisation on single assignment
memory, and code operating on OWM must be raceittondree. In the event of a race condition
involving OWM the program is incorrect and the beabar is undefined. If protection against race
conditions is required, transactions should be used

The recommended design patterns have as major ggitpcensure that we can, by relatively simple
static analysis, detect those variables which aitalle by multiple threads and hence need to be
transactional. An initial assumption is that thrdadel parallelism will be exploited at relatively
coarse grain and therefore an individual Scalatfanavill be executed within a single thread. Ilwi
probably be necessary to relax this if and whenimi®duce data parallelism. The restrictions all
relate to multiple update of variables. They aretlexpressed by positive statements of updates,
which are allowed together with a negative statdnvemich relates to variables being passed as
function parameters. The following assumes thahalevprogram view is available, further thought
needs to be given to separately compiled classkitaaries.

Rule 1: A variable may be the object of multipledafes if it is a static variable accessible by the
scope rules. This is allowed whether or not theesg€occurs from multiple threads. This allows the
use of static global variables defined in singletdnjects which are required to be transactional if
accessed by multiple threads.

Rule 2: A variable may be the object of multipledates if it is declared locally within a functionca
the updates occur either directly in that functiaaly or from within a nested function definitiorh&
variable cannot be referenced from any separagadisrwhich may be generated within the function
or any nesting. Such variables are always threzal.lo

Rule 3: A variable may be the object of multipledages if it is an instance variable of a classthed
updates occur within a function defined in the €las

Rule 4: A variable may not be the object of muttipbdates if it is referenced via a parameter passe
to a function. The purpose of these rules is thipibthe arbitrary distribution of updateable \adalies

(or strictly references to them) via parametersweler, Rule 3 does permit the update of fields of
objects by calls to functions defines in the olgextass (i.e. via the “this” pointer).

Based on the above rules and our aims are:

1. To ensure that all reads and modificationsandactional state only occurs within a transaction.
2. To ensure that all state that is modified dftsroming visible outside of the dataflow thread is
marked as transactional.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 14 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3. To ensure that all state that does not becosikleioutside of the dataflow thread is marked as

local state.
We have developed a prototype plugin for the Scamapiler which implements the static analysis
required and show the potential. However, we atemaking claims of completeness of all the corner

cases, as the plugin is in early experimental stage
The plugin follows the following phases:

Scala Code Scala ASTs

Foo.scala a

_ Cinld 1 fdathade |

_ Eiald 1 BActhede |
Field Methods
G Names — B |
SR e
Parent { % %“
Object Instances Object and Method
transactional status Descriptors

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 15 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3 High Performance Developers: C pragmas

3.1 StarSs

For the sake of easier reading, we shortly retat BSC has investigated how speculation can be
brought into StarSs [9], specifically SMPs, usingaisactional Memory. StarSs is a task based
programming model for widely used multi-core arebitires. The programming model is based on
data flow analysis and dynamic data dependenckitrgady the runtime. Sometimes in order to
extract more parallelism multiple tasks are allowedimultaneously update memory locations. In
such cases lock-based synchronization is used ittaimathe correctness of the application. But ®ck
suffer from the drawbacks of deadlock, livelock gmidrity inversion.

We introduced Software Transactional Memory (STMpdxd concurrency control mechanism to
manage parallel updates. The comparison of rebeliween lock-based approach and STM-based
approach shows that applications with high lockteotion have better performance with STM based
approach [9].

3.1.1 Speculation in StarSs

As described in D3.4, (section 5.1) StarSs provejgghronization constructs such“ait-on” , to
wait for a particular memory location to be updabedore continuing execution aridarrier”, to
block execution of all threads till each of themaakes a certain point of execution. Such constructs
hamper the parallelism by leading to problems sashblocking of work generation and load
balancing. The most common situations where thesstructs are used are during if-condition and
while-loops. Hence we speculate on the conditidribese loops.

In case of an if-condition such as:

Ti(a);

/] #pragma css wait on(a)

#pragna css specul ate wait(a) val ues(b,c)
if(a)

T2(b);
T3(c);
}

For example we speculate that the if-condition tdllevaluated to true and generate the tasks T2 and
T3 inside a transaction instead of waiting for t@gkto finish. Latter when the values of b and € ar
required we check for the validity of if-conditi@nd either commit the results of b and ¢ or abort
transaction. Compiler and runtime changes weralired; StarSs and applications/evolutions
reported.

3.1.2 Overhead of STM in the context of task specul ation

In the fourth year of the project we have analyt#teel overheads of where speculation is used to
extract more parallelism in SMPSs, an implementatod StarSs [8]. SMPSs is a task-based
programming model for Symmetric Multiprocessors (Y1 Speculation is used to overcome the
synchronization pragmas in SMPSs, which block theegation of work and lead to underutilization

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 16 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

of the available resources. TinySTM, a Softwaren$a&tional Memory (STM) library is used for an
STM based implementation to achieve speculatiore sifeculate pragma can be used with if-
condition and while-loop programming constructssfeeculatively generate tasks blocked until the
loop-predicate is evaluated. Speculatively gendradgsks are executed as transactions in order to
maintain correctness in case the speculation fdilsySTM library calls are used to execute
transactional SMPSs tasks. If the speculation &ailsllback is performed; the updates performed by
the tasks are undone as the associated transactborted.

We measured the overhead incurred due to the uBayBTM library in SMPSs and we analyzed the
acceptable overhead with the TinySTM-based impleatiem to achieve speculation. The speculative
tasks, apart from being control dependent on tbp loredicate, may also be data dependent on the
earlier tasks. Hence, the use of peculate pragma will add one of the following types of task

to the SMPSs Task Dependency Graph (TDG) of arigtign:

e tasks which are control-dependent on the earlier tasks
e tasks which are data-dependent tasks on the earlier tasks

Tasks which are only control-dependent on the exatéisks allows speculative and non-speculative
tasks to execute in parallel, but with tasks, whach data-dependent on the earlier tasks, the only
parallelism available is the overlap of task getienawith task execution. We concentrate our
analysis on applications where speculatively gdrdréasks are data-dependent on the earlier tasks
since this is the minimum performance gained by ittea of task-speculation in SMPSs. The
applications analyzed were Jacobi, Gauss-SeidelLaeadouting. In case of Jacobi and Gauss-Seidel
speculative tasks are data-dependent on the etatiks. In Lee-routingspeculate pragma was
added to overcome a synchronization pragma that ugasl to enforce control dependence. The
performance timings presented in the case of Lagng cover only the phase where the
speculate pragma was added.

Figure 3 shows the performance of Lee-routing aptibn with and without speculation. The timings
were taken for a phase of the application wheresfleeulate pragma was used and the benefits
achieved due to the simultaneous execution of sgkeei tasks with earlier tasks is evident.

Performance of Lee-Routing

aculation ———
Nn-gpculainn ----- e A

-~

gt _.-"- 4

T|seconds |

1 2 4 X B 12 1]
Mumber of thresds

Ei 3 Perf e of speculative and non-speculative Lee-routing application

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 17 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The problem size for the Jacobi and Gauss-Seid#icagions shown of the Figure 4 is a system of
linear equations with 4096 unknowns. Each task gsses 512KB block of data. The chosen task
granularity gives optimal performance in the norepative version of the application. The figure
shows that even though the speculative versionke,sttee overhead incurred does not allow any
performance improvement compared to the non-speeeilgersions. But with increase in the number
of threads the absolute difference in the perfooeabetween the speculative and non-speculative
versions reduces. With higher number of threadsemesources are available to avail the parallelism
extracted from thepeculate pragma. This shows us that the idea can be sdaligsspplied to

Comparison of Jacobl performance

300 :
spaculation ———
Ma-sapculation == Wewrens
2500 | k
200 1
E
=
ERELE 1
3
o
S0t .
B L e B e e e ke o
0 ' . :
l 2 1 . S 12 1
Number of threads
. Performance of Causs-Seidel with varying task granulanties
500 . .
B12KB ——
450 1MB "
ann | Mo-speculation e
350%, 1
w0l * .
2
2 250 1
g2
= 200 i
150
T
50 R SECCe]
T e

-II 4
Mumber of threads
Figure 4 Performance of Jacobi while varying the number of threads and Gauss-Seidel applications while
varying both number of threads (horizontal axis) and varying tasks granularities (different curves at 512KB,

1MB, 2MB granularities

[2]

obtain some scalability.

One of the major reasons of overhead with TinySEwvthe conflict detection performed by the
library. This is an unnecessary and unavoidableh®asl. Unavoidable since it is a part of the Iiprar
and unnecessary because of the presence of adpskdéncy graph. We also observed that with
increase in the task granularity the speculativsigas of the applications perform better as shown
Figure 4. The legend in the figure represents ¢makularities.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 18 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

TinySTM calls in Jacobi.

2MB

15 - 1MB -

e __..512}(5..............

4 - ™. 1

15 - e, |
&
= 3 -
B

4 8 12 16
Mumber of threads

%)

Comparison of Gauss-5eide] performance

5|:|ai:ulailn:|n —_—
A50 Mo-sapculation - PP

a0t e Tee—
It TETERE S e S y
0 . . .
I 2 1 B 12 16

Number of threads

Figure 5 Relative time spent in the TinySTM library for speculative Jacobi and Gauss-Seidel applications
while varying both number of threads (horizontal axis) and varying tasks granularities (different curves at
512KB, 1MB, 2MB granularities

We also evaluated the relative time spent by sp#éieal versions of the applications in the TinySTM
library and conclude that the overhead of the tipsiould be less that 1% of the total executioreti
to gain any performance benefits.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 19 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.2 - Integrating Dataflow in CAPS compiler (TF-OpenACC)

The OpenHMPP [14] and OpenACC propose a data papthgramming model based on the codelet
concept. In TERAFLUX, CAPS has been investigating ¢€xtension of the current CAPS products
with the dataflow model investigated in the Workigage 3 in a manner that is compatible with the
existing OpenHMPP implementation and OpenACC. tkisserable focuses on the extensions made
to OpenACC following the dataflow approach investeayl in TERAFLUX: TF-OpenACC. Typically,
OpenACC can be used on GPU and CPU. The CAPS naeycompiler is able to generate OpenCL
as well as CUDA code when dealing with GPUs.

OpenACC [11] proposes a set of directives to dbsdkernels to remotely execute on an accelerator
in parallel, and a set of data management techsidiigis proposal is based on the OpenACC data
transfer management mechanisms (See [12] for detarld on the integration of kernels inside
codelets for the task computation description.

