
Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 1 of 48

SEVENTH FRAMEWORK PROGRAMME
THEME

FET proactive 1: Concurrent Tera-Device
Computing (ICT-2009.8.1)

PROJECT NUMBER: 249013

Exploiting dataflow parallelism in Teradevice Computing

D3.5 – Overall Computational Model Final Report

Due date of deliverable: 31 March 2014
Actual Submission: 19th May 2014

Start date of the project: January 1st, 2010 Duration: 51 months

Lead contractor for the deliverable: UNIMAN

Revision: See file name in document footer.
Project co-founded by the European Commission

within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)
Dissemination Level: PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Change Control
Version# Author Organization Change History
1 Mikel Lujan UNIMAN
2 Mikel Lujan UNIMAN Improvements based on internal feedback
3 Mikel Lujan UNIMAN Improvements based on internal review
4 Roberto Giorgi UNISI Coordinator’s review

Release Approval
Name Role Date
Mikel Lujan Originator 31/Mar/2014
Mikel Lujan WP leader 30/Apr/2014
Roberto, Giorgi Project Coordinator for formal deliverable 11/May/1014

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 2 of 48

TABLE OF CONTENT

TABLE OF CONTENT .. 2

GLOSSARY ... 4

EXECUTIVE SUMMARY ... 5

1 INTRODUCTION .. 6

1.1 RELATION TO OTHER DELIVERABLES ... 6

1.2 ACTIVITY REFERRED BY THIS DELIVERABLE .. 6

1.3 SUMMARY OF PREVIOUS WORK .. 7

2 HIGH PRODUCTIVITY PROGRAMMING MODEL: SCALA .. 8

2.1 MANCHESTER UNIVERSITY TRANSACTIONS FOR SCALA (MUTS) .. 8

2.2 SCALA DATAFLOW LIBRARY (DFSCALA) .. 8

2.3 BUILDING A PARALLEL FRAMEWORK: PREGEL .. 9

2.4 USER ASSISTED SCHEDULING OF DATAFLOW PROGRAMS ... 11

2.5 TOWARDS DETECTING AUTOMATICALLY THE MEMORY TYPE OF PROGRAM VARIABLES .. 13

3 HIGH PERFORMANCE DEVELOPERS: C PRAGMAS .. 16

3.1 STARSS .. 16

3.1.1 Speculation in StarSs ... 16

3.1.2 Overhead of STM in the context of task speculation .. 16

3.2 - INTEGRATING DATAFLOW IN CAPS COMPILER (TF-OPENACC) ... 20

3.2.1 New Directives Overview .. 20

3.2.2 Kernels in dataflow regions and DFCodelets ... 23

3.2.3 Data Flow Region and Data .. 24

3.2.4 Implementation, features and restrictions ... 26

3.3 OPENSTREAM AND OWNER WRITEABLE MEMORY ... 28

4 SUMMARY .. 30

APPENDIX A – CAPS COMPILER: REFERENCE CODES ANNEXES ... 33

APPENDIX A1: BASIC SYNCHRONIZATION EXAMPLE .. 33

APPENDIX A2: CONTROL FLOW SYNCHRONIZATION EXAMPLE ... 36

APPENDIX A3: BASIC SYNCHRONIZATION EXAMPLE .. 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 3 of 48

List of contributors to the writing of the document.

Daniel Goodman, Chris Seaton, Salman Khan, Behram Khan, Pareskevas Yiapanis, Christos
Kotselidis, Mikel Luján, Ian Watson

University of Manchester

Rahul Gayatri, Rosa M. Badia, Eduard Ayguadé
BSC

Albert Cohen, Léonard Gérard, Feng Li, Antoniu Pop

INRIA

Laurent Morin
CAPS Enterprise

© 2009 TERAFLUX Consortium, All Rights Reserved.
Document marked as PU (Public) is published in Italy, for the TERAFLUX Consortium, on the www.teraflux.eu web site and can be
distributed to the Public.

The list of author does not imply any claim of ownership on the Intellectual Properties described in this document.
The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information contained in
this document.
This document is furnished under the terms of the TERAFLUX License Agreement (the "License") and may only be used or copied in
accordance with the terms of the License. The information in this document is a work in progress, jointly developed by the members of
TERAFLUX Consortium ("TERAFLUX") and is provided for informational use only.
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets owned by or licensed
to TERAFLUX Partners. The partners reserve all rights with respect to such technology and related materials. Any use of the protected
technology and related material beyond the terms of the License without the prior written consent of TERAFLUX is prohibited. This
document contains material that is confidential to TERAFLUX and its members and licensors. Until publication, the user should assume that
all materials contained and/or referenced in this document are confidential and proprietary unless otherwise indicated or apparent from the
nature of such materials (for example, references to publicly available forms or documents).
Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited without the prior written
consent of TERAFLUX or such other party that may grant permission to use its proprietary material. The trademarks, logos, and service
marks displayed in this document are the registered and unregistered trademarks of TERAFLUX, its members and its licensors. The
copyright and trademarks owned by TERAFLUX, whether registered or unregistered, may not be used in connection with any product or
service that is not owned, approved or distributed by TERAFLUX, and may not be used in any manner that is likely to cause customer
confusion or that disparages TERAFLUX. Nothing contained in this document should be construed as granting by implication, estoppel, or
otherwise, any license or right to use any copyright without the express written consent of TERAFLUX, its licensors or a third party owner
of any such trademark.
Printed in Siena, Italy, Europe.
Part number: please refer to the File name in the document footer.

DISCLAIMER
EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUX SPECIFICATION IS PROVIDED BY TERAFLUX TO MEMBERS "AS IS"
WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES OF ANY KIND
OR NATURE WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOST BUSINESS,
REVENUE, PROFITS, DATA OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THEORY, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 4 of 48

Glossary
TM Transactional Memory

Dataflow
computation

A dataflow computation is defined by a graph where the nodes are side-effect-free
computations (functional computation) and the arcs represent dependencies. A node is
activated and executed when its input dependencies have been satisfied, generating
seamlessly parallel execution.

DFR

Transaction

Dataflow region

A set of individual operations that need to be executed atomically, with guarantees of
consistency and isolation

Atomicity Transactions must appear to other transactions as if they occur in a single operation, or do not
occur at all.

Consistency One transaction must take the program from one consistent state to another.

Isolation Transactions must act on isolation of each other.

TM
mechanisms

The implementation of a TM system normally requires a means for detecting conflicts among
executing transactions, and a means for versioning data used within a transaction to allow
restoring the system state back to its origin should one or more transactions conflict.

Conflict Two transactions conflict when the two transactions cannot be executed in parallel preserving
the atomicity, consistency and isolation properties. There are data dependencies across the
transactions (e.g. read-after-write or write-after-write) which would invalidate the parallel
execution of those two transactions

Eager conflict
detection

The TM system has a choice about when to check whether a number of transactions have a
conflict. Eager attempts to detect the conflict during the execution of the transaction.

Lazy conflict
detection

Lazy attempts to detect conflicts among the executing transactions when one of these
attempts to commit.

Eager
versioning

Eager versioning modifies directly memory and requires an undo log to restore the original
state.

Lazy versioning Lazy versioning buffers memory modifications done by a transaction and only once such
transaction is allowed to commit, these modifications are propagated to memory visible by
other threads.

Nested
transaction

A transaction is nested when its execution is contained within the context of another
transaction. Flattening treats the nested transactions as a merged single transaction. Open
nesting has been proposed as a means to reducing unnecessary conflicts by allowing nested
transactions to commit before their parent transaction has been done so.

Strong vs weak
isolation

Strong isolation is where nothing can see the state within a transaction while it is executing.
Weak isolation is where only other transactions are unable to see intermediate state, but other
threads will not be prevented by the programming model from viewing the intermediate state.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 5 of 48

Executive Summary
This report contains descriptions of work within the programming model development, which has
normally being split into three parts covering the high productivity model, the synchronous dataflow
model and the high performance models.

The specific achievements and discussions for Year 4 are:
High Productivity Model – Scala (Section 2)
• Manchester University Transactions for Scala (MUTS) and Dataflow Scala library (DFScala)
have been combined to develop complex parallel frameworks such as Pregel and MapReduce.
• Work understanding how to combine dataflow and transactional memory has been extended
to Pregel
• Development of a Scala compiler plugin to help identify which variables should be protected
with transactions.
• Analysis of whether of scheduling based on software developers knowledge, presented in
DFM 2013.

High Performance Model – C directives (Section 3)
• StarSs (from BSC) has improved their compiler and runtime system to support speculation
and developer more complex applications including and analysis of the overheads incurred by using
Software Transactional Memory.
• CAPS has a proposal for their pragma directives to support dataflow programming on GPUs.
• INRIA has extended the streaming data-flow extensions of OpenMP, called OpenStream, with
support for Owner Writable Memory and Transactional Memory.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 6 of 48

1 Introduction
This document is the final deliverable of the work carried out in WP3. Work within WP3 has been
split into three distinct sections covering the work carried out on the high productivity programming
model (Scala), on the synchronous concurrency (Heptagon) and on high performance models. Within
the latter models, we have covered progress with C-directive-based dataflow models (StarSs, HMPP,
OpenStream). This final year the work has focused on Scala, StarSs, OpenStream and HMPP and this
is reflected in the contents of this deliverable. For completeness we also summarize the work of UCY
with TFLUX in this workpackage, although no new development has occurred in Year 4.

1.1 Relation to other deliverables
This deliverable describes the existing work carried out to extend and implement dataflow and
transactional models and it is a continuation of D3.1, D3.2, D3.3 and D3.4 and WP2 contains some of
the performance results for applications implemented using programming tools developed in this
workpackage.

1.2 Activity referred by this deliverable
This deliverable covers the work being carried out under WP3 in year 4 (i.e. T3.4).

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 7 of 48

1.3 Summary of previous work
The previous deliverable reported the progress with defining the programming models and the
outcome of the initial experiments completed successfully. We had developed working software
prototypes able to execute on standard multi-core platforms. In particular we present below an
executive summary, for convenience of reading, of decisions taken to combine Dataflow and
Transactional Memory (for more details we refer to deliverable D3.1, D3.2, D3.3 and D3.4).
In particular, we recall that Appendix-A of D3.4 summarizes the need for shared data in dataflow,
which motivates combining Transactional Memory and Dataflow.
The architecture and semantics is simplified when a transaction executes only within a single thread.
Once a good understanding of Transactional Memory and Dataflow has been achieved, we intend to
look into weakening these constraints.

Versioning and Conflict Detection

Because the project is fundamentally interested in an extensible system, it is felt that the
communication required to provide the global observation needed to implement eager conflict
detection coupled with the complexity it adds in order to provide correct execution and progress
guarantees mean that it is better to opt for lazy conflict detection. This lazy detection can always be
strengthened by checks at specified points within the transaction.

Nesting

Although true closed nested transactions are preferred, due to finite hardware resources and after a
given depth, it will be reverted to flattened transactions. The first TM prototypes will implement
flattening. Because of its non-intuitive semantics open nested transactions are not an option.

Syntax

Because of its clarity at a programmer level it is intended that TM syntax in the form of atomic blocks
will be provided complete with supporting extensions.

Synchronization

In addition to providing atomic blocks it is intended that all forms of non-transactional
synchronization construct are excluded as they break the atomicity of transactions.

As an update to these decisions, we note that in WP6 we are investigating how to optimize the
detection mechanism by taking advantage of the structure within a node (a set of cores) by having
conflict detection options more frequent than lazy.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 8 of 48

2 High Productivity Programming Model: Scala
In this section we will describe the work carried out on the development of a high productivity
programming model based on extensions to the Scala programming language.