The constraints on the design of this extensiohtthge been taken into account in the following way
* Minimize the number of changes to OpenACC,;
» Execution with current OpenACC model is correct.

In the remainder of this document we describe TEANCC for the C language. In the future, this
extension will be proposed for FORTRAN. A variarnlialso be envisioned for C++.

The following sections describe the new directit@de added to OpenACC. We also present the
constraint to the tasks codes (i.e. kernels) and gn overview of the data flow code region runtime
behavior. We explain how the data are managed a&sdribe a first implementation. This first
implementation does not aim at being efficientd&udemonstrating the concept.

3.2.1 New Directives Overview

TF-OpenACC is based on a new pair of directivesiileisg the limits of a data flow region. In a
region a set of asynchronous tasks are createisl®ids an execution instance of a kernel sectibe. T
kernel has to be encapsulated inside a pure functited a DFCodelet, as defined in the OpenHMPP
standard [13]. The synchronization between thestaskerformed according to the data dependencies
between the tasks arguments.

Contrary to the OpenACC specification, the taskes ot necessarily and statically assigned to a
particular device according to the owner compute of the arguments. However, this first region
will restrict data flow region to accelerators hayione single device or devices with a shared
memory address space. The data are allocated th&rignirror" approach used in the CAPS compiler
i.e. a data blocks on the Host has a mirrored @ersn the accelerator device updated according the
OpenACC semantic and directives.

Data Flow Region (DFR)

The data flow region is delimited using an "acaflatv" pragma on a statement block (denoted DFR
hereafter). This is illustrated Figure 6.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 20 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

#pragma acc dataflow copyin(a,c), copyout(e)

/I set of statements
Ylend of data flow region

Figure 6: TF-OpenACC Data Flow Region.
Data flow regions can contain the following statetse

» DFCodelet calls with a kernel directive;
» Statements which behavior is not affected by the tasks computations. Output arguments of tasks
cannot be used in the region except for another kernel statement.

Data flow regions must have the same semanticeasdfiuential execution of the region. In and out
region arguments are contiguous memory blocks. rOtiemory blocks can be used as internal
storage for the region. They are dead variabléseagntry and exit of the DFR.

Figure 7gives an example of a region containing two DFCetdeNariable A is an input to the region

and variable C is the output. Variable B is annimidiate variable, which in and out values are
ignored before and after. Task corresponding topete® is synchronized on the completion of
computel, assuming B is an input to compute2 atpubof computel.

The device clause on the kernel directive is arereston of OpenACC. It allows kernels to be
executed on a specified device even if the argusnarg located on a different device. Note that the
first version will not support devices that do sbare a common memory address space. By default,
the same device is used for the same dataflowmegio

void computel(const float *a, float *b, const int n);

void compute2(const float *b, float *c, const int n);

void figure2(const int n, const float a[n], float b [n], float c[n])
#pragma acc dataflow copyin(a), create(b), copyout(c)

#pragma acc kernels, pcopyin(a), pcopyout(b), devic e(1)

computel(a, b, n);

#pragma acc kernels, pcopyin(b), pcopyout(c), devic e(1)
compute2(b, c, n);
} /I end of FD region
}

Figure 7: Example of a data flow region.

Figure 8 shows an example where k input tasks are connéatedutput tasks. The dataflow region
is launched multiple times asynchronously usingataftbw OpenACC parallel region. Inside each
region two kernels are executed, and depending@nregion a different kernel variant is chosen.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 21 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

voi d computel(fl oat alpha, float *b, const int n);
voi d compute2(fl oat beta, float *b, float *d, const int n);
voi d compute3(fl oat beta, float *b, float *d, const int n);

voi d figure3(const int k, const intn, const float alk], fl oat b[n], fl oat c[k], fl oat

d[n])
{

i nt index;
f or (index=0; index<k; index++) {
fl oat a_index = afindex], c_index = c[index];

#pragma acc dat af | ow copyi n(n, a_index,c_index), copyout (d), async(index)
{
#pragnma acc kernels, pcopyi n(a_index), pcopyout (b)

computel(a_index, b, n);

i f ((index ==0) || (index == k-1)) {
#pragnma acc kernels, pcopyi n(c_index,b), pcopyout (d)
compute2(c_index, b, d, n);

el se{
#pragnma acc kernels, pcopyi n(c_index,b), pcopyout (d)
compute3(c_index, b, d, n);

} /1 end of FD region "index"
} // end of |oop

f or (index=0; index<k; index++) {

#pragma acc wait (index)

}
/1 Wait for all DFR
}

Figure 8: Example of a data flow region with the ceation of multiple tasks.
Data Flow Region Characteristics
A data flow region describes a parameterized datadraph with the following characteristics:

» The data dependencies between the tasks followsetipgential semantic of the C language. The
execution of the DFR in parallel or sequentiallgds to the same results (if no I/O status erras ar
in the code);

* The creation of tasks is driven by the statementDFR block; The creation of tasks is
independent of the tasks execution themselves;

» The task allocation on device is either allocatedoeding to the owner compute rule of the
mirrored data (default OpenACC behavior) or acaaydp the device clause. Note that in future
version, this later one may induce mirrors realioces;

» All kernels inside a dataflow region are asynchimo

» The internal data flow graph is limited to direcyelic graphs (DAG).

Devices and Resources

All devices and mirrors are allocated prior entgtiine DFR.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 22 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.2.2 Kernels in dataflow regions and DFCodelets
The proposed extension to OpenACC is based onuthiert concept of OpenHMPP Codelets. They
are pure functions that can be remotely executedgiven address space.

In the context of this work, Codelets have a setestrictions. Codelets arguments are limited to

scalar and mirrored data

» the first version can be limited to mirrored dasaalar data would be supported in a second
version,

» Codelets code generation must not lead to dataaegehor synchronization with the master
program

» For CUDA or OpenCL codes, it is composed of a seqei@f kernel launches,

» It does not contain any implicit transfers,

* Reductions are not supported ;

Codelets falling in this category are denoted DF&etd. From the data flow model point of view, a

DFCodelet can be seen as a data flow threads atitaxe.

The DFCodelets pattern is givenkigure 9. The DFCodelet calls must be declared with anieipl
description of data I/O status to ensure the prdpelaration for the argument mode management:

#pragma acc kernels, pcopyin(A), pcopyout(C)
computel(A, C);

Figure 9: DFCodelet pattern.
DFCodelet Granularity

DFCodelet granularity can encompass a few statertent large set of statements. This later is
targeted with this work since it is expected thafgeneral the synchronization operations may be
expensive. However, when considering the TERAFLUXtam this constraint may be alleviated
thanks to the hardware based thread managemebt/df, D6.1, D6.2, D6,3, D6.4).

DFCodelet Body Statements

There are no restrictions for the statements exttegit code generation must lead to one unique
accelerator kernel. This constraint is necessasngure that no synchronization between the device
and the host is needed to execute a task.

DFCodelet Inner Parallelism

DFCodelets are expected to exhibit parallelisnh@irtcomputation. This parallelism can then be used
to exploit SIMD/SIMT parallelism available in maepmputing cores. This is taken in charge by the
CAPS compiler code generation.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 23 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.2.3 Data Flow Region and Data
A data flow region (DFR) describes a parameteridath flow task graph. This introduces many
limitations to the content of the region. A dat@flregion is executed as a slave of a master pmogra

Data Flow Region

A data flow region is described using a directivenated "acc dataflow". This directive has two
clauses:

* pcopyin or copyin(list of variables): list of variables (or addresses) that are natascvariables and
input to the region.
» pcopyout or copyout(list of variables): list of variables (or addresses) that are not saaldables

and output to the region

Note that these clauses are identical to the ctadsBned in the OpenACC standard. See [11] for a
detailed description of the semantic.

#pragma acc dat af | ow copyi n(n, a_index,c_index), copyout (d), async(index)

{

}/'/.elnd of data fl ow region

Figure 10: DFR directive.
Data Flow Region Statements

The DFR statements aim at creating the task giipese statements can be arbitrarily complex but a
task creation cannot depend on the result of ortheotasks. These statements are executed on the
host system.

Figure 11 shows an example of incorrect statement in a DA creation of the compute2 task
depends on the value produced by the computeltasis not part of the considered model.

#pragma acc dataflow copyin(A, C), copyout(B)

#pragma acc kernels, copyin(A), copyout(C)
computel(A,C) ;

/I 1! Forbidden dependency on C !!!
if (C[i])
#pragma acc kernels, copyin(C), copyout(B)
compute2(C,B) ;
Ylend of data flow region

Figure 11: Incorrect statement of a data flow regia.
Data Flow Region Execution Model
There are two main parts in the execution model:

» Data flow execution inside the regions;

» The region inside the host program.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 24 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Master-Slave Execution

The execution of a DFR region is executed as aevimosynchronous mode with the host program, or
asynchronously when the appropriate OpenACC "agywalt" clauses are used.

Dynamic Data Flow

The execution of the statement inside the DFR esedhe data flow graph according to the
DFCodelets and the data dependencies betweenstkeeaegument. This model is very similar to the
StarSs model.

Data Management
This section describes how data structures arelédumia DFR. There are three cases to consider:

» Data structures that are input to the DFR

» Data structures that are output to the DFR

» Data structures that are temporary structuresrtd aad receive data between tasks

The allocation of data for a DFR follows the usa#ibcation mirroring mechanism of the CAPS
compiler. In short, the DFR tasks compute on midata. This has multiple advantages:

The DFR can be executed in different address sphaesthe host program. Mirrors can also be used
by other compute phases that exploit the datalparabdel of OpenACC. The tasks can themselves
exploit the data parallel code generation of Ope@ACTasks can also be executed on the host. A
rollback mechanism can be implemented (for confatnocades).

Block Data Allocation
The allocation of the data structures have to ¥olllbese rules:

» All data structures are contiguous memory block.
» All data/mirror are allocated prior to enteringegion including DFCodelet arguments,

* Rollback mechanism is performed by restoring regeout data.

Dealing with Multiple Address Spaces

A mirror can only belong to one address space. éarsequence if DFCodelets are exchanging data
from different address spaces, mirrors would neeghigrate from one device to another one. In the
current version, no data exchanges are supporteilDFR can support multiple devices if they share
the same memory address space.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 25 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

DFCodelet Arguments
DFCodelet arguments of two kinds:

» Scalar variables
» Allocated structures are contiguous block of mep®that are managed as mirrored data. In this
case, argument can be sub-block of a main block

Data Related Synchronizations
DFCodelet arguments are seen as tokens:

* No synchronizations based on scalar variables|eex

» Cannot synchronize on mirror that are on diffedatices

Synchronizations are performed at the level ofdhecated mirrored, not at the level of sub-blocks
that may be used by DFCodelets.

Dataflow management: an instance at runtime of ethchad argument is associated to one
synchronization token (very much like in [7]).

3.2.4 Implementation, features and restrictions

This section presents implementation options. Aissastep, the proof of concept is based on currren
CAPS manycore compiler version 3. A data flow tdéibkary may be added to trigger the task
execution. This library makes the interface wite @APS compiler runtime that provides support for
allocation memory and resources.

Implementation restrictions

Multiple Files Limitations - DFCodelets can be declared in multiple files bat data flow
regions is defined in a unique file.

Source Language - This work is limited to the C code.
Target Language - CUDA, OpenCL Accelerator, and CPU.
A task management library

This library implements a data flow manager onabphe CAPS compiler public runtime API. This
library main function is to track data dependend@drigger DFCodelets execution. It can be for
example based on the light weighted thread (QIShnrdia).

Debugging

The CAPS compiler describes clearly the dataflommated at compile time using a text report and a
graphic representation of the dependences usintgthphviz" library for instance. Then, the work is
left to usual debugger that understands HMPP pdligea DDT).

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 26 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Prototype and evaluation

The TF-OpenACC extension specification has lecheoimplementation of an operational prototype
based on the CAPS many-core compiler suite ver3i8riL. This prototype is a fork of the CAPS
compiler and has not been integrated inside thenwmeial version of the compiler currently in

version 3.4.3.

The prototype supports all the features describeithis document excepted the support of multiple
devices (with the keyword extension "device(n)t)h&s been validated on a various set of tests
among the following:

* The simple example provided by the specificatiofigare 2, Appendix Al,

» The task distribution example provided by the dpeation in figure 3, see Appendix A2,

» A scatter/gather example, see Appendix A3,

In all these examples, the data dependences cothptitompile time are provided. The OpenACC

target used is CUDA on an NVidia GPU.

The validation machine has the following specifimat

» Dual Socket Intel(R) Xeon(R) CPU X5560 @ 2.80GHug] of 8 physical cores),
* 24 Go of RAM,

* x86_64 GNU/Linux version 3.11.0-18-generic

* NVidia GPU, GeForce GTS 450

» CUDA SDK version 5.0.23

* GNU C Compiler version 4.4.7

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 27 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.3 OpensStream and Owner Writeable Memory

We recall, for easy of reading, that in the presiperiod INRIA has worked on streaming dataflow
using a directive-based approach. We coined theen@menStream for these dataflow streaming
extensions of OpenMP 3.0:

http://www.di.ens.fr/StreamingOpenMP

OpensStream is an expressive programming modellda dhe composition of tasks communicating
through first-class dataflow streams, as well gsasse compilation. We provide more general
dynamic constructs to support complex data strestuand unbounded fan-in and fan-out
communications. In contrast with our previous wawk, introduce strongly typed, first-class streams
that may be freely combined with recursive compaoitst and dynamic data structures, while
preserving modular (separate) compilation. We adslol variadic stream clauses to construct
arbitrarily complex, dynamic, possibly nested tagkphs, and we provide syntactic support for
broadcast operations and for synchronization withrges.

Additionally, in the fourth period of the projediyrther extended the functional nature of pure
dataflow programs implies that all operations ade-gffect free. The absence of side effect means
that if tokens are allowed to carry vectors, arraysother complex data structures, an operatioa on
data structure results in a new data structure. pheblem of efficiently representing and
manipulating complex data structures in a dataieecution model has remained a fundamental and
practical challenge. Owner Writable Memory (OWMsHzeen proposed in TERAFLUX to manage
complex data structures in dataflow programs. Tdmenand idea origins from our collaborator Prof.
lan Watson from University of Manchester (cf. D7.OWM implements a globally addressable
memory (in software or hardware, depending on fiségantiation). Before a thread could write to a
portion of memory, it has to claim ownership befaned. At any time point only the thread who has
the ownership of the memory could write to it. Wherite ownership is successfully acquired, any
read from another thread is not guaranteed to mesistent data. When write ownership is released, a
consistent view of data must be visible to any otieead. Note the release operation could be
performed explicitly by the thread or implicitly lbye model. The latter is achieved when the OWM is
used by a thread to write its results, which arelenavailable to the consumer thread upon the
completion of the execution of the thread. This mgmcan serve the requirements of the single
assignment semantics required for functional objektowever, the ability for other threads to
subsequently reclaim write ownership adds to fléigjbof usage. Please note that unlike classical
acquire/release”, OWM is not a synchronization dthm. It relies on external synchronization and
dependence enforcement mechanisms (dataflow) teeimgmt race-free in-place communication. It
also defines a global address space.

OWM is integrated into the OpenStream compiler Esguage extension.
The OWM extension of OpenStream takes the formsifrgle “cache” clause in the task pragma:

#pragma omp task cache (ACCESS_MODE: MEM[OFF:SIZE])

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 28 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The cache clause subscribes the task with the OWivegion described BMEM][off:size] and
“ACCESS_MODE" can be read (R),write (W) or readt&/(iRW). The current clause syntax supports
only one dimensional arrays, but it may easily Xtereded to multiple dimension arrays.

int sync __attribute__ ((stream));

DATA #A = tstar_owm_alloc (N * N * sizeof (DATA));
/* task 1. */
#pragma omp task cache (W: A[:N*N]) output (sync)
£

for (i = 0; 1 < N; i++)

A[i][1] = 1;

}
/* task 2. */
#pragma omp task cache (R: A[:N*N]) input (sync)

: §
for (i = 0; i < N; i++)
. = A[i] [i];
}
OWM extension to OpenStream
The simple usage of the pragma is described altsteg_owm_alloc allocates the OWM

memory with sizeN*N*sizeof(DATA) . Task 1 writes to this OWM memory region and task

reads from this OWM region. Note that two taskssyrechronized by stream sync, task 2 will only be
executed when task 1 finishes. Use cases of OWD®penStream are presented in the WP2 and WP7
deliverables.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 29 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4 Summary

This document has described the research carrieoh ane WP3 of the TERAFLUX project during
the fourth year. We have covered progress with r€etlive-based dataflow models (StarSs, CAPS,
OpenStream). CAPS (our commercial partner is WRS) dhown how they have included dataflow
directives to OpenACC. BSC has continued with tlogkwon using speculation as part of dataflow to
increase parallelism available. BSC has reportedatialysis of overhead that TinySTM brings and
offer some light of when it would be profitableuse speculation given those overheads. With Scala,
UNIMAN has provided more evidence of the advantagésbringing together dataflow and
transactional memory by looking a Pregel (a disted framework for Graphs published by Google.
UNIMAN has also reported their progress on allowttgyelopers to express preferences for task
scheduling as well as facilitating the correct @saf the different types of TERAFLUX memory.
With OpenStream, INRIA has reported how Owner VifgaMemory can now be express in the
language and in WP2 and WP7 further information dsn found about the performance
improvements derived. This deliverable has covétedvork being carried out in T3.4.

Overall, the programming models have matured wghicant number of applications being ported
(see WP2 deliverable) and most of the tools ardadbta to be downloaded as open-source tools to
increase dissemination and impact.

The creation of the dataflow task graph is supgontgh different syntax but the core functionality
describing a side effect free computation as a rdkee graph is prevalent. The inputs and outputs
are specifically annotated and permit the generatd the dataflow graph. We can observe a
divergence on how rich a set of dependencies eagjiggnming model provides specific support for.
We can also observe a divergence with respectetetira information that can optimize the runtime
scheduling of the dataflow graph. These divergehes® not to do with whether the dataflow graph
generated is general, but is associated with cogesiell certain patterns of dependencies and the
level of sophistication expected from the compiidsen a pragma is encountered. The work by CAPS
provides an industrial perspective of what featfwestionalities are well understood.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 30 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

References

[1] Antoniu Pop and Albert Cohen. OpenStream: Egpreeness and dataflow compilation of
OpenMP streaming program&CM Transactions on Architecture and Code Optintiza(TACO),
selected for presentation at the HIPEAC 2013 Cdainuary 2013.

[2] Antoniu Pop and Albert Cohen. Control-Driven tBa-low. Research Report RR-8015, INRIA,
July 2012.

[3] Albert Cohen, Léonard Gérard, and Marc PouRedgramming parallelism with futures in Lustre.
In ACM Conf. on Embedded Software (EMSQFTampere, Finland, October 2012. Best paper
award.

[4] HMPP User’s Manual. CAPS enterprise, 2012.

[5] Daniel Goodman and Behram Khan and Salman KmahMikel Lujan and lan Watson. Software
transactional memories for Scala. Journal of Ralratid Distributed Computing, 2012.
http://dx.doi.org/10.1016/j.jpdc.2012.09.015

[6] C. Seaton, D. Goodman, M. Lujan, and |. Watggpplying dataflow and transactions to Lee
routing. In Proceedings of the 7th Workshop on Raggnability Issues for Heterogeneous
Multicores (MULTIPROG), 2012. Best Paper Award.

[7] D. Goodman, S. Khan, C. Seaton, Y. Guskov, Bai M. Lujan, and I. Watson. DFScala: High
level dataflow support for Scala. In Proceedingthef2nd International Workshop on Data-Flow
Models For Extreme Scale Computing (DFM), 2012.

[8] lan Watson, Chris Kirkham and Mikel Lujan. AuSlly of a Transactional Parallel Routing
Algorithm. In Proceedings of the International Geneihce on Parallel Architectures and Compilation
Techniques - PACT, pp 388-398, 2007.

[9] Rahulkumar Gayatri, Rosa M. Badia, Eduard AydgiaMikel Lujan, lan Watson. Transactional
Access to Shared Memory in StarSs, a Task Basagtdnoning Model. EuroPAR 2012: 514-525.

[11] OpenACC Consortium, "The OpenACC Applicatlrogramming Interface Version 2.0," 17
06 2013. [Online]. Availablehttp://www.openacc-standard.org/node/297

[12] CAPS entreprise, HMPP Directives Referencanivd, Version 3.2.0, 2012.

[13] OpenHMPP Consortium Association, "OpenHMPRvNEtandard for Many-Core," 10 06
2011. [Online]. Available: http://www.openhmpp.arfAiccessed 10 12 2011].

[14] NVidia, "NVIDIA, Cray, PGI, CAPS Unveil 'OpexCC' Programming Standard for Parallel
Computing," 11 14 2011. [Online]. Available: htfpressroom.nvidia.com/easyir/customrel.do?
easyirid=A0D622CE9F579F09 &version=live&prid=8212&¢releasejsp=release_157.. [Accessed 01
09 2012].