In the previous reporting period we realized two main libraries which provide transactional memory
and dataflow execution.

MUTS http://apt.cs.manchester.ac.uk/projects/TERAFLUX/MUTS/

DFScala http://apt.cs.manchester.ac.uk/projects/TERAFLUX/DFScala/

We provided updates on the new developments for these libraries and in particular how they can be
applied to Lee’s routing algorithm in D3.4. This deliverable focuses on how we have used these open
source tools to develop on top more complex frameworks; e.g. Google’s Pregel & MapReduce.

2.1 Manchester University Transactions for Scala (MUTS)
We briefly recall that in D3.4 we provided a description of the implementation of software
transactional memory in Scala without making modifications to the Scala compiler. This was possible
thanks to a novel mechanism reliant on closures for marking the transactional areas of the code. This
removes the need for programmers using this model to use a special version of the Scala compiler, so
making our work more widely applicable.

The syntax provided by the closures is very simple and an example can be seen below.

// Program code before a transaction
...
// The transaction
val id = atomic {
 threadId += 1
 threadId
}
// More none transactional code

We conducted a survey considering all the main techniques to bring software transactional memory
into Scala as well as fully explored the capabilities of our closure-based approach. This has been
published as a journal publication [5].

2.2 Scala Dataflow Library (DFScala)
We also briefly recall that in D3.4, to compliment MUTS and to enable the development of dataflow
code for a number of the applications selected in we have constructed a library to support the creation
and execution of dataflow threads.

One distinguishing feature of DFScala is the static checking of the dynamically constructed dataflow
graph. This static checking ensures that at runtime there will be no mismatch of the arguments to
functions. DFScala does not require the usage of special types and thus a node can be generated from
any existing Scala function without complex refactoring of code. Each node in the dataflow graph is a
function which cannot be subdivided; a function is sequential.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 9 of 48

Figure 1 DFScala static type checking - error found by Eclipse IDE.

The performance results published in [6] and summarized below cover the scenario on desktop multi-
cores. For next year, we will expand this analysis of the application and run on the TERAFLUX
architecture and larger many-core systems.

2.3 Building a Parallel Framework: Pregel
Google has put into production several frameworks (e.g. MapReduce, Pregel and Percolator) to
facilitate the software development of parallel applications running on their datacenters. MapReduce
and Pregel follow dataflow principles and we have developed on top of DFScala and MUTS
equivalent frameworks which run on many-core architectures rather than at datacenter level. We will
focus on Pregel in this deliverable as MapReduce has received much more attention and it is well
understood by now.

Pregel targets at stepwise graph based computations. With this framework a graph structure is
constructed where each node in the graph has some private state, a function that it can execute at each
step, and a possibly empty set of vertices to other nodes. On each step each node will:
• Receive messages from other nodes.

• Execute the nodes function taking any received messages and the private state of the node as input.

• Send messages to other nodes.

• Initiate changes to the graph.

All actions are completed on all nodes before the next step starts. At the end of any step a node can go
into a sleep state until either the computation ends or the nodes receives a message. The computation
ends when all the nodes have gone to sleep. To use Pregel a user is only required to provide: the
function that the nodes will execute; a function to construct the initial state of the graph; and a

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 10 of 48

function to return the final state of the graph. There is the option of providing aggregator functions
that will combine outputs from the nodes, making them available to all other nodes at the next step of
the computation.

Similar to MapReduce, Pregel is a dataflow pattern encapsulated in a library that takes the required
functions and input data as arguments. Individual nodes or sets of nodes will have their computation
at each cycle computed by a dataflow thread. This thread will take as arguments the current state of
the node/nodes it is calculating for and any messages to these nodes from the dataflow threads in the
preceding step. It will then call the supplied function for each node in its care. These function calls
will generate lists of messages (possibly empty) which are passed to the threads in the next step. Each
thread includes a flag with the messages marking if it is ready for the graph to terminate. When all
threads are ready for the graph to terminate it will. This creates the following 4 step Pregel pattern
computing on 3n nodes:

While transactions are not required for this framework the use of shared state to manage message
passing becomes an essential mechanism for passing messages as the number of threads increases
either because of an increasing problem size or because fewer nodes are evaluated per thread. Without
the use of shared state threads that have no messages to communicate to other threads will have to
send out ever larger numbers of message lists containing no messages. The effect of this can be
clearly seen in the next graph:

We have compared the scaling of the two versions of the Pregel framework implemented in Scala, the
first built just using dataflow and the second built using dataflow and transactions. The next graph
shows that without shared state the problem fails to scale as we increase the number of threads.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 11 of 48

Figure 2 A demonstration of the effect of adding transactional memory to our implementations in Scala of

the Pregel framework to reduce the number of dataflow tokens being passed. In this instance the

framework is computing the single source shortest path (SSSP) problem. This calculates for each node in the

graph the shortest path from a specified node. In this case, a random graph comprising of 100,000 nodes.

Finally, Google’s Percolator is their most recent framework. This framework uses transactions to
address the absence of interactivity in a MapReduce invocation. Specifically it was designed to
address the inability to insert new data into an executing MapReduce computation. This limit on
MapReduce interactivity meant that Google could only start the MapReduce to construct a web index
once they had finished a complete crawl of the web. We have not implemented Percolator in Scala,
but it serves as an example of another framework outside of TERAFLUX that is following the
principles investigated in this workpackage.

2.4 User Assisted Scheduling of Dataflow Programs
The determinism and race condition free properties of pure dataflow programs make them very
appealing as a means of constructing programs for multi-core processors. However, pure dataflow
programs are limited by their determinism which prevents the construction of programs that would
traditionally require shared state for either efficiency or to support unstructured interactions.

An example of a problem that requires shared state to be solved efficiently is the travelling salesman
problem. This takes a connected graph as input, in which the nodes represent cities and the arcs
represent roads with weights recording the distances between these cities. It returns a tour where

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 12 of 48

every city in the graph is visited and the distance travelled is the shortest possible. Accurate solutions
to this problem are used on a daily basis by logistics companies.

A brute force approach to this problem is not practical as there are n! possible tours for n cities.
Instead efficient techniques for solving this require a shared updatable lower bound which is updated
as better solutions are found. The presence of this lower bound allows these techniques to discard any
solution that will exceed this lower bound before any further time is spent on it. As a result the most
efficient versions are those which can quickly reduce the lower bound to represent the length of the
shortest tour, and can efficiently calculate the lower bound for the partially constructed.

In pure dataflow applications scheduling can have a significant effect on the memory footprint and
number of active tasks for a given program. However, in impure programs (dataflow with shared
state), scheduling not only affects the system resources, but can also affect the overall time
complexity and accuracy of the program.

To address both of these aspects we describe and analyse effective extensions to a dataflow scheduler
(prototyped in DFScala) to allow programmers to provide priority information describing the
preferred execution order of a dataflow graph. We show that even very crude task priority metrics can
be extremely effective, providing an average saving of 91% over the worst case scenario and 60%
over the best case naive scenario.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 13 of 48

2.5 Towards Detecting Automatically the Memory Type of Program
Variables

In TERAFLUX, we defined different kind of memory types (cf. D7.1, program variables belonging to
one memory type will only accept a subset of operations). Having to remember and identify correctly
all these memory usages is not ideal for a software developer. We have investigated whether
following certain design patterns coupled with static compiler analysis can be used to automatically
detect for example whether a given variable would be read and written at runtime thus requiring
protection using transactions.

Thread Local Storage (or Thread Local Memory) - this memory has no visibility to other threads and
the values contained within this memory cannot be passed directly to other threads. The data may still
be passed to other threads via either an implicit or explicit copy to a different style of memory.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 14 of 48

Frame Memory (or Constant Memory) - the value of this memory may be modified by the thread
that allocated it. This memory will become constant once it becomes visible outside the allocating
thread. To become visible outside the thread a reference must be passed out of the allocating thread.
This can currently occur either through the passing of a reference into the frame of another thread or
the setting of the reference into a piece of transactional memory and the encompassing transaction
then successfully committing.

Transactional Memory - Transactional memory is mutable at all times, but can only be read from or
written to from within a transaction. The only possible exception to this is when transactional memory
is in the thread where transactional memory is first allocated.

Owner Writable Memory (OWM) - OWM memory is used as an optimisation on single assignment
memory, and code operating on OWM must be race condition free. In the event of a race condition
involving OWM the program is incorrect and the behaviour is undefined. If protection against race
conditions is required, transactions should be used.

The recommended design patterns have as major purpose to ensure that we can, by relatively simple
static analysis, detect those variables which are writable by multiple threads and hence need to be
transactional. An initial assumption is that thread level parallelism will be exploited at relatively
coarse grain and therefore an individual Scala function will be executed within a single thread. It will
probably be necessary to relax this if and when we introduce data parallelism. The restrictions all
relate to multiple update of variables. They are best expressed by positive statements of updates,
which are allowed together with a negative statement which relates to variables being passed as
function parameters. The following assumes that a whole program view is available, further thought
needs to be given to separately compiled classes and libraries.

Rule 1: A variable may be the object of multiple updates if it is a static variable accessible by the
scope rules. This is allowed whether or not the access occurs from multiple threads. This allows the
use of static global variables defined in singleton objects which are required to be transactional if
accessed by multiple threads.

Rule 2: A variable may be the object of multiple updates if it is declared locally within a function and
the updates occur either directly in that function body or from within a nested function definition. The
variable cannot be referenced from any separate threads which may be generated within the function
or any nesting. Such variables are always thread local.

Rule 3: A variable may be the object of multiple updates if it is an instance variable of a class and the
updates occur within a function defined in the class.

Rule 4: A variable may not be the object of multiple updates if it is referenced via a parameter passed
to a function. The purpose of these rules is to prohibit the arbitrary distribution of updateable variables
(or strictly references to them) via parameters. However, Rule 3 does permit the update of fields of
objects by calls to functions defines in the objects class (i.e. via the “this” pointer).

Based on the above rules and our aims are:
1. To ensure that all reads and modifications to transactional state only occurs within a transaction.
2. To ensure that all state that is modified after becoming visible outside of the dataflow thread is
marked as transactional.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 15 of 48

3. To ensure that all state that does not become visible outside of the dataflow thread is marked as
local state.
We have developed a prototype plugin for the Scala compiler which implements the static analysis
required and show the potential. However, we are not making claims of completeness of all the corner
cases, as the plugin is in early experimental stages.

The plugin follows the following phases:

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 16 of 48

3 High Performance Developers: C pragmas

3.1 StarSs
For the sake of easier reading, we shortly recall that BSC has investigated how speculation can be
brought into StarSs [9], specifically SMPs, using Transactional Memory. StarSs is a task based
programming model for widely used multi-core architectures. The programming model is based on
data flow analysis and dynamic data dependency tracking by the runtime. Sometimes in order to
extract more parallelism multiple tasks are allowed to simultaneously update memory locations. In
such cases lock-based synchronization is used to maintain the correctness of the application. But locks
suffer from the drawbacks of deadlock, livelock and priority inversion.
We introduced Software Transactional Memory (STM) based concurrency control mechanism to
manage parallel updates. The comparison of results between lock-based approach and STM-based
approach shows that applications with high lock contention have better performance with STM based
approach [9].

3.1.1 Speculation in StarSs
As described in D3.4, (section 5.1) StarSs provides synchronization constructs such as “wait-on” , to
wait for a particular memory location to be updated before continuing execution and “barrier”, to
block execution of all threads till each of them reaches a certain point of execution. Such constructs
hamper the parallelism by leading to problems such as blocking of work generation and load
balancing. The most common situations where these constructs are used are during if-condition and
while-loops. Hence we speculate on the conditions of these loops.

In case of an if-condition such as:
T1(a);
//#pragma css wait on(a)
#pragma css speculate wait(a) values(b,c)
if(a)
{

T2(b);
T3(c);

}

For example we speculate that the if-condition will be evaluated to true and generate the tasks T2 and
T3 inside a transaction instead of waiting for task T1 to finish. Latter when the values of b and c are
required we check for the validity of if-condition and either commit the results of b and c or abort
transaction. Compiler and runtime changes were required: StarSs and applications/evolutions
reported.

3.1.2 Overhead of STM in the context of task specul ation
In the fourth year of the project we have analyzed the overheads of where speculation is used to
extract more parallelism in SMPSs, an implementation of StarSs [8]. SMPSs is a task-based
programming model for Symmetric Multiprocessors (SMPs). Speculation is used to overcome the
synchronization pragmas in SMPSs, which block the generation of work and lead to underutilization

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 17 of 48

of the available resources. TinySTM, a Software Transactional Memory (STM) library is used for an
STM based implementation to achieve speculation. The speculate pragma can be used with if-
condition and while-loop programming constructs to speculatively generate tasks blocked until the
loop-predicate is evaluated. Speculatively generated tasks are executed as transactions in order to
maintain correctness in case the speculation fails. TinySTM library calls are used to execute
transactional SMPSs tasks. If the speculation fails a rollback is performed; the updates performed by
the tasks are undone as the associated transaction is aborted.

We measured the overhead incurred due to the use of TinySTM library in SMPSs and we analyzed the
acceptable overhead with the TinySTM-based implementation to achieve speculation. The speculative
tasks, apart from being control dependent on the loop predicate, may also be data dependent on the
earlier tasks. Hence, the use of the speculate pragma will add one of the following types of tasks
to the SMPSs Task Dependency Graph (TDG) of an application:

• tasks which are control-dependent on the earlier tasks

• tasks which are data-dependent tasks on the earlier tasks

Tasks which are only control-dependent on the earlier tasks allows speculative and non-speculative
tasks to execute in parallel, but with tasks, which are data-dependent on the earlier tasks, the only
parallelism available is the overlap of task generation with task execution. We concentrate our
analysis on applications where speculatively generated tasks are data-dependent on the earlier tasks
since this is the minimum performance gained by the idea of task-speculation in SMPSs. The
applications analyzed were Jacobi, Gauss-Seidel and Lee-routing. In case of Jacobi and Gauss-Seidel
speculative tasks are data-dependent on the earlier tasks. In Lee-routing, speculate pragma was
added to overcome a synchronization pragma that was used to enforce control dependence. The
performance timings presented in the case of Lee-routing cover only the phase where the
speculate pragma was added.

Figure 3 shows the performance of Lee-routing application with and without speculation. The timings
were taken for a phase of the application where the speculate pragma was used and the benefits
achieved due to the simultaneous execution of speculative tasks with earlier tasks is evident.

Figure 3 Performance of speculative and non-speculative Lee-routing application

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 18 of 48

The problem size for the Jacobi and Gauss-Seidel applications shown of the Figure 4 is a system of
linear equations with 4096 unknowns. Each task processes 512KB block of data. The chosen task
granularity gives optimal performance in the non-speculative version of the application. The figure
shows that even though the speculative versions scale, the overhead incurred does not allow any
performance improvement compared to the non-speculative versions. But with increase in the number
of threads the absolute difference in the performance between the speculative and non-speculative
versions reduces. With higher number of threads more resources are available to avail the parallelism
extracted from the speculate pragma. This shows us that the idea can be successfully applied to

obtain some scalability.

One of the major reasons of overhead with TinySTM is the conflict detection performed by the
library. This is an unnecessary and unavoidable overhead. Unavoidable since it is a part of the library
and unnecessary because of the presence of a task dependency graph. We also observed that with
increase in the task granularity the speculative versions of the applications perform better as shown in
Figure 4. The legend in the figure represents task-granularities.

Figure 4 Performance of Jacobi while varying the number of threads and Gauss-Seidel applications while

varying both number of threads (horizontal axis) and varying tasks granularities (different curves at 512KB,

1MB, 2MB granularities

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 19 of 48

We also evaluated the relative time spent by speculative versions of the applications in the TinySTM
library and conclude that the overhead of the library should be less that 1% of the total execution time
to gain any performance benefits.

Figure 5 Relative time spent in the TinySTM library for speculative Jacobi and Gauss-Seidel applications

while varying both number of threads (horizontal axis) and varying tasks granularities (different curves at

512KB, 1MB, 2MB granularities

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 20 of 48

3.2 - Integrating Dataflow in CAPS compiler (TF-OpenACC)
The OpenHMPP [14] and OpenACC propose a data parallel programming model based on the codelet
concept. In TERAFLUX, CAPS has been investigating the extension of the current CAPS products
with the dataflow model investigated in the Workpackage 3 in a manner that is compatible with the
existing OpenHMPP implementation and OpenACC. This deliverable focuses on the extensions made
to OpenACC following the dataflow approach investigated in TERAFLUX: TF-OpenACC. Typically,
OpenACC can be used on GPU and CPU. The CAPS many-core compiler is able to generate OpenCL
as well as CUDA code when dealing with GPUs.

OpenACC [11] proposes a set of directives to describe kernels to remotely execute on an accelerator
in parallel, and a set of data management techniques. This proposal is based on the OpenACC data
transfer management mechanisms (See [12] for details) and on the integration of kernels inside
codelets for the task computation description.

The constraints on the design of this extension that have been taken into account in the following way:

• Minimize the number of changes to OpenACC;

• Execution with current OpenACC model is correct.

In the remainder of this document we describe TF-OpenACC for the C language. In the future, this
extension will be proposed for FORTRAN. A variant will also be envisioned for C++.

The following sections describe the new directives to be added to OpenACC. We also present the
constraint to the tasks codes (i.e. kernels) and give an overview of the data flow code region runtime
behavior. We explain how the data are managed and describe a first implementation. This first
implementation does not aim at being efficient but at demonstrating the concept.

3.2.1 New Directives Overview
TF-OpenACC is based on a new pair of directives describing the limits of a data flow region. In a
region a set of asynchronous tasks are created. A task is an execution instance of a kernel section. The
kernel has to be encapsulated inside a pure function called a DFCodelet, as defined in the OpenHMPP
standard [13]. The synchronization between the tasks is performed according to the data dependencies
between the tasks arguments.

Contrary to the OpenACC specification, the tasks are not necessarily and statically assigned to a
particular device according to the owner compute rule of the arguments. However, this first region
will restrict data flow region to accelerators having one single device or devices with a shared
memory address space. The data are allocated using the "mirror" approach used in the CAPS compiler
i.e. a data blocks on the Host has a mirrored version on the accelerator device updated according the
OpenACC semantic and directives.

Data Flow Region (DFR)

The data flow region is delimited using an "acc dataflow" pragma on a statement block (denoted DFR
hereafter). This is illustrated in Figure 6.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 21 of 48

#pragma acc dataflow copyin(a,c), copyout(e)
{
 // set of statements
}//end of data flow region

Figure 6: TF-OpenACC Data Flow Region.

Data flow regions can contain the following statements:

• DFCodelet calls with a kernel directive;

• Statements which behavior is not affected by the tasks computations. Output arguments of tasks

cannot be used in the region except for another kernel statement.

Data flow regions must have the same semantic as the sequential execution of the region. In and out
region arguments are contiguous memory blocks. Other memory blocks can be used as internal
storage for the region. They are dead variables at the entry and exit of the DFR.

Figure 7gives an example of a region containing two DFCodelets. Variable A is an input to the region
and variable C is the output. Variable B is an intermediate variable, which in and out values are
ignored before and after. Task corresponding to compute2 is synchronized on the completion of
compute1, assuming B is an input to compute2 and output of compute1.

The device clause on the kernel directive is an extension of OpenACC. It allows kernels to be
executed on a specified device even if the arguments are located on a different device. Note that the
first version will not support devices that do not share a common memory address space. By default,
the same device is used for the same dataflow region.

void compute1(const float *a, float *b, const int n);

void compute2(const float *b, float *c, const int n);

void figure2(const int n, const float a[n], float b [n], float c[n])
{
#pragma acc dataflow copyin(a), create(b), copyout(c)
 {
#pragma acc kernels, pcopyin(a), pcopyout(b), devic e(1)
 compute1(a, b, n);

#pragma acc kernels, pcopyin(b), pcopyout(c), devic e(1)
 compute2(b, c, n);
 } // end of FD region
}

Figure 7: Example of a data flow region.

Figure 8 shows an example where k input tasks are connected to k output tasks. The dataflow region
is launched multiple times asynchronously using a dataflow OpenACC parallel region. Inside each
region two kernels are executed, and depending on the region a different kernel variant is chosen.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 22 of 48

void compute1(float alpha, float *b, const int n);
void compute2(float beta, float *b, float *d, const int n);
void compute3(float beta, float *b, float *d, const int n);

void figure3(const int k, const int n, const float a[k], float b[n], float c[k], float
d[n])
{
 int index;
 for (index=0; index<k; index++) {
 float a_index = a[index], c_index = c[index];
#pragma acc dataflow copyin(n, a_index,c_index), copyout(d), async(index)
 {
#pragma acc kernels, pcopyin(a_index), pcopyout(b)
 compute1(a_index, b, n);

 if ((index == 0) || (index == k-1)) {
#pragma acc kernels, pcopyin(c_index,b), pcopyout(d)
 compute2(c_index, b, d, n);
 }
 else {
#pragma acc kernels, pcopyin(c_index,b), pcopyout(d)
 compute3(c_index, b, d, n);
 }
 } // end of FD region "index"
 } // end of loop

 for (index=0; index<k; index++) {
#pragma acc wait(index)
 ;
 }
 // Wait for all DFR
}

Figure 8: Example of a data flow region with the creation of multiple tasks.

Data Flow Region Characteristics

A data flow region describes a parameterized data flow graph with the following characteristics:

• The data dependencies between the tasks follows the sequential semantic of the C language. The

execution of the DFR in parallel or sequentially leads to the same results (if no I/O status errors are

in the code);

• The creation of tasks is driven by the statements in DFR block; The creation of tasks is

independent of the tasks execution themselves;

• The task allocation on device is either allocated according to the owner compute rule of the

mirrored data (default OpenACC behavior) or according to the device clause. Note that in future

version, this later one may induce mirrors reallocations;

• All kernels inside a dataflow region are asynchronous;

• The internal data flow graph is limited to direct acyclic graphs (DAG).

Devices and Resources

All devices and mirrors are allocated prior entering the DFR.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 23 of 48

3.2.2 Kernels in dataflow regions and DFCodelets
The proposed extension to OpenACC is based on the current concept of OpenHMPP Codelets. They
are pure functions that can be remotely executed in a given address space.

In the context of this work, Codelets have a set of restrictions. Codelets arguments are limited to
scalar and mirrored data

• the first version can be limited to mirrored data, scalar data would be supported in a second

version,

• Codelets code generation must not lead to data exchange or synchronization with the master

program

• For CUDA or OpenCL codes, it is composed of a sequence of kernel launches,

• It does not contain any implicit transfers,

• Reductions are not supported ;

Codelets falling in this category are denoted DFCodelets. From the data flow model point of view, a
DFCodelet can be seen as a data flow threads at execution.