[15] The OpenCL Specification v1.1 r36, "The Opér&pecification,” 30 9 2010. [Online].
Available: http://www.khronos.org/registry/cl/spémsencl-1.1.pdf.

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 31 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

[16] HPCwire, "CAPS Entreprise Now Supports Opel@AStandard,” 02 05 2012. [Online].
Available: http://www.hpcwire.com/hpcwire/2012-05-
02/caps_entreprise_now_supports_openacc_stanaakd.ht

[17] Marco Solinas, Rosa M Badia, Francois Bodilhekt Cohen, Paraskevas Evripidou, Paolo
Faraboschi, Bernhard Fechner, Guang R Gao, Arneadar Sylvain Girbal, Daniel Goodman,
Behran Khan, Souad Koliai, Feng Li, Mikel Lujan,utant Morin, Avi Mendelson, Nacho Navarro,
Antoniu Pop, Pedro Trancoso, Theo Ungerer, MatderdaSebastian Weis, lan Watson, Stéphane
Zuckermann, Roberto Giorgi. The TERAFLUX Projectpboiting the DataFlow Paradigm in Next
Generation Teradevices. In Proceedings of the Ht8micro Conference on Digital System Design
(DSD), 272-279.

[18] Roberto Giorgi, Rosa M Badia, Francois Bodithert Cohen, Paraskevas Evripidou, Paolo
Faraboschi, Bernhard Fechner, Guang R Gao, Arnlea@ar Rahul Gayatri, Sylvain Girbal, Daniel
Goodman, Behran Khan, Souad Kaolial, Joshua Landwétat Minh L&, Feng Li, Mikel Lujan, Avi
Mendelson, Laurent Morin, Nacho Navarro, TomaszjRat Antoniu Pop, Pedro Trancoso, Theo
Ungerer, lan Watson, Sebastian Weis, Stéphane Aueke Mateo Valero. TERAFLUX: Harnessing
Dataflow in Next Generation Teradevices. Journarbfirocessors and Microsystems, 2014.
http:/www.sciencedirect.com/science/article/pil80933114000490

[19] A. Diavastos, P. Trancoso, M. Lujan and |. ¥éatt, “Integrating Transactions into the Data-
Driven Multi-threading Model using the TFlux Platfia’ in Proc. of the Data-Flow Execution Models
for Extreme Scale Computing (DFM) Workshop, GaleasiTexas, U.S.A., October 2011

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 32 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Appendix A— CAPS Compiler: Reference codes annexes

Appendix Al: Basic synchronization example

e Source code

void computel(const float *a, float *b, const int n);
void compute2(const float *b, float *c, const int n);
void figure2(const int n, const float a[n], float b [n], float c[n])
#?ragma acc dataflow copyin(a), create(b), copyout(c)

#pragma acc kernels, pcopyin(a), pcopyout(b)
computel(a, b, n);

#pragma acc kernels, pcopyin(b), pcopyout(c)
compute2(b, c, n);
} /I end of FD region
}

void computel(const float *a, float *b, const int n)

int i;
[* #pragma omp parallel for */
for (i=0; i<n; ++i)

{
b[i] = a[i] / 3.14f;

}

void compute2(const float *b, float *c, const int n)

inti;
[* #pragma omp parallel for */
for (i=0; i<n; ++i)

{
cfi] = b[i] * b{iJ;
}
}

extern void fill(const int n, const float value, fl oat t[n]);

#define N 300000
static const int n = N;
float a[N];

float b[N];

float c[NJ;

void example(void)

fill(n, 2, a);

fill(n, 1.578, b);
fill(n, 1.04, c);
figure2(n, a, b, c);
return O;

}

e Compilation output

hmpp -k gcc -¢ -Wall -I/home/laorans/travail/DataFI ow/HMPP-
DataFLow/build/hmpp/x86_64/debug//include figure2.c -o figure2.0
Parse acc dataflow copyin(a), create(b), copyout(c)

Create region figure2.c:8

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 33 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

figure2.c:8

Parse acc kernels, pcopyin(a), pcopyout(b)
Add call computel(a, b, n) to region

Parse acc kernels, pcopyin(b), pcopyout(c)
Add call compute2(b, ¢, n) to region

1 regions found

Create CFG for: figure2.c:8

O:a

1:b

2:c

3:n

Found node computel(a, b, n)

Found node compute2(b, c, n)

Dataflow CFG is:

CFG for region figure2.c:8

0:a
1:b
2:.c
3:n
4 nodes:

a b c n
0: <entry>:

write none none none
2: computel:

read write none none
3: compute2:

none read write none
1: <exit>:

none none read none
3 edges:

<entry> --> computel

computel --> compute2

compute2 --> <exit>

Processing figure2.c:8

Build data dependencies for region figure2.c:8

Process node <exit>

Process node compute2

addDEdge (compute2,<exit>,'c’)

Process node computel

addDEdge (computel,compute2,'b’)

Process node <entry>

addDEdge (<entry>,computel,'a’)

g 0 : (<entry>-exe, computel-exe, compute2-exe)

q 1: (<exit>-wait for qO, <exit>-exe)

Found 2 queues

Written figure2_4ryhwv.halt.i

hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa
shared among gangs(192) and workers(256)

(last message repeated 1 more time)

hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__figure2_16__0q7vrdyf_cuda.hmf.c
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa
shared among gangs(192) and workers(256)

(last message repeated 1 more time)

hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__figure2_20__pscahkc2_cuda.hmf.c
hmpp: [Warning HP0391] <preprocessor>:12: Variable
read-only in the enclosed Kernel/Parallel regions
<preprocessor>: In function ‘figure2":
<preprocessor>:36: warning: implicit declaration of
<preprocessor>:12: warning: implicit declaration of
<preprocessor>:12: warning: implicit declaration of
<stdin>:1: warning: implicit declaration of functio
<stdin>:1: warning: implicit declaration of functio
<stdin>:1: warning: implicit declaration of functio

<preprocessor>:24: warning: implicit declaration of
figure2.c: In function ‘example:

figure2.c:50: warning: 'return' with a value, in fu
figure2.c: In function 'hmppsi_lookup':
figure2.c:56: warning: implicit declaration of func
figure2.c:56: warning: return makes pointer from in
figure2.c: At top level:

figure2.c:54: warning: 'hmppsi_lookup' defined but

e e (o3 é o 9

Figure 12, figure2.c, Data Dependencies computed at compile time

ge DPL0099] figure2.c:21: Loop 'i' was

u".
ge DPL0099] figure2.c:31: Loop 'i' was

u.
'n' in Data clause has no effect if

function 'openacci_set_device_hint'
function 'openacci_enter_region'
function 'openacci_push_data'

n 'openacci_call'

n 'openacci_fallback'

n '‘openacci_leave_region'

function 'openacci_wait'
nction returning void

tion 'hmpprti_lookup_grouplet'
teger without a cast

not used

Deliverable number: D3.5

Deliverable nameOverall Computational Model Final Report

File name: TERAFLUX-D35-v4.doc

Page 34 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

hmpp -k gcc -Wall main.o figure2.o -o test.exe

» Execution output

Jtest.exe

[0.207778] (0) INFO : Enter data (queue=no

[0.208117] (0) INFO : Acquire (target=cuda)

[0.208357] (0) INFO : Acquired (device='cuda#
[0.208496] (0) INFO : Allocate a[0:300000] (e
gueue=none, location=<preprocessor>:12)

[0.233900] (0) INFO : Upload a[0:300000] (e
location=<preprocessor>:12)

[0.234515] (0) INFO : Allocate b[0:300000] (e
gueue=none, location=<preprocessor>:12)

[0.234719] (0) INFO : Allocate c[0:300000] (e
queue=none, location=<preprocessor>:12)

[0.234919] (0) INFO : Allocate n[0:1] (elemen
gueue=none, location=<preprocessor>:12)

[0.235240] (0) INFO : Enter kernels (queue

[0.236452] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=0, location=<preprocessor>
[0.236572] (0) INFO : Upload _ hmpp_vla_siz
location=<preprocessor>:16)

[0.236673] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=0, location=<preprocessor>
[0.236759] (0) INFO : Upload __hmpp_vla_siz
location=<preprocessor>:16)

[0.236853] (0) INFO: Call _ hmpp_acc_reg
location=<preprocessor>:16)

[0.237048] (0) INFO : Free __hmpp_vla_siz
location=<preprocessor>:16)

[0.237192] (0) INFO : Free _ _hmpp_vla_siz
location=<preprocessor>:16)

[0.237281] (0) INFO : Leave kernels (queue

[0.237378] (0) INFO : Enter kernels (queue

[0.237785] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=0, location=<preprocessor>
[0.237876] (0) INFO : Upload __ hmpp_vla_siz
location=<preprocessor>:20)

[0.237950] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=0, location=<preprocessor>
[0.238033] (0) INFO : Upload __ hmpp_vla_siz
location=<preprocessor>:20)

[0.238124] (0) INFO: Call _ hmpp_acc_reg
location=<preprocessor>:20)

[0.238255] (0) INFO : Free _ hmpp_vla_siz
location=<preprocessor>:20)

[0.238346] (0) INFO: Free _ hmpp_vla_siz
location=<preprocessor>:20)

[0.238434] (0) INFO : Leave kernels (queue

[0.238506] (0) INFO : Wait (queue=none, a

[0.238776] (0) INFO : Free n[0:1] (elemen
location=<preprocessor>:12)

[0.239049] (0) INFO : Download c[0:300000] (e
location=<preprocessor>:12)

[0.239751] (0) INFO : Free ¢[0:300000] (e
location=<preprocessor>:12)

[0.239916] (0) INFO : Free b[0:300000] (e
location=<preprocessor>:12)

[0.240081] (0) INFO : Free a[0:300000] (e
location=<preprocessor>:12)

[0.240243] (0) INFO : Leave data (queue=no
start

done

ne, location=<preprocessor>:12)

0 [GeForce GTS 450])
lement_size=4, memory_space=cudaglob,

lement_size=4, queue=none,
lement_size=4, memory_space=cudaglob,
lement_size=4, memory_space=cudaglob,
t_size=4, memory_space=cudaglob,
=0, location=<preprocessor>:16)
es__a[0:1] (element_size=8,

:16)

es__a[0:1] (element_size=8, queue=0,
es_ b[0:1] (element_size=8,

:16)

es__b[0:1] (element_size=8, queue=0,
ion__figure2_16__0q7vrdyf (queue=0,
es__b[0:1] (element_size=8, queue=0,
es__a[0:1] (element_size=8, queue=0,
=0, location=<preprocessor>:16)