The DFCodelets pattern is given in Figure 9. The DFCodelet calls must be declared with an explicit
description of data I/O status to ensure the proper declaration for the argument mode management:

#pragma acc kernels, pcopyin(A), pcopyout(C)
compute1(A, C);

Figure 9: DFCodelet pattern.

DFCodelet Granularity

DFCodelet granularity can encompass a few statements to a large set of statements. This later is
targeted with this work since it is expected that in general the synchronization operations may be
expensive. However, when considering the TERAFLUX system this constraint may be alleviated
thanks to the hardware based thread management (cf. D7.1, D6.1, D6.2, D6,3, D6.4).

DFCodelet Body Statements

There are no restrictions for the statements except that code generation must lead to one unique
accelerator kernel. This constraint is necessary to ensure that no synchronization between the device
and the host is needed to execute a task.

DFCodelet Inner Parallelism

DFCodelets are expected to exhibit parallelism in their computation. This parallelism can then be used
to exploit SIMD/SIMT parallelism available in many computing cores. This is taken in charge by the
CAPS compiler code generation.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 24 of 48

3.2.3 Data Flow Region and Data
A data flow region (DFR) describes a parameterized data flow task graph. This introduces many
limitations to the content of the region. A data flow region is executed as a slave of a master program.

Data Flow Region

A data flow region is described using a directive denoted "acc dataflow". This directive has two
clauses:

• pcopyin or copyin(list of variables): list of variables (or addresses) that are not scalar variables and

input to the region.

• pcopyout or copyout(list of variables): list of variables (or addresses) that are not scalar variables

and output to the region.

Note that these clauses are identical to the clauses defined in the OpenACC standard. See [11] for a
detailed description of the semantic.

#pragma acc dataflow copyin(n, a_index,c_index), copyout(d), async(index)
{
 . . .
} //end of data flow region

Figure 10: DFR directive.

Data Flow Region Statements

The DFR statements aim at creating the task graph. These statements can be arbitrarily complex but a
task creation cannot depend on the result of one of the tasks. These statements are executed on the
host system.

Figure 11 shows an example of incorrect statement in a DFR. The creation of the compute2 task
depends on the value produced by the compute1 task that is not part of the considered model.

#pragma acc dataflow copyin(A, C), copyout(B)
{
 #pragma acc kernels, copyin(A), copyout(C)
 compute1(A,C) ;

 // !!! Forbidden dependency on C !!!
 if (C[i])
 #pragma acc kernels, copyin(C), copyout(B)
 compute2(C,B) ;
}//end of data flow region

Figure 11: Incorrect statement of a data flow region.

Data Flow Region Execution Model

There are two main parts in the execution model:

• Data flow execution inside the regions;

• The region inside the host program.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 25 of 48

Master-Slave Execution

The execution of a DFR region is executed as a whole in synchronous mode with the host program, or
asynchronously when the appropriate OpenACC "async"/"wait" clauses are used.

Dynamic Data Flow

The execution of the statement inside the DFR creates the data flow graph according to the
DFCodelets and the data dependencies between the tasks argument. This model is very similar to the
StarSs model.

Data Management

This section describes how data structures are handled in a DFR. There are three cases to consider:

• Data structures that are input to the DFR

• Data structures that are output to the DFR

• Data structures that are temporary structures to send and receive data between tasks

The allocation of data for a DFR follows the usual allocation mirroring mechanism of the CAPS
compiler. In short, the DFR tasks compute on mirror data. This has multiple advantages:

The DFR can be executed in different address spaces than the host program. Mirrors can also be used
by other compute phases that exploit the data parallel model of OpenACC. The tasks can themselves
exploit the data parallel code generation of OpenACC. Tasks can also be executed on the host. A
rollback mechanism can be implemented (for conformant codes).

Block Data Allocation

The allocation of the data structures have to follow these rules:

• All data structures are contiguous memory block.

• All data/mirror are allocated prior to entering a region including DFCodelet arguments,

• Rollback mechanism is performed by restoring region in-out data.

Dealing with Multiple Address Spaces

A mirror can only belong to one address space. As a consequence if DFCodelets are exchanging data
from different address spaces, mirrors would need to migrate from one device to another one. In the
current version, no data exchanges are supported. The DFR can support multiple devices if they share
the same memory address space.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 26 of 48

DFCodelet Arguments

DFCodelet arguments of two kinds:

• Scalar variables

• Allocated structures are contiguous block of memories that are managed as mirrored data. In this

case, argument can be sub-block of a main block

Data Related Synchronizations

DFCodelet arguments are seen as tokens:

• No synchronizations based on scalar variables are allowed

• Cannot synchronize on mirror that are on different devices

Synchronizations are performed at the level of the allocated mirrored, not at the level of sub-blocks
that may be used by DFCodelets.

Dataflow management: an instance at runtime of each thread argument is associated to one
synchronization token (very much like in [7]).

3.2.4 Implementation, features and restrictions
This section presents implementation options. As a first step, the proof of concept is based on current
CAPS manycore compiler version 3. A data flow task library may be added to trigger the task
execution. This library makes the interface with the CAPS compiler runtime that provides support for
allocation memory and resources.

Implementation restrictions

Multiple Files Limitations - DFCodelets can be declared in multiple files but the data flow
regions is defined in a unique file.

Source Language - This work is limited to the C code.

Target Language - CUDA, OpenCL Accelerator, and CPU.

A task management library

This library implements a data flow manager on top of the CAPS compiler public runtime API. This
library main function is to track data dependencies to trigger DFCodelets execution. It can be for
example based on the light weighted thread (QLib - Sandia).

Debugging

The CAPS compiler describes clearly the dataflow computed at compile time using a text report and a
graphic representation of the dependences using the "graphviz" library for instance. Then, the work is
left to usual debugger that understands HMPP (e.g. Allinea DDT).

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 27 of 48

Prototype and evaluation

The TF-OpenACC extension specification has led to the implementation of an operational prototype
based on the CAPS many-core compiler suite version 3.3.1. This prototype is a fork of the CAPS
compiler and has not been integrated inside the commercial version of the compiler currently in
version 3.4.3.

The prototype supports all the features described in this document excepted the support of multiple
devices (with the keyword extension "device(n)"). It has been validated on a various set of tests
among the following:

• The simple example provided by the specification in figure 2, Appendix A1,

• The task distribution example provided by the specification in figure 3, see Appendix A2,

• A scatter/gather example, see Appendix A3,

In all these examples, the data dependences computed at compile time are provided. The OpenACC
target used is CUDA on an NVidia GPU.

The validation machine has the following specification:

• Dual Socket Intel(R) Xeon(R) CPU X5560 @ 2.80GHz (total of 8 physical cores),

• 24 Go of RAM,

• x86_64 GNU/Linux version 3.11.0-18-generic

• NVidia GPU, GeForce GTS 450

• CUDA SDK version 5.0.23

• GNU C Compiler version 4.4.7

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 28 of 48

3.3 OpenStream and Owner Writeable Memory
We recall, for easy of reading, that in the previous period INRIA has worked on streaming dataflow
using a directive-based approach. We coined the name OpenStream for these dataflow streaming
extensions of OpenMP 3.0:

http://www.di.ens.fr/StreamingOpenMP

OpenStream is an expressive programming model to allow the composition of tasks communicating
through first-class dataflow streams, as well as separate compilation. We provide more general
dynamic constructs to support complex data structures and unbounded fan-in and fan-out
communications. In contrast with our previous work, we introduce strongly typed, first-class streams
that may be freely combined with recursive computations and dynamic data structures, while
preserving modular (separate) compilation. We also add variadic stream clauses to construct
arbitrarily complex, dynamic, possibly nested task graphs, and we provide syntactic support for
broadcast operations and for synchronization with futures.

Additionally, in the fourth period of the project, further extended the functional nature of pure
dataflow programs implies that all operations are side-effect free. The absence of side effect means
that if tokens are allowed to carry vectors, arrays, or other complex data structures, an operation on a
data structure results in a new data structure. The problem of efficiently representing and
manipulating complex data structures in a dataflow execution model has remained a fundamental and
practical challenge. Owner Writable Memory (OWM) has been proposed in TERAFLUX to manage
complex data structures in dataflow programs. The name and idea origins from our collaborator Prof.
Ian Watson from University of Manchester (cf. D7.1). OWM implements a globally addressable
memory (in software or hardware, depending on the instantiation). Before a thread could write to a
portion of memory, it has to claim ownership beforehand. At any time point only the thread who has
the ownership of the memory could write to it. When write ownership is successfully acquired, any
read from another thread is not guaranteed to see consistent data. When write ownership is released, a
consistent view of data must be visible to any other thread. Note the release operation could be
performed explicitly by the thread or implicitly by the model. The latter is achieved when the OWM is
used by a thread to write its results, which are made available to the consumer thread upon the
completion of the execution of the thread. This memory can serve the requirements of the single
assignment semantics required for functional objects. However, the ability for other threads to
subsequently reclaim write ownership adds to flexibility of usage. Please note that unlike classical
acquire/release”, OWM is not a synchronization algorithm. It relies on external synchronization and
dependence enforcement mechanisms (dataflow) to implement race-free in-place communication. It
also defines a global address space.

OWM is integrated into the OpenStream compiler as a language extension.

The OWM extension of OpenStream takes the form of a simple “cache” clause in the task pragma:

#pragma omp task cache (ACCESS_MODE: MEM[OFF:SIZE])

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 29 of 48

The cache clause subscribes the task with the OWM subregion described by MEM[off:size] and
“ACCESS_MODE” can be read (R),write (W) or read-write (RW). The current clause syntax supports
only one dimensional arrays, but it may easily be extended to multiple dimension arrays.

OWM extension to OpenStream

The simple usage of the pragma is described above. tstar_owm_alloc allocates the OWM
memory with size N*N*sizeof(DATA) . Task 1 writes to this OWM memory region and task 2
reads from this OWM region. Note that two tasks are synchronized by stream sync, task 2 will only be
executed when task 1 finishes. Use cases of OWM in OpenStream are presented in the WP2 and WP7
deliverables.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 30 of 48

4 Summary
This document has described the research carried out in the WP3 of the TERAFLUX project during
the fourth year. We have covered progress with C-directive-based dataflow models (StarSs, CAPS,
OpenStream). CAPS (our commercial partner is WP3) has shown how they have included dataflow
directives to OpenACC. BSC has continued with the work on using speculation as part of dataflow to
increase parallelism available. BSC has reported the analysis of overhead that TinySTM brings and
offer some light of when it would be profitable to use speculation given those overheads. With Scala,
UNIMAN has provided more evidence of the advantages of bringing together dataflow and
transactional memory by looking a Pregel (a distributed framework for Graphs published by Google.
UNIMAN has also reported their progress on allowing developers to express preferences for task
scheduling as well as facilitating the correct usage of the different types of TERAFLUX memory.
With OpenStream, INRIA has reported how Owner Writable Memory can now be express in the
language and in WP2 and WP7 further information can be found about the performance
improvements derived. This deliverable has covered the work being carried out in T3.4.

Overall, the programming models have matured with significant number of applications being ported
(see WP2 deliverable) and most of the tools are available to be downloaded as open-source tools to
increase dissemination and impact.