=0, location=<preprocessor>:20)
es__b[0:1] (element_size=8,

:20)

es__b[0:1] (element_size=8, queue=0,
es__ c[0:1] (element_size=8,

:20)

es__c[0:1] (element_size=8, queue=0,
ion__figure2_20__pscahkc2 (queue=0,
es__c[0:1] (element_size=8, queue=0,
es__b[0:1] (element_size=8, queue=0,
=0, location=<preprocessor>:20)
waited=0, location=<preprocessor>:24)
t_size=4, queue=none,

lement_size=4, queue=none,
lement_size=4, queue=none,
lement_size=4, queue=none,

lement_size=4, queue=none,

ne, location=<preprocessor>:12)

Deliverable number: D3.5

Deliverable nameOverall Computational Model Final Report

File name: TERAFLUX-D35-v4.doc

Page 35 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Appendix A2: Control flow synchronization example

* Source Code

void computel(float alpha, float *b, const int n);

void compute2(float beta, float *b, float *d, const int n);
void compute3(float beta, float *b, float *d, const int n);
void figure3(const int k, const int n, const float alk], float b[n], float c[K], float
d[n))
{
int index;

for (index=0; index<k; index++) {
float a_index = afindex], c_index = c[index];
#pragma acc dataflow copyin(n, a_index,c_index), co pyout(d), async(index)

#pragma acc kernels, pcopyin(a_index), pcopyout(b)
computel(a_index, b, n);

if ((index == 0) || (index == k-1)) {
#pragma acc kernels, pcopyin(c_index,b), pcopyout(d)
compute2(c_index, b, d, n);
else {
#pragma acc kernels, pcopyin(c_index,b), pcopyout(d)
compute3(c_index, b, d, n);

}
} /I end of FD region
} /I 'end of loop

for (index=0; index<k; index++) {
#pragma acc wait(index)

}
void computel(const float alpha, float *b, const in tn)
int i;
[* #pragma omp parallel for */
for (i=0; i<n; ++i)
{
b[i] = alpha * alpha * i;
}
void compute2(float beta, float *b, float *d, const int n)
inti;
[* #pragma omp parallel for */
for (i=0; i<n; ++i)
{
d[i] = b[i] / beta;
}
}
void compute3(float beta, float *b, float *d, const int n)
int i;
[* #pragma omp parallel for */
for (i=0; i<n; ++i)

d[i] = b[i] + beta;

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 36 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

extern void fill(const int n, const float value, fl oat t[n]);
#define K 16
#define N 300000
static const int k = K;
static const int n = N;
float a[K];
float b[N];
float c[K];
float d[n];
void example(void)
fill(k, 2, a);
fill(n, 1.578, b);
fill(k, 1.04, c);
fill(n, 1.699, d);
figure3(k, n, a, b, c, d);
return;
}
e Compilation output
hmpp -k gcc -c -Wall -I/home/laorans/travail/DataFI ow/HMPP-
DataFLow/build/hmpp/x86_64/debug//include main.c -0 main.o
0 regions found
Written main_7Gt6tX.halt.i
main.c: In function 'main':
main.c:16: warning: implicit declaration of functio n 'printf'
main.c:16: warning: incompatible implicit declarati on of built-in function 'printf'
hmpp -k gcc -c -Wall -I/lhome/laorans/travail/DataFI ow/HMPP-
DataFLow/build/hmpp/x86_64/debug//include figure3.c -o figure3.o

Parse acc dataflow copyin(n, a_index,c_index), copy
Create region figure3.c:11

Parse acc kernels, pcopyin(a_index), pcopyout(b)
Add call computel(a_index, b, n) to region

Parse acc kernels, pcopyin(c_index,b), pcopyout(d)
Add call compute2(c_index, b, d, n) to region
Parse acc kernels, pcopyin(c_index,b), pcopyout(d)
Add call compute3(c_index, b, d, n) to region
Parse acc wait(index)

1 regions found

Create CFG for: figure3.c:11

0: a_index

1:b

2: c_index

3:d

4:n

Found node computel(a_index, b, n)
Found node compute2(c_index, b, d, n)
Found node compute3(c_index, b, d, n)
Node trueBlock-0 has 1||0 pred

Link computel to compute2

Node falseBlock-0 has 1||0 pred

Link computel to compute3

Node after-0 has 1||0 succ

Link compute2 to <exit>

Link compute3 to <exit>

Dataflow CFG is:

CFG for region figure3.c:11

0: a_index

out(d), async(index)

figure3.c:11

Figure 13: figure3.c, Data Dependencies computed at compile time

Deliverable number: D3.5

Deliverable nameOverall Computational Model Final Report

File name: TERAFLUX-D35-v4.doc

Page 37 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

5 nodes:

a_index b c_index d n
0: <entry>:

write none write none write
2: computel:

read write none none none
3: compute2:

none read read write none
4: compute3:

none read read write none
1: <exit>:

none none none read none
5 edges:

<entry> --> computel

computel --> compute2

computel --> compute3

compute2 --> <exit>

compute3 --> <exit>

Processing figure3.c:11

Build data dependencies for region figure3.c:11
Process node <exit>

Process node compute3

addDEdge (compute3,<exit>,'d")

Process node compute2

addDEdge (compute2,<exit>,'d")

Process node computel

addDEdge (computel,compute3,'b’)

addDEdge (computel,compute2,'b’)

Process node <entry>

addDEdge (<entry>,computel,'a_index')

addDEdge (<entry>,compute3,'c_index')

addDEdge (<entry>,compute2,'c_index’)

g 0 : (<entry>-exe)

g 1: (computel-exe)

q2:(

q 3 : (compute3-wait for g1, compute3-exe)

g 4 : (<exit>-wait for g3, <exit>-wait for g6, <exi

a5:(0

q 6 : (compute2-wait for g1, compute2-exe)

Found 7 queues

Written figure3_vzaHXt.halt.i

hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa
shared among gangs(192) and workers(256)

(last message repeated 1 more time)

hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__figure3_19 3I2rxy37_cuda.hmf.c
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa
shared among gangs(192) and workers(256)

(last message repeated 1 more time)

hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__figure3_26__v3352zdi_cuda.hmf.c
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa
shared among gangs(192) and workers(256)

(last message repeated 1 more time)

hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__figure3_33__n5wy5sgy_cuda.hmf.c
hmpp: [Warning HP0391] <preprocessor>:15: Variable
if read-only in the enclosed Kernel/Parallel region
hmpp: [Warning HP0391] <preprocessor>:15: Variable
if read-only in the enclosed Kernel/Parallel region
hmpp: [Warning HP0391] <preprocessor>:15: Variable
read-only in the enclosed Kernel/Parallel regions
<preprocessor>: In function ‘figure3'":
<preprocessor>:45: warning: implicit declaration of
<preprocessor>:15: warning: implicit declaration of
<preprocessor>:15: warning: implicit declaration of
<stdin>:1: warning: implicit declaration of functio
<stdin>:1: warning: implicit declaration of functio
<stdin>:1: warning: implicit declaration of functio
<preprocessor>:25: warning: implicit declaration of
figure3.c: In function 'hmppsi_lookup':

figure3.c:85: warning: implicit declaration of func
figure3.c:85: warning: return makes pointer from in

t>-exe)

ge DPL0099] figure3.c:37: Loop 'i' was

u".
ge DPLO0099] figure3.c:47: Loop 'i' was

u".
ge DPL0099] figure3.c:57: Loop 'i' was

u".

'a_index' in Data clause has no effect
S

'c_index' in Data clause has no effect
s

'n' in Data clause has no effect if

function 'openacci_set_device_hint'
function 'openacci_enter_region'
function 'openacci_push_data'

n 'openacci_call'

n ‘openacci_fallback’

n '‘openacci_leave_region'

function 'openacci_wait'

tion 'hmpprti_lookup_grouplet'
teger without a cast

Deliverable number: D3.5

Deliverable nameOverall Computational Model Final Report

File name: TERAFLUX-D35-v4.doc

Page 38 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

figure3.c: At top level:
figure3.c:83: warning: 'hmppsi_lookup' defined but
hmpp -k gcc -Wall main.o figure3.o -o test.exe

not used

» Execution output

test.exe

[0.201299] (0) INFO : Enter data (Qqueue=no

[0.201616] (0) INFO : Acquire (target=cuda)

[0.201844] (0) INFO : Acquired (device='cuda#
[0.201979] (0) INFO : Allocate a_index[0:1] (
queue=none, location=<preprocessor>:15)

[0.227291] (0) INFO : Upload a_index[0:1] (
location=<preprocessor>:15)

[0.227532] (0) INFO : Allocate b[0:300000] (e
queue=none, location=<preprocessor>:15)

[0.227738] (0) INFO : Allocate c_index[0:1] (
gueue=none, location=<preprocessor>:15)

[0.227843] (0) INFO : Upload c_index[0:1] (
location=<preprocessor>:15)

[0.227936] (0) INFO : Allocate d[0:300000] (e
gueue=none, location=<preprocessor>:15)

[0.228125] (0) INFO : Allocate n[0:1] (elemen
queue=none, location=<preprocessor>:15)

[0.228227] (0) INFO : Upload n[0:1] (elemen
location=<preprocessor>:15)

[0.228433] (0) INFO : Enter kernels (queue

[0.229598] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=1, location=<preprocessor>
[0.229723] (0) INFO : Upload __ _hmpp_vla_siz
location=<preprocessor>:19)

[0.229838] (0) INFO: Call _ hmpp_acc_reg
location=<preprocessor>:19)

[0.230031] (0) INFO : Free __ hmpp_vla_siz
location=<preprocessor>:19)

[0.230194] (0) INFO : Leave kernels (queue

[0.230308] (0) INFO : Wait (queue=6, awai

[0.230391] (0) INFO : Enter kernels (Queue

[0.230816] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=6, location=<preprocessor>
[0.230911] (0) INFO : Upload __ hmpp_vla_siz
location=<preprocessor>:26)

[0.230985] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=6, location=<preprocessor>
[0.231066] (0) INFO : Upload __ hmpp_vla_siz
location=<preprocessor>:26)

[0.231142] (0) INFO: Call _ hmpp_acc_reg
location=<preprocessor>:26)

[0.231254] (0) INFO : Free _ _hmpp_vla_siz
location=<preprocessor>:26)

[0.231344] (0) INFO : Free __ _hmpp_vla_siz
location=<preprocessor>:26)

[0.231424] (0) INFO : Leave kernels (queue

[0.231491] (0) INFO : Wait (queue=none, a

[0.231562] (0) INFO : Wait (queue=none, a

[0.231629] (0) INFO : Free n[0:1] (elemen
location=<preprocessor>:15)

[0.231729] (0) INFO : Download d[0:300000] (e
location=<preprocessor>:15)

[0.232365] (0) INFO : Free d[0:300000] (e
location=<preprocessor>:15)

[0.232558] (0) INFO : Free c_index[0:1] (
location=<preprocessor>:15)

[0.232658] (0) INFO : Free b[0:300000] (e
location=<preprocessor>:15)

[0.232807] (0) INFO : Free a_index[0:1] (
location=<preprocessor>:15)

[0.232962] (0) INFO : Leave data (queue=no

()

ne, location=<preprocessor>:15)

0 [GeForce GTS 450]")
element_size=4, memory_space=cudaglob,

element_size=4, queue=none,
lement_size=4, memory_space=cudaglob,
element_size=4, memory_space=cudaglob,
element_size=4, queue=none,
lement_size=4, memory_space=cudaglob,
t_size=4, memory_space=cudaglob,
t_size=4, queue=none,

=1, location=<preprocessor>:19)
es__b[0:1] (element_size=8,

:19)

es__b[0:1] (element_size=8, queue=1,
ion__figure3_19 3I2rxy37 (queue=1,
es__ b[0:1] (element_size=8, queue=1,
=1, location=<preprocessor>:19)
ted=1, location=<preprocessor>:25)
=6, location=<preprocessor>:26)
es__b[0:1] (element_size=8,

:26)

es__b[0:1] (element_size=8, queue=6,
es__d[0:1] (element_size=8,

:26)

es__d[0:1] (element_size=8, queue=6,
ion__figure3_26__ v3352zdi (queue=6,
es__d[0:1] (element_size=8, queue=6,
es__ b[0:1] (element_size=8, queue=6,
=6, location=<preprocessor>:26)
waited=3, location=<preprocessor>:38)
waited=6, location=<preprocessor>:39)
t_size=4, queue=none,

lement_size=4, queue=none,
lement_size=4, queue=none,
element_size=4, queue=none,
lement_size=4, queue=none,

element_size=4, queue=none,

ne, location=<preprocessor>:15)

Deliverable number: D3.5

Deliverable nameOverall Computational Model Final Report

File name: TERAFLUX-D35-v4.doc

Page 39 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

[0.295439] (0) INFO : Enter data (Qqueue=no
[0.295502] (0) INFO : Allocate a_index[0:1] (
queue=none, location=<preprocessor>:15)

[0.295715] (0) INFO : Upload a_index[0:1] (
location=<preprocessor>:15)

[0.295814] (0) INFO : Allocate b[0:300000] (e
queue=none, location=<preprocessor>:15)

[0.295999] (0) INFO : Allocate c_index[0:1] (
gueue=none, location=<preprocessor>:15)

[0.296101] (0) INFO : Upload c_index[0:1] (
location=<preprocessor>:15)

[0.296192] (0) INFO : Allocate d[0:300000] (e
gueue=none, location=<preprocessor>:15)

[0.296376] (0) INFO : Allocate n[0:1] (elemen
queue=none, location=<preprocessor>:15)

[0.296479] (0) INFO : Upload n[0:1] (elemen
location=<preprocessor>:15)

[0.296573] (0) INFO : Enter kernels (queue

[0.296647] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=1, location=<preprocessor>
[0.296729] (0) INFO : Upload _ hmpp_vla_siz
location=<preprocessor>:19)

[0.296803] (0) INFO: Call _ hmpp_acc_reg
location=<preprocessor>:19)

[0.296872] (0) INFO : Free _ hmpp_vla_siz
location=<preprocessor>:19)

[0.296955] (0) INFO : Leave kernels (queue
[0.297020] (0) INFO : Wait (queue=6, awai

[0.297092] (0) INFO : Enter kernels (queue

[0.297163] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=6, location=<preprocessor>
[0.297245] (0) INFO : Upload __ hmpp_vla_siz
location=<preprocessor>:26)

[0.297317] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=6, location=<preprocessor>
[0.297395] (0) INFO : Upload __ _hmpp_vla_siz
location=<preprocessor>:26)

[0.297468] (0) INFO: Call _ hmpp_acc_reg
location=<preprocessor>:26)

[0.297535] (0) INFO : Free __hmpp_vla_siz
location=<preprocessor>:26)

[0.297616] (0) INFO : Free _ hmpp_vla_siz
location=<preprocessor>:26)

[0.297695] (0) INFO : Leave kernels (queue
[0.297758] (0) INFO : Wait (queue=none, a
[0.297827] (0) INFO : Wait (queue=none, a
[0.297892] (0) INFO : Free n[0:1] (elemen
location=<preprocessor>:15)

[0.297984] (0) INFO : Download d[0:300000] (e
location=<preprocessor>:15)

[0.298548] (0) INFO : Free d[0:300000] (e
location=<preprocessor>:15)

[0.298704] (0) INFO : Free c_index[0:1] (
location=<preprocessor>:15)

[0.298803] (0) INFO : Free b[0:300000] (e
location=<preprocessor>:15)

[0.298950] (0) INFO : Free a_index[0:1] (
location=<preprocessor>:15)

0.299103] (0) INFO : Leave data (Qqueue=no
0.299177] (0) INFO : Wait (queue=none, a
0.299246] (0) INFO : Wait (queue=none, a
0.299309] (0) INFO : Wait (queue=none, a
0.299370] (0) INFO : Wait (queue=none, a
0.299432] (0) INFO : Wait (queue=none, a
0.299495] (0) INFO : Wait (queue=none, a
0.299555] (0) INFO : Wait (queue=none, a
0.299618] (0) INFO : Wait (queue=none, a
0.299681] (0) INFO : Wait (queue=none, a
0.299743] (0) INFO : Wait (queue=none, a
0.299805] (0) INFO : Wait (queue=none, a
0.299867] (0) INFO : Wait (queue=none, a
0.299929] (0) INFO : Wait (queue=none, a
0.299992] (0) INFO : Wait (queue=none, a

— — — — — e e) — — — —

ne, location=<preprocessor>:15)
element_size=4, memory_space=cudaglob,

element_size=4, queue=none,
lement_size=4, memory_space=cudaglob,
element_size=4, memory_space=cudaglob,
element_size=4, queue=none,
lement_size=4, memory_space=cudaglob,
t_size=4, memory_space=cudaglob,
t_size=4, queue=none,

=1, location=<preprocessor>:19)

es__ b[0:1] (element_size=8,

:19)

es__b[0:1] (element_size=8, queue=1,

ion__figure3_19__ 3I2rxy37 (queue=1,
es__b[0:1] (element_size=8, queue=1,

=1, location=<preprocessor>:19)
ted=1, location=<preprocessor>:25)
=6, location=<preprocessor>:26)
es__b[0:1] (element_size=8,

:26)

es__b[0:1] (element_size=8, queue=6,

es__d[0:1] (element_size=8,
:26)
es__d[0:1] (element_size=8, queue=6,

ion__figure3_26__ v3352zdi (queue=6,
es__d[0:1] (element_size=8, queue=6,
es__b[0:1] (element_size=8, queue=6,

=6, location=<preprocessor>:26)
waited=3, location=<preprocessor>:38)
waited=6, location=<preprocessor>:39)
t_size=4, queue=none,

lement_size=4, queue=none,
lement_size=4, queue=none,
element_size=4, queue=none,
lement_size=4, queue=none,
element_size=4, queue=none,

ne, location=<preprocessor>:15)
waited=0, location=figure3.c:27)
waited=1, location=figure3.c:27)
waited=2, location=figure3.c:27)
waited=3, location=figure3.c:27)
waited=4, location=figure3.c:27)
waited=5, location=figure3.c:27)
waited=6, location=figure3.c:27)
waited=7, location=figure3.c:27)
waited=8, location=figure3.c:27)
waited=9, location=figure3.c:27)
waited=10, location=figure3.c:27)
waited=11, location=figure3.c:27)
waited=12, location=figure3.c:27)
waited=13, location=figure3.c:27)

Deliverable number: D3.5

Deliverable nameOverall Computational Model Final Report

File name: TERAFLUX-D35-v4.doc

Page 40 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

[0.300054] (0) INFO : Wait (queue=none, a waited=14, location=figure3.c:27)
[0.300116] (0) INFO : Wait (queue=none, a waited=15, location=figure3.c:27)
start
done

Appendix A3: Basic synchronization example

e Source code

I*#*

1> # - k1 -- -- k1b -- */

1> # / \ / \ %/

[* # scatter --< >-- gather --< >-- gatherb */
I*# \ / \ I

1> # - k2 -- -- k2b -- */

I*#*

void scatter(const float *a, float *b, int n);
void k1 (float *b, float *c, int n);

void k2(float *b, float *d, int n);

void gather(float *c, float *d, float *e, int n);
void k1b(float *e, float *f, int n);

void k2b(float *e, float *g, int n);

void gatherb(float *f, float *g, float *h, int n);

void scatter_gather(const int n, const float a[n],

float b[n], float c[n], float d [n],
float e[n], float f[n], float g [n], float h[n])
{
#pragma acc dataflow copyin(a), copyout(h)
{

#pragma acc kernels, pcopyin(a), pcopyout(b)
scatter(a, b, n);

#pragma acc kernels, pcopyin(b), pcopyout(c)
k1(b, c, n);

#pragma acc kernels, pcopyin(b), pcopyout(d)
k2(b, d, n);

#pragma acc kernels, pcopyin(c,d), pcopyout(e)
gather(c, d, e, n);

#pragma acc kernels, pcopyin(e), pcopyout(f)
k1b(e, f, n);

#pragma acc kernels, pcopyin(e), pcopyout(g)
k2b(e, g, n);

#pragma acc kernels, pcopyin(f,g), pcopyout(h)
gatherb(f, g, h, n);
}

}

void scatter(const float *a, float *b, int n)

t
int i;
for (i=0; i<n; ++i)

b[i] = afi] * 5/ (1%2);

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 41 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

void k1(float *b, float *c, int n)
{

inti;
for (i=0; i<n; ++i)

{
cfi] = bi] * 5 / (i%3);