The creation of the dataflow task graph is supported with different syntax but the core functionality of
describing a side effect free computation as a node in the graph is prevalent. The inputs and outputs
are specifically annotated and permit the generation of the dataflow graph. We can observe a
divergence on how rich a set of dependencies each programming model provides specific support for.
We can also observe a divergence with respect to the extra information that can optimize the runtime
scheduling of the dataflow graph. These divergences have not to do with whether the dataflow graph
generated is general, but is associated with covering well certain patterns of dependencies and the
level of sophistication expected from the compiler when a pragma is encountered. The work by CAPS
provides an industrial perspective of what features/functionalities are well understood.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 31 of 48

References

[1] Antoniu Pop and Albert Cohen. OpenStream: Expressiveness and dataflow compilation of
OpenMP streaming programs. ACM Transactions on Architecture and Code Optimization (TACO),
selected for presentation at the HiPEAC 2013 Conf., January 2013.

[2] Antoniu Pop and Albert Cohen. Control-Driven Data Flow. Research Report RR-8015, INRIA,
July 2012.

[3] Albert Cohen, Léonard Gérard, and Marc Pouzet. Programming parallelism with futures in Lustre.
In ACM Conf. on Embedded Software (EMSOFT), Tampere, Finland, October 2012. Best paper
award.

[4] HMPP User’s Manual. CAPS enterprise, 2012.

[5] Daniel Goodman and Behram Khan and Salman Khan and Mikel Luján and Ian Watson. Software
transactional memories for Scala. Journal of Parallel and Distributed Computing, 2012.
http://dx.doi.org/10.1016/j.jpdc.2012.09.015

[6] C. Seaton, D. Goodman, M. Luján, and I. Watson. Applying dataflow and transactions to Lee
routing. In Proceedings of the 7th Workshop on Programmability Issues for Heterogeneous
Multicores (MULTIPROG), 2012. Best Paper Award.

[7] D. Goodman, S. Khan, C. Seaton, Y. Guskov, B. Khan, M. Luján, and I. Watson. DFScala: High
level dataflow support for Scala. In Proceedings of the 2nd International Workshop on Data-Flow
Models For Extreme Scale Computing (DFM), 2012.

[8] Ian Watson, Chris Kirkham and Mikel Luján. A Study of a Transactional Parallel Routing
Algorithm. In Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques - PACT, pp 388-398, 2007.

[9] Rahulkumar Gayatri, Rosa M. Badia, Eduard Ayguadé, Mikel Luján, Ian Watson. Transactional
Access to Shared Memory in StarSs, a Task Based Programming Model. EuroPAR 2012: 514-525.

[11] OpenACC Consortium, "The OpenACC Application Programming Interface Version 2.0," 17
06 2013. [Online]. Available: http://www.openacc-standard.org/node/297.

[12] CAPS entreprise, HMPP Directives Reference Manual, Version 3.2.0, 2012.

[13] OpenHMPP Consortium Association, "OpenHMPP New Standard for Many-Core," 10 06
2011. [Online]. Available: http://www.openhmpp.org/. [Accessed 10 12 2011].

[14] NVidia, "NVIDIA, Cray, PGI, CAPS Unveil 'OpenACC' Programming Standard for Parallel
Computing," 11 14 2011. [Online]. Available: http://pressroom.nvidia.com/easyir/customrel.do?
easyirid=A0D622CE9F579F09 &version=live&prid=821214 &releasejsp=release_157.. [Accessed 01
09 2012].

[15] The OpenCL Specification v1.1 r36, "The OpenCL Specification," 30 9 2010. [Online].
Available: http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 32 of 48

[16] HPCwire, "CAPS Entreprise Now Supports OpenACC Standard," 02 05 2012. [Online].
Available: http://www.hpcwire.com/hpcwire/2012-05-
02/caps_entreprise_now_supports_openacc_standard.html.

[17] Marco Solinas, Rosa M Badia, François Bodin, Albert Cohen, Paraskevas Evripidou, Paolo
Faraboschi, Bernhard Fechner, Guang R Gao, Arne Garbade, Sylvain Girbal, Daniel Goodman,
Behran Khan, Souad Koliai, Feng Li, Mikel Luján, Laurent Morin, Avi Mendelson, Nacho Navarro,
Antoniu Pop, Pedro Trancoso, Theo Ungerer, Mateo Valero, Sebastian Weis, Ian Watson, Stéphane
Zuckermann, Roberto Giorgi. The TERAFLUX Project: Exploiting the DataFlow Paradigm in Next
Generation Teradevices. In Proceedings of the 2013 Euromicro Conference on Digital System Design
(DSD), 272-279.

[18] Roberto Giorgi, Rosa M Badia, François Bodin, Albert Cohen, Paraskevas Evripidou, Paolo
Faraboschi, Bernhard Fechner, Guang R Gao, Arne Garbade, Rahul Gayatri, Sylvain Girbal, Daniel
Goodman, Behran Khan, Souad Koliaï, Joshua Landwehr, Nhat Minh Lê, Feng Li, Mikel Lujàn, Avi
Mendelson, Laurent Morin, Nacho Navarro, Tomasz Patejko, Antoniu Pop, Pedro Trancoso, Theo
Ungerer, Ian Watson, Sebastian Weis, Stéphane Zuckerman, Mateo Valero. TERAFLUX: Harnessing
Dataflow in Next Generation Teradevices. Journal Microprocessors and Microsystems, 2014.
http://www.sciencedirect.com/science/article/pii/S0141933114000490

[19] A. Diavastos, P. Trancoso, M. Lujan and I. Watson, “Integrating Transactions into the Data-
Driven Multi-threading Model using the TFlux Platform” in Proc. of the Data-Flow Execution Models
for Extreme Scale Computing (DFM) Workshop, Galveston, Texas, U.S.A., October 2011

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 33 of 48

Appendix A – CAPS Compiler: Reference codes annexes

Appendix A1: Basic synchronization example
• Source code

void compute1(const float *a, float *b, const int n);

void compute2(const float *b, float *c, const int n);

void figure2(const int n, const float a[n], float b [n], float c[n])
{
#pragma acc dataflow copyin(a), create(b), copyout(c)
 {
#pragma acc kernels, pcopyin(a), pcopyout(b)
 compute1(a, b, n);

#pragma acc kernels, pcopyin(b), pcopyout(c)
 compute2(b, c, n);
 } // end of FD region
}

void compute1(const float *a, float *b, const int n)
{
 int i;
/* #pragma omp parallel for */
 for (i=0; i<n; ++i)
 {
 b[i] = a[i] / 3.14f;
 }
}

void compute2(const float *b, float *c, const int n)
{
 int i;
/* #pragma omp parallel for */
 for (i=0; i<n; ++i)
 {
 c[i] = b[i] * b[i];
 }
}

extern void fill(const int n, const float value, fl oat t[n]);

#define N 300000
static const int n = N;
float a[N];
float b[N];
float c[N];
void example(void)
{
 fill(n, 2, a);
 fill(n, 1.578, b);
 fill(n, 1.04, c);
 figure2(n, a, b, c);
 return 0;
}

• Compilation output

hmpp -k gcc -c -Wall -I/home/laorans/travail/DataFl ow/HMPP-
DataFLow/build/hmpp/x86_64/debug//include figure2.c -o figure2.o
Parse acc dataflow copyin(a), create(b), copyout(c)
Create region figure2.c:8

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 34 of 48

Parse acc kernels, pcopyin(a), pcopyout(b)
Add call compute1(a, b, n) to region
Parse acc kernels, pcopyin(b), pcopyout(c)
Add call compute2(b, c, n) to region
1 regions found
Create CFG for: figure2.c:8
0: a
1: b
2: c
3: n
Found node compute1(a, b, n)
Found node compute2(b, c, n)
Dataflow CFG is:
CFG for region figure2.c:8
0: a
1: b
2: c
3: n
4 nodes:
 a b c n
0: <entry>:
 write none none none
2: compute1:
 read write none none
3: compute2:
 none read write none
1: <exit>:
 none none read none
3 edges:
<entry> --> compute1
compute1 --> compute2
compute2 --> <exit>
Processing figure2.c:8
Build data dependencies for region figure2.c:8
Process node <exit>
Process node compute2
addDEdge (compute2,<exit>,'c')
Process node compute1
addDEdge (compute1,compute2,'b')
Process node <entry>
addDEdge (<entry>,compute1,'a')
q 0 : (<entry>-exe, compute1-exe, compute2-exe)
q 1 : (<exit>-wait for q0, <exit>-exe)
Found 2 queues
Written figure2_4ryhwv.halt.i
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] figure2.c:21: Loop 'i' was
shared among gangs(192) and workers(256)
(last message repeated 1 more time)
hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__figure2_16__0q7vrdyf_cuda.hmf.c u".
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] figure2.c:31: Loop 'i' was
shared among gangs(192) and workers(256)
(last message repeated 1 more time)
hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__figure2_20__pscahkc2_cuda.hmf.c u".
hmpp: [Warning HP0391] <preprocessor>:12: Variable 'n' in Data clause has no effect if
read-only in the enclosed Kernel/Parallel regions
<preprocessor>: In function 'figure2':
<preprocessor>:36: warning: implicit declaration of function 'openacci_set_device_hint'
<preprocessor>:12: warning: implicit declaration of function 'openacci_enter_region'
<preprocessor>:12: warning: implicit declaration of function 'openacci_push_data'
<stdin>:1: warning: implicit declaration of functio n 'openacci_call'
<stdin>:1: warning: implicit declaration of functio n 'openacci_fallback'
<stdin>:1: warning: implicit declaration of functio n 'openacci_leave_region'

<preprocessor>:24: warning: implicit declaration of function 'openacci_wait'
figure2.c: In function 'example':
figure2.c:50: warning: 'return' with a value, in fu nction returning void
figure2.c: In function 'hmppsi_lookup':
figure2.c:56: warning: implicit declaration of func tion 'hmpprti_lookup_grouplet'
figure2.c:56: warning: return makes pointer from in teger without a cast
figure2.c: At top level:
figure2.c:54: warning: 'hmppsi_lookup' defined but not used

Figure 12, figure2.c, Data Dependencies computed at compile time

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 35 of 48

hmpp -k gcc -Wall main.o figure2.o -o test.exe

• Execution output

./test.exe
[0.207778] (0) INFO : Enter data (queue=no ne, location=<preprocessor>:12)
[0.208117] (0) INFO : Acquire (target=cuda)
[0.208357] (0) INFO : Acquired (device='cuda# 0 [GeForce GTS 450]')
[0.208496] (0) INFO : Allocate a[0:300000] (e lement_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:12)
[0.233900] (0) INFO : Upload a[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:12)
[0.234515] (0) INFO : Allocate b[0:300000] (e lement_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:12)
[0.234719] (0) INFO : Allocate c[0:300000] (e lement_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:12)
[0.234919] (0) INFO : Allocate n[0:1] (elemen t_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:12)
[0.235240] (0) INFO : Enter kernels (queue =0, location=<preprocessor>:16)
[0.236452] (0) INFO : Allocate __hmpp_vla_siz es__a[0:1] (element_size=8,
memory_space=host, queue=0, location=<preprocessor> :16)
[0.236572] (0) INFO : Upload __hmpp_vla_siz es__a[0:1] (element_size=8, queue=0,
location=<preprocessor>:16)
[0.236673] (0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8,
memory_space=host, queue=0, location=<preprocessor> :16)
[0.236759] (0) INFO : Upload __hmpp_vla_siz es__b[0:1] (element_size=8, queue=0,
location=<preprocessor>:16)
[0.236853] (0) INFO : Call __hmpp_acc_reg ion__figure2_16__0q7vrdyf (queue=0,
location=<preprocessor>:16)
[0.237048] (0) INFO : Free __hmpp_vla_siz es__b[0:1] (element_size=8, queue=0,
location=<preprocessor>:16)
[0.237192] (0) INFO : Free __hmpp_vla_siz es__a[0:1] (element_size=8, queue=0,
location=<preprocessor>:16)
[0.237281] (0) INFO : Leave kernels (queue =0, location=<preprocessor>:16)
[0.237378] (0) INFO : Enter kernels (queue =0, location=<preprocessor>:20)
[0.237785] (0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8,
memory_space=host, queue=0, location=<preprocessor> :20)
[0.237876] (0) INFO : Upload __hmpp_vla_siz es__b[0:1] (element_size=8, queue=0,
location=<preprocessor>:20)
[0.237950] (0) INFO : Allocate __hmpp_vla_siz es__c[0:1] (element_size=8,
memory_space=host, queue=0, location=<preprocessor> :20)
[0.238033] (0) INFO : Upload __hmpp_vla_siz es__c[0:1] (element_size=8, queue=0,
location=<preprocessor>:20)
[0.238124] (0) INFO : Call __hmpp_acc_reg ion__figure2_20__pscahkc2 (queue=0,
location=<preprocessor>:20)
[0.238255] (0) INFO : Free __hmpp_vla_siz es__c[0:1] (element_size=8, queue=0,
location=<preprocessor>:20)
[0.238346] (0) INFO : Free __hmpp_vla_siz es__b[0:1] (element_size=8, queue=0,
location=<preprocessor>:20)
[0.238434] (0) INFO : Leave kernels (queue =0, location=<preprocessor>:20)
[0.238506] (0) INFO : Wait (queue=none, a waited=0, location=<preprocessor>:24)
[0.238776] (0) INFO : Free n[0:1] (elemen t_size=4, queue=none,
location=<preprocessor>:12)
[0.239049] (0) INFO : Download c[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:12)
[0.239751] (0) INFO : Free c[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:12)
[0.239916] (0) INFO : Free b[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:12)
[0.240081] (0) INFO : Free a[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:12)
[0.240243] (0) INFO : Leave data (queue=no ne, location=<preprocessor>:12)
start
done

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 36 of 48

Appendix A2: Control flow synchronization example
• Source Code

void compute1(float alpha, float *b, const int n);
void compute2(float beta, float *b, float *d, const int n);
void compute3(float beta, float *b, float *d, const int n);

void figure3(const int k, const int n, const float a[k], float b[n], float c[k], float
d[n])
{
 int index;
 for (index=0; index<k; index++) {
 float a_index = a[index], c_index = c[index];
#pragma acc dataflow copyin(n, a_index,c_index), co pyout(d), async(index)
 {
#pragma acc kernels, pcopyin(a_index), pcopyout(b)
 compute1(a_index, b, n);

 if ((index == 0) || (index == k-1)) {
#pragma acc kernels, pcopyin(c_index,b), pcopyout(d)
 compute2(c_index, b, d, n);
 }
 else {
#pragma acc kernels, pcopyin(c_index,b), pcopyout(d)
 compute3(c_index, b, d, n);
 }
 } // end of FD region
 } // end of loop

 for (index=0; index<k; index++) {
#pragma acc wait(index)
 ;
 }
}
void compute1(const float alpha, float *b, const in t n)
{
 int i;
/* #pragma omp parallel for */
 for (i=0; i<n; ++i)
 {
 b[i] = alpha * alpha * i;
 }
}

void compute2(float beta, float *b, float *d, const int n)
{
 int i;
/* #pragma omp parallel for */
 for (i=0; i<n; ++i)
 {
 d[i] = b[i] / beta;
 }
}

void compute3(float beta, float *b, float *d, const int n)
{
 int i;
/* #pragma omp parallel for */
 for (i=0; i<n; ++i)
 {
 d[i] = b[i] + beta;
 }
}

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 37 of 48

extern void fill(const int n, const float value, fl oat t[n]);
#define K 16
#define N 300000
static const int k = K;
static const int n = N;
float a[K];
float b[N];
float c[K];
float d[n];
void example(void)
{
 fill(k, 2, a);
 fill(n, 1.578, b);
 fill(k, 1.04, c);
 fill(n, 1.699, d);
 figure3(k, n, a, b, c, d);
 return;
}

• Compilation output

hmpp -k gcc -c -Wall -I/home/laorans/travail/DataFl ow/HMPP-
DataFLow/build/hmpp/x86_64/debug//include main.c -o main.o
0 regions found
Written main_7Gt6tX.halt.i
main.c: In function 'main':
main.c:16: warning: implicit declaration of functio n 'printf'
main.c:16: warning: incompatible implicit declarati on of built-in function 'printf'
hmpp -k gcc -c -Wall -I/home/laorans/travail/DataFl ow/HMPP-
DataFLow/build/hmpp/x86_64/debug//include figure3.c -o figure3.o
Parse acc dataflow copyin(n, a_index,c_index), copy out(d), async(index)
Create region figure3.c:11
Parse acc kernels, pcopyin(a_index), pcopyout(b)
Add call compute1(a_index, b, n) to region
Parse acc kernels, pcopyin(c_index,b), pcopyout(d)
Add call compute2(c_index, b, d, n) to region
Parse acc kernels, pcopyin(c_index,b), pcopyout(d)
Add call compute3(c_index, b, d, n) to region
Parse acc wait(index)
1 regions found
Create CFG for: figure3.c:11
0: a_index
1: b
2: c_index
3: d
4: n
Found node compute1(a_index, b, n)
Found node compute2(c_index, b, d, n)
Found node compute3(c_index, b, d, n)
Node trueBlock-0 has 1||0 pred
Link compute1 to compute2
Node falseBlock-0 has 1||0 pred
Link compute1 to compute3
Node after-0 has 1||0 succ
Link compute2 to <exit>
Link compute3 to <exit>
Dataflow CFG is:
CFG for region figure3.c:11
0: a_index
1: b
2: c_index
3: d
4: n

Figure 13: figure3.c, Data Dependencies computed at compile time

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 38 of 48

5 nodes:
 a_index b c_index d n
0: <entry>:
 write none write none write
2: compute1:
 read write none none none
3: compute2:
 none read read write none
4: compute3:
 none read read write none
1: <exit>:
 none none none read none
5 edges:
<entry> --> compute1
compute1 --> compute2
compute1 --> compute3
compute2 --> <exit>
compute3 --> <exit>
Processing figure3.c:11
Build data dependencies for region figure3.c:11
Process node <exit>
Process node compute3
addDEdge (compute3,<exit>,'d')
Process node compute2
addDEdge (compute2,<exit>,'d')
Process node compute1
addDEdge (compute1,compute3,'b')
addDEdge (compute1,compute2,'b')
Process node <entry>
addDEdge (<entry>,compute1,'a_index')
addDEdge (<entry>,compute3,'c_index')
addDEdge (<entry>,compute2,'c_index')
q 0 : (<entry>-exe)
q 1 : (compute1-exe)
q 2 : ()
q 3 : (compute3-wait for q1, compute3-exe)
q 4 : (<exit>-wait for q3, <exit>-wait for q6, <exi t>-exe)
q 5 : ()
q 6 : (compute2-wait for q1, compute2-exe)
Found 7 queues
Written figure3_vzaHXt.halt.i
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] figure3.c:37: Loop 'i' was
shared among gangs(192) and workers(256)
(last message repeated 1 more time)
hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__figure3_19__3l2rxy37_cuda.hmf.c u".
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] figure3.c:47: Loop 'i' was
shared among gangs(192) and workers(256)
(last message repeated 1 more time)
hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__figure3_26__v3352zdi_cuda.hmf.c u".
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] figure3.c:57: Loop 'i' was
shared among gangs(192) and workers(256)
(last message repeated 1 more time)
hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__figure3_33__n5wy5sgy_cuda.hmf.c u".
hmpp: [Warning HP0391] <preprocessor>:15: Variable 'a_index' in Data clause has no effect
if read-only in the enclosed Kernel/Parallel region s
hmpp: [Warning HP0391] <preprocessor>:15: Variable 'c_index' in Data clause has no effect
if read-only in the enclosed Kernel/Parallel region s
hmpp: [Warning HP0391] <preprocessor>:15: Variable 'n' in Data clause has no effect if
read-only in the enclosed Kernel/Parallel regions
<preprocessor>: In function 'figure3':
<preprocessor>:45: warning: implicit declaration of function 'openacci_set_device_hint'
<preprocessor>:15: warning: implicit declaration of function 'openacci_enter_region'
<preprocessor>:15: warning: implicit declaration of function 'openacci_push_data'
<stdin>:1: warning: implicit declaration of functio n 'openacci_call'
<stdin>:1: warning: implicit declaration of functio n 'openacci_fallback'
<stdin>:1: warning: implicit declaration of functio n 'openacci_leave_region'
<preprocessor>:25: warning: implicit declaration of function 'openacci_wait'
figure3.c: In function 'hmppsi_lookup':
figure3.c:85: warning: implicit declaration of func tion 'hmpprti_lookup_grouplet'
figure3.c:85: warning: return makes pointer from in teger without a cast

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 39 of 48

figure3.c: At top level:
figure3.c:83: warning: 'hmppsi_lookup' defined but not used
hmpp -k gcc -Wall main.o figure3.o -o test.exe

• Execution output

./test.exe
[0.201299] (0) INFO : Enter data (queue=no ne, location=<preprocessor>:15)
[0.201616] (0) INFO : Acquire (target=cuda)
[0.201844] (0) INFO : Acquired (device='cuda# 0 [GeForce GTS 450]')
[0.201979] (0) INFO : Allocate a_index[0:1] (element_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:15)
[0.227291] (0) INFO : Upload a_index[0:1] (element_size=4, queue=none,
location=<preprocessor>:15)
[0.227532] (0) INFO : Allocate b[0:300000] (e lement_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:15)
[0.227738] (0) INFO : Allocate c_index[0:1] (element_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:15)
[0.227843] (0) INFO : Upload c_index[0:1] (element_size=4, queue=none,
location=<preprocessor>:15)
[0.227936] (0) INFO : Allocate d[0:300000] (e lement_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:15)
[0.228125] (0) INFO : Allocate n[0:1] (elemen t_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:15)
[0.228227] (0) INFO : Upload n[0:1] (elemen t_size=4, queue=none,
location=<preprocessor>:15)
[0.228433] (0) INFO : Enter kernels (queue =1, location=<preprocessor>:19)
[0.229598] (0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8,
memory_space=host, queue=1, location=<preprocessor> :19)
[0.229723] (0) INFO : Upload __hmpp_vla_siz es__b[0:1] (element_size=8, queue=1,
location=<preprocessor>:19)
[0.229838] (0) INFO : Call __hmpp_acc_reg ion__figure3_19__3l2rxy37 (queue=1,
location=<preprocessor>:19)
[0.230031] (0) INFO : Free __hmpp_vla_siz es__b[0:1] (element_size=8, queue=1,
location=<preprocessor>:19)
[0.230194] (0) INFO : Leave kernels (queue =1, location=<preprocessor>:19)
[0.230308] (0) INFO : Wait (queue=6, awai ted=1, location=<preprocessor>:25)
[0.230391] (0) INFO : Enter kernels (queue =6, location=<preprocessor>:26)
[0.230816] (0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8,
memory_space=host, queue=6, location=<preprocessor> :26)
[0.230911] (0) INFO : Upload __hmpp_vla_siz es__b[0:1] (element_size=8, queue=6,
location=<preprocessor>:26)
[0.230985] (0) INFO : Allocate __hmpp_vla_siz es__d[0:1] (element_size=8,
memory_space=host, queue=6, location=<preprocessor> :26)
[0.231066] (0) INFO : Upload __hmpp_vla_siz es__d[0:1] (element_size=8, queue=6,
location=<preprocessor>:26)
[0.231142] (0) INFO : Call __hmpp_acc_reg ion__figure3_26__v3352zdi (queue=6,
location=<preprocessor>:26)
[0.231254] (0) INFO : Free __hmpp_vla_siz es__d[0:1] (element_size=8, queue=6,
location=<preprocessor>:26)
[0.231344] (0) INFO : Free __hmpp_vla_siz es__b[0:1] (element_size=8, queue=6,
location=<preprocessor>:26)
[0.231424] (0) INFO : Leave kernels (queue =6, location=<preprocessor>:26)
[0.231491] (0) INFO : Wait (queue=none, a waited=3, location=<preprocessor>:38)
[0.231562] (0) INFO : Wait (queue=none, a waited=6, location=<preprocessor>:39)
[0.231629] (0) INFO : Free n[0:1] (elemen t_size=4, queue=none,
location=<preprocessor>:15)
[0.231729] (0) INFO : Download d[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:15)
[0.232365] (0) INFO : Free d[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:15)
[0.232558] (0) INFO : Free c_index[0:1] (element_size=4, queue=none,
location=<preprocessor>:15)
[0.232658] (0) INFO : Free b[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:15)
[0.232807] (0) INFO : Free a_index[0:1] (element_size=4, queue=none,
location=<preprocessor>:15)
[0.232962] (0) INFO : Leave data (queue=no ne, location=<preprocessor>:15)

(...)