}
void k2(float *b, float *d, int n)
{

int i;
for (i=0; i<n; ++i)
di]=b[i]-i+n/3;
}
void gather(float *c, float *d, float *e, int n)
inti;
for (i=0; i<n; ++i)
{
elil=cfi]+d[i]-n/3;
}
void k1b(float *e, float *f, int n)
t
inti;
for (i=0; i<n; ++i)
fli] = e[i] * 5/ (i%3);
}
void k2b(float *e, float *g, int n)
t
inti;
for (i=0; i<n; ++i)
glil=eli]-i+n/3;
}
void gatherb(float *f, float *g, float *h, int n)

inti;
for (i=0; i<n; ++i)

{
hii] = f{i] - gfil + n / 3;
}
}

extern void fill(const int n, const float value, fl oat t[n]);
#define N 300000

static const int n = N;

float a[N],b[N],c[N],d[N];

float e[N],f[N],9[N],h[N];

void example(void)

fill(n, 2, a);
fill(n, O, b);
fill(n, O, c);
fill(n, 0, d);
fill(n, O, e);
fill(n, O, f);
fill(n, O, g);
fill(n, 0, h);
scatter_gather(n, a, b, c, d, e, f, g, h);
return;
}

e Compilation output

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 42 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

hmpp -k gcc -c -Wall -I/home/laorans/travail/DataFI ow/HMPP-
DataFLow/build/hmpp/x86_64/debug//include main.c -0 main.o

0 regions found

Written main_cN2GUe.halt.i

main.c: In function 'main’:

main.c:16: warning: implicit declaration of functio n 'printf'

main.c:16: warning: incompatible implicit declarati on of built-in function 'printf'
hmpp -k gcc -c -Wall -I/lhome/laorans/travail/DataF| ow/HMPP-
DataFLow/build/hmpp/x86_64/debug//include scatter_g ather3.c -o scatter_gather3.o

Parse acc dataflow copyin(a), copyout(h)
Create region scatter_gather3.c:22

Parse acc kernels, pcopyin(a), pcopyout(b)
Add call scatter(a, b, n) to region

Parse acc kernels, pcopyin(b), pcopyout(c)
Add call k1(b, c, n) to region

Parse acc kernels, pcopyin(b), pcopyout(d)
Add call k2(b, d, n) to region

Parse acc kernels, pcopyin(c,d), pcopyout(e)
Add call gather(c, d, e, n) to region

Parse acc kernels, pcopyin(e), pcopyout(f)
Add call k1b(e, f, n) to region

Parse acc kernels, pcopyin(e), pcopyout(g)
Add call k2b(e, g, n) to region

Parse acc kernels, pcopyin(f,g), pcopyout(h)
Add call gatherb(f, g, h, n) to region

1 regions found

Create CFG for: scatter_gather3.c:22

scatter_gather3.c:22

ONORWONEO
S "o oo0oTw

n
Found node scatter(a, b, n)

Found node k1(b, c, n)

Found node k2(b, d, n)

Found node gather(c, d, e, n)
Found node kilb(e, f, n)

Found node k2b(e, g, n)

Found node gatherb(f, g, h, n)
Dataflow CFG is:

CFG for region scatter_gather3.c:22
0:

Figure 14: scatter_gather3.C, DATA DEPENDENCIES COMPUTED AT COMPILE TIME

BFPASRNE
SSQ@ "0 o0 T

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 43 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

9 nodes:

a b © d e f g h n
0: <entry>:

write none none none none non e none none none
2: scatter:

read write none none none non e none none none
3: k1:

none read write none none non e none none none
4: k2:

none read none write none non e none none none
5: gather:

none none read read write non e none none none
6: k1b:

none none none none read wri te none none none
7: k2b:

none none none none read non e write none none
8: gatherb:

none none none none none rea d read write none
1: <exit>:

none none none none none non e none read none
8 edges:

<entry> --> scatter
scatter --> k1

k1 --> k2

k2 --> gather
gather --> k1b

klb --> k2b

k2b --> gatherb
gatherb --> <exit>

Processing scatter_gather3.c:22
Build data dependencies for region scatter_gather3. c:22
Process node <exit>

Process node gatherb
addDEdge (gatherb,<exit>,'h")
Process node k2b

addDEdge (k2b,gatherb,'g")
Process node k1b

addDEdge (k1b,gatherb,'f")
Process node gather
addDEdge (gather,k2b,'e")
addDEdge (gather,k1b,'e")
Process node k2

addDEdge (k2,gather,'d")
Process node k1

addDEdge (k1,gather,'c")
Process node scatter
addDEdge (scatter,k2,'b")
addDEdge (scatter,k1,'b")
Process node <entry>
addDEdge (<entry>,scatter,'a’)
q 0 : (<entry>-exe, scatter-exe)
q 1: (k2-wait for qO, k2-exe)

g 2 : (gather-wait for q1, gather-wait for q7, gath er-exe)
g 3 : (k2b-wait for g2, k2b-exe)
q 4 : (gatherb-wait for q3, gatherb-wait for q6, ga therb-exe)

q 5 : (<exit>-wait for q4, <exit>-exe)

g 6 : (k1b-wait for g2, k1b-exe)

q 7 : (k1-wait for 0, k1-exe)

Found 8 queues

Written scatter_gather3_QCu3VO.halt.i

hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:49: Loop
i was shared among gangs(192) and workers(256)

(last message repeated 1 more time)

hmpp: [Info] Generated codelet filename is

"__hmpp_acc_region__scatter_gather_22__rxkufdsq_cud a.hmf.cu”.

hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:58: Loop
'i' was shared among gangs(192) and workers(256)

(last message repeated 1 more time)

hmpp: [Info] Generated codelet filename is

"__hmpp_acc_region__scatter_gather_27__we7v929a_cud a.hmf.cu”.

hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:67: Loop
'i' was shared among gangs(192) and workers(256)

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 44 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

(last message repeated 1 more time)

hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__scatter_gather_32__m7t6hyli_cud

hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa
i was shared among gangs(192) and workers(256)

(last message repeated 1 more time)

hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__scatter_gather_38__sqzf3jti_cud

hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa
'i' was shared among gangs(192) and workers(256)

(last message repeated 1 more time)

hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__scatter_gather_43__ib5eb500_cud

hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa
'i' was shared among gangs(192) and workers(256)

(last message repeated 1 more time)

hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__scatter_gather_48_ _nfnpel8g_cud

hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa
i was shared among gangs(192) and workers(256)

(last message repeated 1 more time)

hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__scatter_gather_54__ejhilko8_cud

hmpp: [Warning HP0391] <preprocessor>:18: Variable
read-only in the enclosed Kernel/Parallel regions

<preprocessor>: In function 'scatter_gather":

<preprocessor>:92: warning: implicit declaration of

<preprocessor>:18: warning: implicit declaration of

<preprocessor>:18: warning: implicit declaration of

<stdin>:1: warning: implicit declaration of functio

<stdin>:1: warning: implicit declaration of functio

<stdin>:1: warning: implicit declaration of functio

<preprocessor>:26: warning: implicit declaration of

scatter_gather3.c: In function 'hmppsi_lookup':

scatter_gather3.c:131: warning: implicit declaratio

scatter_gather3.c:131: warning: return makes pointe

scatter_gather3.c: At top level:

scatter_gather3.c:129: warning: 'hmppsi_lookup' def

hmpp -k gcc -Wall main.o scatter_gather3.o -o test.

a.hmf.cu".
ge DPL0099] scatter_gather3.c:76: Loop

a.hmf.cu”.
ge DPL0099] scatter_gather3.c:85: Loop

a.hmf.cu”.
ge DPL0099] scatter_gather3.c:94: Loop

a.hmf.cu”.
ge DPL0099] scatter_gather3.c:103: Loop

a.hmf.cu".
'n' in Data clause has no effect if

function 'openacci_set_device_hint'
function 'openacci_enter_region'
function 'openacci_push_data'

n 'openacci_call'

n ‘openacci_fallback’

n '‘openacci_leave_region'

function 'openacci_wait'

n of function 'hmpprti_lookup_grouplet'
r from integer without a cast

ined but not used
exe

Deliverable number: D3.5

Deliverable nameOverall Computational Model Final Report

File name: TERAFLUX-D35-v4.doc

Page 45 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Execution output

test.exe

[0.209093] (0) INFO : Enter data (Qqueue=no

[0.209416] (0) INFO : Acquire (target=cuda)

[0.209650] (0) INFO : Acquired (device='cuda#
[0.209789] (0) INFO : Allocate a[0:300000] (e
queue=none, location=<preprocessor>:18)

[0.235402] (0) INFO : Upload a[0:300000] (e
location=<preprocessor>:18)

[0.236023] (0) INFO : Allocate b[0:300000] (e
queue=none, location=<preprocessor>:18)

[0.236230] (0) INFO : Allocate c[0:300000] (e
gueue=none, location=<preprocessor>:18)

[0.236420] (0) INFO : Allocate d[0:300000] (e
queue=none, location=<preprocessor>:18)

[0.236607] (0) INFO : Allocate e[0:300000] (e
gueue=none, location=<preprocessor>:18)

[0.236793] (0) INFO : Allocate f[0:300000] (e
gueue=none, location=<preprocessor>:18)

[0.236976] (0) INFO : Allocate g[0:300000] (e
queue=none, location=<preprocessor>:18)

[0.237161] (0) INFO : Allocate h[0:300000] (e
gueue=none, location=<preprocessor>:18)

[0.237346] (0) INFO : Allocate n[0:1] (elemen
queue=none, location=<preprocessor>:18)

[0.237643] (0) INFO : Enter kernels (queue

[0.238837] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=0, location=<preprocessor>
[0.238960] (0) INFO : Upload __hmpp_vla_siz
location=<preprocessor>:22)

[0.239055] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=0, location=<preprocessor>
[0.239135] (0) INFO : Upload __hmpp_vla_siz
location=<preprocessor>:22)

[0.239224] (0) INFO: Call _ hmpp_acc_reg
(queue=0, location=<preprocessor>:22)

[0.239413] (0) INFO : Free __ hmpp_vla_siz
location=<preprocessor>:22)

[0.239546] (0) INFO : Free _ _hmpp_vla_siz
location=<preprocessor>:22)

[0.239629] (0) INFO : Leave kernels (queue

[0.239729] (0) INFO : Wait (queue=7, awai

[0.239807] (0) INFO : Enter kernels (queue

[0.240207] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=7, location=<preprocessor>
[0.240298] (0) INFO : Upload __ hmpp_vla_siz
location=<preprocessor>:27)

[0.240370] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=7, location=<preprocessor>
[0.240450] (0) INFO : Upload __hmpp_vla_siz
location=<preprocessor>:27)