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 40 of 48

[0.295439] (0) INFO : Enter data (queue=no ne, location=<preprocessor>:15)
[0.295502] (0) INFO : Allocate a_index[0:1] (element_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:15)
[0.295715] (0) INFO : Upload a_index[0:1] (element_size=4, queue=none,
location=<preprocessor>:15)
[0.295814] (0) INFO : Allocate b[0:300000] (e lement_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:15)
[0.295999] (0) INFO : Allocate c_index[0:1] (element_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:15)
[0.296101] (0) INFO : Upload c_index[0:1] (element_size=4, queue=none,
location=<preprocessor>:15)
[0.296192] (0) INFO : Allocate d[0:300000] (e lement_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:15)
[0.296376] (0) INFO : Allocate n[0:1] (elemen t_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:15)
[0.296479] (0) INFO : Upload n[0:1] (elemen t_size=4, queue=none,
location=<preprocessor>:15)
[0.296573] (0) INFO : Enter kernels (queue =1, location=<preprocessor>:19)
[0.296647] (0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8,
memory_space=host, queue=1, location=<preprocessor> :19)
[0.296729] (0) INFO : Upload __hmpp_vla_siz es__b[0:1] (element_size=8, queue=1,
location=<preprocessor>:19)
[0.296803] (0) INFO : Call __hmpp_acc_reg ion__figure3_19__3l2rxy37 (queue=1,
location=<preprocessor>:19)
[0.296872] (0) INFO : Free __hmpp_vla_siz es__b[0:1] (element_size=8, queue=1,
location=<preprocessor>:19)
[0.296955] (0) INFO : Leave kernels (queue =1, location=<preprocessor>:19)
[0.297020] (0) INFO : Wait (queue=6, awai ted=1, location=<preprocessor>:25)
[0.297092] (0) INFO : Enter kernels (queue =6, location=<preprocessor>:26)
[0.297163] (0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8,
memory_space=host, queue=6, location=<preprocessor> :26)
[0.297245] (0) INFO : Upload __hmpp_vla_siz es__b[0:1] (element_size=8, queue=6,
location=<preprocessor>:26)
[0.297317] (0) INFO : Allocate __hmpp_vla_siz es__d[0:1] (element_size=8,
memory_space=host, queue=6, location=<preprocessor> :26)
[0.297395] (0) INFO : Upload __hmpp_vla_siz es__d[0:1] (element_size=8, queue=6,
location=<preprocessor>:26)
[0.297468] (0) INFO : Call __hmpp_acc_reg ion__figure3_26__v3352zdi (queue=6,
location=<preprocessor>:26)
[0.297535] (0) INFO : Free __hmpp_vla_siz es__d[0:1] (element_size=8, queue=6,
location=<preprocessor>:26)
[0.297616] (0) INFO : Free __hmpp_vla_siz es__b[0:1] (element_size=8, queue=6,
location=<preprocessor>:26)
[0.297695] (0) INFO : Leave kernels (queue =6, location=<preprocessor>:26)
[0.297758] (0) INFO : Wait (queue=none, a waited=3, location=<preprocessor>:38)
[0.297827] (0) INFO : Wait (queue=none, a waited=6, location=<preprocessor>:39)
[0.297892] (0) INFO : Free n[0:1] (elemen t_size=4, queue=none,
location=<preprocessor>:15)
[0.297984] (0) INFO : Download d[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:15)
[0.298548] (0) INFO : Free d[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:15)
[0.298704] (0) INFO : Free c_index[0:1] (element_size=4, queue=none,
location=<preprocessor>:15)
[0.298803] (0) INFO : Free b[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:15)
[0.298950] (0) INFO : Free a_index[0:1] (element_size=4, queue=none,
location=<preprocessor>:15)
[0.299103] (0) INFO : Leave data (queue=no ne, location=<preprocessor>:15)
[0.299177] (0) INFO : Wait (queue=none, a waited=0, location=figure3.c:27)
[0.299246] (0) INFO : Wait (queue=none, a waited=1, location=figure3.c:27)
[0.299309] (0) INFO : Wait (queue=none, a waited=2, location=figure3.c:27)
[0.299370] (0) INFO : Wait (queue=none, a waited=3, location=figure3.c:27)
[0.299432] (0) INFO : Wait (queue=none, a waited=4, location=figure3.c:27)
[0.299495] (0) INFO : Wait (queue=none, a waited=5, location=figure3.c:27)
[0.299555] (0) INFO : Wait (queue=none, a waited=6, location=figure3.c:27)
[0.299618] (0) INFO : Wait (queue=none, a waited=7, location=figure3.c:27)
[0.299681] (0) INFO : Wait (queue=none, a waited=8, location=figure3.c:27)
[0.299743] (0) INFO : Wait (queue=none, a waited=9, location=figure3.c:27)
[0.299805] (0) INFO : Wait (queue=none, a waited=10, location=figure3.c:27)
[0.299867] (0) INFO : Wait (queue=none, a waited=11, location=figure3.c:27)
[0.299929] (0) INFO : Wait (queue=none, a waited=12, location=figure3.c:27)
[0.299992] (0) INFO : Wait (queue=none, a waited=13, location=figure3.c:27)

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 41 of 48

[0.300054] (0) INFO : Wait (queue=none, a waited=14, location=figure3.c:27)
[0.300116] (0) INFO : Wait (queue=none, a waited=15, location=figure3.c:27)
start
done

Appendix A3: Basic synchronization example
• Source code

/* # */
/* # -- k1 -- -- k1b -- */
/* # / \ / \ */
/* # scatter --< >-- gather --< >-- gatherb */
/* # \ / \ / */
/* # -- k2 -- -- k2b -- */
/* # */

void scatter(const float *a, float *b, int n);
void k1(float *b, float *c, int n);
void k2(float *b, float *d, int n);
void gather(float *c, float *d, float *e, int n);
void k1b(float *e, float *f, int n);
void k2b(float *e, float *g, int n);
void gatherb(float *f, float *g, float *h, int n);

void scatter_gather(const int n, const float a[n],
 float b[n], float c[n], float d [n],
 float e[n], float f[n], float g [n], float h[n])
{
#pragma acc dataflow copyin(a), copyout(h)
 {
#pragma acc kernels, pcopyin(a), pcopyout(b)
 scatter(a, b, n);

#pragma acc kernels, pcopyin(b), pcopyout(c)
 k1(b, c, n);

#pragma acc kernels, pcopyin(b), pcopyout(d)
 k2(b, d, n);

#pragma acc kernels, pcopyin(c,d), pcopyout(e)
 gather(c, d, e, n);

#pragma acc kernels, pcopyin(e), pcopyout(f)
 k1b(e, f, n);

#pragma acc kernels, pcopyin(e), pcopyout(g)
 k2b(e, g, n);

#pragma acc kernels, pcopyin(f,g), pcopyout(h)
 gatherb(f, g, h, n);
 }
}

void scatter(const float *a, float *b, int n)
{
 int i;
 for (i=0; i<n; ++i)
 {
 b[i] = a[i] * 5 / (i%2);
 }
}

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 42 of 48

void k1(float *b, float *c, int n)
{
 int i;
 for (i=0; i<n; ++i)
 {
 c[i] = b[i] * 5 / (i%3);
 }
}
void k2(float *b, float *d, int n)
{
 int i;
 for (i=0; i<n; ++i)
 {
 d[i] = b[i] - i + n / 3;
 }
}

void gather(float *c, float *d, float *e, int n)
{
 int i;
 for (i=0; i<n; ++i)
 {
 e[i] = c[i] + d[i] - n / 3;
 }
}

void k1b(float *e, float *f, int n)
{
 int i;
 for (i=0; i<n; ++i)
 {
 f[i] = e[i] * 5 / (i%3);
 }
}

void k2b(float *e, float *g, int n)
{
 int i;
 for (i=0; i<n; ++i)
 {
 g[i] = e[i] - i + n / 3;
 }
}

void gatherb(float *f, float *g, float *h, int n)
{
 int i;
 for (i=0; i<n; ++i)
 {
 h[i] = f[i] - g[i] + n / 3;
 }
}

extern void fill(const int n, const float value, fl oat t[n]);
#define N 300000
static const int n = N;
float a[N],b[N],c[N],d[N];
float e[N],f[N],g[N],h[N];
void example(void)
{
 fill(n, 2, a);
 fill(n, 0, b);
 fill(n, 0, c);
 fill(n, 0, d);
 fill(n, 0, e);
 fill(n, 0, f);
 fill(n, 0, g);
 fill(n, 0, h);
 scatter_gather(n, a, b, c, d, e, f, g, h);
 return;
}

• Compilation output

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 43 of 48

hmpp -k gcc -c -Wall -I/home/laorans/travail/DataFl ow/HMPP-
DataFLow/build/hmpp/x86_64/debug//include main.c -o main.o
0 regions found
Written main_cN2GUe.halt.i
main.c: In function 'main':
main.c:16: warning: implicit declaration of functio n 'printf'
main.c:16: warning: incompatible implicit declarati on of built-in function 'printf'

hmpp -k gcc -c -Wall -I/home/laorans/travail/DataFl ow/HMPP-
DataFLow/build/hmpp/x86_64/debug//include scatter_g ather3.c -o scatter_gather3.o
Parse acc dataflow copyin(a), copyout(h)
Create region scatter_gather3.c:22
Parse acc kernels, pcopyin(a), pcopyout(b)
Add call scatter(a, b, n) to region
Parse acc kernels, pcopyin(b), pcopyout(c)
Add call k1(b, c, n) to region
Parse acc kernels, pcopyin(b), pcopyout(d)
Add call k2(b, d, n) to region
Parse acc kernels, pcopyin(c,d), pcopyout(e)
Add call gather(c, d, e, n) to region
Parse acc kernels, pcopyin(e), pcopyout(f)
Add call k1b(e, f, n) to region
Parse acc kernels, pcopyin(e), pcopyout(g)
Add call k2b(e, g, n) to region
Parse acc kernels, pcopyin(f,g), pcopyout(h)
Add call gatherb(f, g, h, n) to region
1 regions found
Create CFG for: scatter_gather3.c:22
0: a
1: b
2: c
3: d
4: e
5: f
6: g
7: h
8: n
Found node scatter(a, b, n)
Found node k1(b, c, n)
Found node k2(b, d, n)
Found node gather(c, d, e, n)
Found node k1b(e, f, n)
Found node k2b(e, g, n)
Found node gatherb(f, g, h, n)
Dataflow CFG is:
CFG for region scatter_gather3.c:22
0: a
1: b
2: c
3: d
4: e
5: f
6: g
7: h
8: n