[0.240522] (0) INFO: Call _ hmpp_acc_reg
(queue=7, location=<preprocessor>:27)

[0.240655] (0) INFO : Free __hmpp_vla_siz
location=<preprocessor>:27)

[0.240740] (0) INFO : Free _ hmpp_vla_siz
location=<preprocessor>:27)

[0.240818] (0) INFO : Leave kernels (queue

[0.240883] (0) INFO : Wait (queue=1, awai

[0.240955] (0) INFO : Enter kernels (queue

[0.241323] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=1, location=<preprocessor>
[0.241410] (0) INFO : Upload _ hmpp_vla_siz
location=<preprocessor>:32)

[0.241481] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=1, location=<preprocessor>
[0.241559] (0) INFO : Upload __ _hmpp_vla_siz
location=<preprocessor>:32)

[0.241634] (0) INFO: Call _ hmpp_acc_reg
(queue=1, location=<preprocessor>:32)

[0.241728] (0) INFO : Free _ hmpp_vla_siz

ne, location=<preprocessor>:18)

0 [GeForce GTS 450]")
lement_size=4, memory_space=cudaglob,

lement_size=4, queue=none,
lement_size=4, memory_space=cudaglob,
lement_size=4, memory_space=cudaglob,
lement_size=4, memory_space=cudaglob,
lement_size=4, memory_space=cudaglob,
lement_size=4, memory_space=cudaglob,
lement_size=4, memory_space=cudaglob,
lement_size=4, memory_space=cudaglob,
t_size=4, memory_space=cudaglob,

=0, location=<preprocessor>:22)
es__a[0:1] (element_size=8,

:22)

es__a[0:1] (element_size=8, queue=0,
es__b[0:1] (element_size=8,

:22)

es__b[0:1] (element_size=8, queue=0,
ion__scatter_gather_22__ rxkufdsqg
es__b[0:1] (element_size=8, queue=0,
es__a[0:1] (element_size=8, queue=0,

=0, location=<preprocessor>:22)

ted=0, location=<preprocessor>:26)

=7, location=<preprocessor>:27)
es__b[0:1] (element_size=8,

:27)

es__ b[0:1] (element_size=8, queue=7,
es__ c[0:1] (element_size=8,

:27)

es__c[0:1] (element_size=8, queue=7,
ion__scatter_gather_27__we7v929a
es__c[0:1] (element_size=8, queue=7,
es__b[0:1] (element_size=8, queue=7,

=7, location=<preprocessor>:27)

ted=0, location=<preprocessor>:31)

=1, location=<preprocessor>:32)

es__ b[0:1] (element_size=8,

:32)

es__b[0:1] (element_size=8, queue=1,
es__d[0:1] (element_size=8,

:32)

es__d[0:1] (element_size=8, queue=1,

ion__scatter_gather_32__m7t6hyli

es__d[0:1] (element_size=8, queue=1,

Deliverable number: D3.5

Deliverable nameOverall Computational Model Final Report

File name: TERAFLUX-D35-v4.doc

Page 46 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

location=<preprocessor>:32)

[0.241812] (0) INFO : Free _ hmpp_vla_siz
location=<preprocessor>:32)

[0.241896] (0) INFO : Leave kernels (queue

[0.241963] (0) INFO : Wait (queue=2, awai

[0.242035] (0) INFO : Wait (queue=2, awai

[0.242110] (0) INFO : Enter kernels (queue

[0.242540] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=2, location=<preprocessor>
[0.242628] (0) INFO : Upload __ hmpp_vla_siz
location=<preprocessor>:38)

[0.242707] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=2, location=<preprocessor>
[0.242790] (0) INFO : Upload __ hmpp_vla_siz
location=<preprocessor>:38)

[0.242863] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=2, location=<preprocessor>
[0.242946] (0) INFO : Upload __ hmpp_vla_siz
location=<preprocessor>:38)

[0.243031] (0) INFO: Call _ hmpp_acc_reg
(queue=2, location=<preprocessor>:38)

[0.243150] (0) INFO : Free __ _hmpp_vla_siz
location=<preprocessor>:38)

[0.243247] (0) INFO : Free _ hmpp_vla_siz
location=<preprocessor>:38)

[0.243334] (0) INFO : Free __hmpp_vla_siz
location=<preprocessor>:38)

[0.243415] (0) INFO : Leave kernels (queue

[0.243483] (0) INFO : Wait (queue=6, awai

[0.243558] (0) INFO : Enter kernels (queue

[0.243936] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=6, location=<preprocessor>
[0.244024] (0) INFO : Upload _ hmpp_vla_siz
location=<preprocessor>:43)

[0.244100] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=6, location=<preprocessor>
[0.244181] (0) INFO : Upload _ hmpp_vla_siz
location=<preprocessor>:43)

[0.244254] (0) INFO: Call _ hmpp_acc_reg
(queue=6, location=<preprocessor>:43)

[0.244350] (0) INFO : Free _ hmpp_vla_siz
location=<preprocessor>:43)

[0.244433] (0) INFO : Free __ hmpp_vla_siz
location=<preprocessor>:43)

[0.244507] (0) INFO : Leave kernels (queue

[0.244570] (0) INFO : Wait (queue=3, awai

[0.244639] (0) INFO : Enter kernels (qQueue

[0.244990] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=3, location=<preprocessor>
[0.245076] (0) INFO : Upload _ hmpp_vla_siz
location=<preprocessor>:48)

[0.245148] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=3, location=<preprocessor>
[0.245223] (0) INFO : Upload _ hmpp_vla_siz
location=<preprocessor>:48)

[0.245298] (0) INFO: Call _ hmpp_acc_reg
(queue=3, location=<preprocessor>:48)

[0.245389] (0) INFO : Free _ hmpp_vla_siz
location=<preprocessor>:48)

[0.245471] (0) INFO : Free __ _hmpp_vla_siz
location=<preprocessor>:48)

[0.245546] (0) INFO : Leave kernels (queue

[0.245609] (0) INFO : Wait (queue=4, awai

[0.245676] (0) INFO : Wait (queue=4, awai

[0.245745] (0) INFO : Enter kernels (queue

[0.246157] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=4, location=<preprocessor>
[0.246244] (0) INFO : Upload __hmpp_vla_siz
location=<preprocessor>:54)

[0.246314] (0) INFO : Allocate __hmpp_vla_siz
memory_space=host, queue=4, location=<preprocessor>
[0.246393] (0) INFO : Upload __ hmpp_vla_siz
location=<preprocessor>:54)

es__b[0:1] (element_size=8, queue=1,

=1, location=<preprocessor>:32)
ted=1, location=<preprocessor>:36)
ted=7, location=<preprocessor>:37)
=2, location=<preprocessor>:38)

es__ c[0:1] (element_size=8,

:38)

es__c[0:1] (element_size=8, queue=2,

es__d[0:1] (element_size=8,
:38)
es__d[0:1] (element_size=8, queue=2,

es__e[0:1] (element_size=8,
:38)
es__e[0:1] (element_size=8, queue=2,

ion__scatter_gather_38 _sqzf3jti

es__e[0:1] (element_size=8, queue=2,
es__d[0:1] (element_size=8, queue=2,
es__c[0:1] (element_size=8, queue=2,

=2, location=<preprocessor>:38)
ted=2, location=<preprocessor>:42)
=6, location=<preprocessor>:43)
es__e[0:1] (element_size=8,

:43)

es__e[0:1] (element_size=8, queue=6,

es__ f[0:1] (element_size=8,
:43)
es__ f[0:1] (element_size=8, queue=6,

ion__scatter_gather_43__ib5eb500
es__ f[0:1] (element_size=8, queue=6,
es__e[0:1] (element_size=8, queue=6,

=6, location=<preprocessor>:43)
ted=2, location=<preprocessor>:47)
=3, location=<preprocessor>:48)
es__e[0:1] (element_size=8,

:48)

es__e[0:1] (element_size=8, queue=3,

es__g[0:1] (element_size=8,
:48)
es__g[0:1] (element_size=8, queue=3,

ion__scatter_gather_48__ nfnpel8g
es__g[0:1] (element_size=8, queue=3,
es__e[0:1] (element_size=8, queue=3,

=3, location=<preprocessor>:48)
ted=3, location=<preprocessor>:52)
ted=6, location=<preprocessor>:53)
=4, location=<preprocessor>:54)

es__ f[0:1] (element_size=8,

:54)

es__ f[0:1] (element_size=8, queue=4,

es__g[0:1] (element_size=8,
:54)
es__g[0:1] (element_size=8, queue=4,

Deliverable number: D3.5

Deliverable nameOverall Computational Model Final Report

File name: TERAFLUX-D35-v4.doc

Page 47 of 48

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

[0.246462] (0) INFO : Allocate __hmpp_vla_siz es__ h[0:1] (element_size=8,
memory_space=host, queue=4, location=<preprocessor> :54)

[0.246535] (0) INFO : Upload __ hmpp_vla_siz es__ h[0:1] (element_size=8, queue=4,
location=<preprocessor>:54)

[0.246610] (0) INFO: Call _ hmpp_acc_reg ion__scatter_gather_54__ ejhi1lko8
(queue=4, location=<preprocessor>:54)

[0.246708] (0) INFO : Free __ hmpp_vla_siz es__ h[0:1] (element_size=8, queue=4,
location=<preprocessor>:54)

[0.246795] (0) INFO : Free _ hmpp_vla_siz es__g[0:1] (element_size=8, queue=4,
location=<preprocessor>:54)

[0.246874] (0) INFO : Free __ hmpp_vla_siz es__ f[0:1] (element_size=8, queue=4,
location=<preprocessor>:54)

[0.246948] (0) INFO : Leave kernels (queue =4, location=<preprocessor>:54)

[0.247009] (0) INFO : Wait (queue=none, a waited=4, location=<preprocessor>:58)
[0.247072] (0) INFO : Free n[0:1] (elemen t_size=4, queue=none,
location=<preprocessor>:18)

[0.247235] (0) INFO : Download h[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)

[0.247867] (0) INFO : Free h[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)

[0.248045] (0) INFO : Free g[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)

[0.248192] (0) INFO : Free f[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)

[0.248338] (0) INFO : Free e[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)

[0.248485] (0) INFO : Free d[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)

[0.248630] (0) INFO : Free ¢[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)

[0.248776] (0) INFO : Free b[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)

[0.248921] (0) INFO : Free a[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)

[0.249067] (0) INFO : Leave data (queue=no ne, location=<preprocessor>:18)

Start

done

Deliverable number: D3.5
Deliverable nameOverall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 48 of 48