Figure 14: scatter_gather3.C, DATA DEPENDENCIES COMPUTED AT COMPILE TIME

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 44 of 48

9 nodes:
 a b c d e f g h n
0: <entry>:
 write none none none none non e none none none
2: scatter:
 read write none none none non e none none none
3: k1:
 none read write none none non e none none none
4: k2:
 none read none write none non e none none none
5: gather:
 none none read read write non e none none none
6: k1b:
 none none none none read wri te none none none
7: k2b:
 none none none none read non e write none none
8: gatherb:
 none none none none none rea d read write none
1: <exit>:
 none none none none none non e none read none
8 edges:
<entry> --> scatter
scatter --> k1
k1 --> k2
k2 --> gather
gather --> k1b
k1b --> k2b
k2b --> gatherb
gatherb --> <exit>

Processing scatter_gather3.c:22
Build data dependencies for region scatter_gather3. c:22
Process node <exit>
Process node gatherb
addDEdge (gatherb,<exit>,'h')
Process node k2b
addDEdge (k2b,gatherb,'g')
Process node k1b
addDEdge (k1b,gatherb,'f')
Process node gather
addDEdge (gather,k2b,'e')
addDEdge (gather,k1b,'e')
Process node k2
addDEdge (k2,gather,'d')
Process node k1
addDEdge (k1,gather,'c')
Process node scatter
addDEdge (scatter,k2,'b')
addDEdge (scatter,k1,'b')
Process node <entry>
addDEdge (<entry>,scatter,'a')
q 0 : (<entry>-exe, scatter-exe)
q 1 : (k2-wait for q0, k2-exe)
q 2 : (gather-wait for q1, gather-wait for q7, gath er-exe)
q 3 : (k2b-wait for q2, k2b-exe)
q 4 : (gatherb-wait for q3, gatherb-wait for q6, ga therb-exe)
q 5 : (<exit>-wait for q4, <exit>-exe)
q 6 : (k1b-wait for q2, k1b-exe)
q 7 : (k1-wait for q0, k1-exe)
Found 8 queues
Written scatter_gather3_QCu3VO.halt.i
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:49: Loop
'i' was shared among gangs(192) and workers(256)
(last message repeated 1 more time)
hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__scatter_gather_22__rxkufdsq_cud a.hmf.cu".
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:58: Loop
'i' was shared among gangs(192) and workers(256)
(last message repeated 1 more time)
hmpp: [Info] Generated codelet filename is
"__hmpp_acc_region__scatter_gather_27__we7v929a_cud a.hmf.cu".
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:67: Loop
'i' was shared among gangs(192) and workers(256)

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 45 of 48

(last message repeated 1 more time)
hmpp: [Info] Generated codelet filename is

"__hmpp_acc_region__scatter_gather_32__m7t6hy1i_cud a.hmf.cu".
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:76: Loop

'i' was shared among gangs(192) and workers(256)
(last message repeated 1 more time)
hmpp: [Info] Generated codelet filename is

"__hmpp_acc_region__scatter_gather_38__sqzf3jti_cud a.hmf.cu".
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:85: Loop

'i' was shared among gangs(192) and workers(256)
(last message repeated 1 more time)
hmpp: [Info] Generated codelet filename is

"__hmpp_acc_region__scatter_gather_43__ib5eb500_cud a.hmf.cu".
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:94: Loop

'i' was shared among gangs(192) and workers(256)
(last message repeated 1 more time)
hmpp: [Info] Generated codelet filename is

"__hmpp_acc_region__scatter_gather_48__nfnpel8g_cud a.hmf.cu".
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:103: Loop

'i' was shared among gangs(192) and workers(256)
(last message repeated 1 more time)
hmpp: [Info] Generated codelet filename is

"__hmpp_acc_region__scatter_gather_54__ejhi1ko8_cud a.hmf.cu".
hmpp: [Warning HP0391] <preprocessor>:18: Variable 'n' in Data clause has no effect if

read-only in the enclosed Kernel/Parallel regions
<preprocessor>: In function 'scatter_gather':
<preprocessor>:92: warning: implicit declaration of function 'openacci_set_device_hint'
<preprocessor>:18: warning: implicit declaration of function 'openacci_enter_region'
<preprocessor>:18: warning: implicit declaration of function 'openacci_push_data'
<stdin>:1: warning: implicit declaration of functio n 'openacci_call'
<stdin>:1: warning: implicit declaration of functio n 'openacci_fallback'
<stdin>:1: warning: implicit declaration of functio n 'openacci_leave_region'
<preprocessor>:26: warning: implicit declaration of function 'openacci_wait'
scatter_gather3.c: In function 'hmppsi_lookup':
scatter_gather3.c:131: warning: implicit declaratio n of function 'hmpprti_lookup_grouplet'
scatter_gather3.c:131: warning: return makes pointe r from integer without a cast
scatter_gather3.c: At top level:
scatter_gather3.c:129: warning: 'hmppsi_lookup' def ined but not used
hmpp -k gcc -Wall main.o scatter_gather3.o -o test. exe

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 46 of 48

Execution output

./test.exe
[0.209093] (0) INFO : Enter data (queue=no ne, location=<preprocessor>:18)
[0.209416] (0) INFO : Acquire (target=cuda)
[0.209650] (0) INFO : Acquired (device='cuda# 0 [GeForce GTS 450]')
[0.209789] (0) INFO : Allocate a[0:300000] (e lement_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:18)
[0.235402] (0) INFO : Upload a[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)
[0.236023] (0) INFO : Allocate b[0:300000] (e lement_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:18)
[0.236230] (0) INFO : Allocate c[0:300000] (e lement_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:18)
[0.236420] (0) INFO : Allocate d[0:300000] (e lement_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:18)
[0.236607] (0) INFO : Allocate e[0:300000] (e lement_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:18)
[0.236793] (0) INFO : Allocate f[0:300000] (e lement_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:18)
[0.236976] (0) INFO : Allocate g[0:300000] (e lement_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:18)
[0.237161] (0) INFO : Allocate h[0:300000] (e lement_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:18)
[0.237346] (0) INFO : Allocate n[0:1] (elemen t_size=4, memory_space=cudaglob,
queue=none, location=<preprocessor>:18)
[0.237643] (0) INFO : Enter kernels (queue =0, location=<preprocessor>:22)
[0.238837] (0) INFO : Allocate __hmpp_vla_siz es__a[0:1] (element_size=8,
memory_space=host, queue=0, location=<preprocessor> :22)
[0.238960] (0) INFO : Upload __hmpp_vla_siz es__a[0:1] (element_size=8, queue=0,
location=<preprocessor>:22)
[0.239055] (0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8,
memory_space=host, queue=0, location=<preprocessor> :22)
[0.239135] (0) INFO : Upload __hmpp_vla_siz es__b[0:1] (element_size=8, queue=0,
location=<preprocessor>:22)
[0.239224] (0) INFO : Call __hmpp_acc_reg ion__scatter_gather_22__rxkufdsq
(queue=0, location=<preprocessor>:22)
[0.239413] (0) INFO : Free __hmpp_vla_siz es__b[0:1] (element_size=8, queue=0,
location=<preprocessor>:22)
[0.239546] (0) INFO : Free __hmpp_vla_siz es__a[0:1] (element_size=8, queue=0,
location=<preprocessor>:22)
[0.239629] (0) INFO : Leave kernels (queue =0, location=<preprocessor>:22)
[0.239729] (0) INFO : Wait (queue=7, awai ted=0, location=<preprocessor>:26)
[0.239807] (0) INFO : Enter kernels (queue =7, location=<preprocessor>:27)
[0.240207] (0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8,
memory_space=host, queue=7, location=<preprocessor> :27)
[0.240298] (0) INFO : Upload __hmpp_vla_siz es__b[0:1] (element_size=8, queue=7,
location=<preprocessor>:27)
[0.240370] (0) INFO : Allocate __hmpp_vla_siz es__c[0:1] (element_size=8,
memory_space=host, queue=7, location=<preprocessor> :27)
[0.240450] (0) INFO : Upload __hmpp_vla_siz es__c[0:1] (element_size=8, queue=7,
location=<preprocessor>:27)
[0.240522] (0) INFO : Call __hmpp_acc_reg ion__scatter_gather_27__we7v929a
(queue=7, location=<preprocessor>:27)
[0.240655] (0) INFO : Free __hmpp_vla_siz es__c[0:1] (element_size=8, queue=7,
location=<preprocessor>:27)
[0.240740] (0) INFO : Free __hmpp_vla_siz es__b[0:1] (element_size=8, queue=7,
location=<preprocessor>:27)
[0.240818] (0) INFO : Leave kernels (queue =7, location=<preprocessor>:27)
[0.240883] (0) INFO : Wait (queue=1, awai ted=0, location=<preprocessor>:31)
[0.240955] (0) INFO : Enter kernels (queue =1, location=<preprocessor>:32)
[0.241323] (0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8,
memory_space=host, queue=1, location=<preprocessor> :32)
[0.241410] (0) INFO : Upload __hmpp_vla_siz es__b[0:1] (element_size=8, queue=1,
location=<preprocessor>:32)
[0.241481] (0) INFO : Allocate __hmpp_vla_siz es__d[0:1] (element_size=8,
memory_space=host, queue=1, location=<preprocessor> :32)
[0.241559] (0) INFO : Upload __hmpp_vla_siz es__d[0:1] (element_size=8, queue=1,
location=<preprocessor>:32)
[0.241634] (0) INFO : Call __hmpp_acc_reg ion__scatter_gather_32__m7t6hy1i
(queue=1, location=<preprocessor>:32)

[0.241728] (0) INFO : Free __hmpp_vla_siz es__d[0:1] (element_size=8, queue=1,

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 47 of 48

location=<preprocessor>:32)
[0.241812] (0) INFO : Free __hmpp_vla_siz es__b[0:1] (element_size=8, queue=1,
location=<preprocessor>:32)
[0.241896] (0) INFO : Leave kernels (queue =1, location=<preprocessor>:32)
[0.241963] (0) INFO : Wait (queue=2, awai ted=1, location=<preprocessor>:36)
[0.242035] (0) INFO : Wait (queue=2, awai ted=7, location=<preprocessor>:37)
[0.242110] (0) INFO : Enter kernels (queue =2, location=<preprocessor>:38)
[0.242540] (0) INFO : Allocate __hmpp_vla_siz es__c[0:1] (element_size=8,
memory_space=host, queue=2, location=<preprocessor> :38)
[0.242628] (0) INFO : Upload __hmpp_vla_siz es__c[0:1] (element_size=8, queue=2,
location=<preprocessor>:38)
[0.242707] (0) INFO : Allocate __hmpp_vla_siz es__d[0:1] (element_size=8,
memory_space=host, queue=2, location=<preprocessor> :38)
[0.242790] (0) INFO : Upload __hmpp_vla_siz es__d[0:1] (element_size=8, queue=2,
location=<preprocessor>:38)
[0.242863] (0) INFO : Allocate __hmpp_vla_siz es__e[0:1] (element_size=8,
memory_space=host, queue=2, location=<preprocessor> :38)
[0.242946] (0) INFO : Upload __hmpp_vla_siz es__e[0:1] (element_size=8, queue=2,
location=<preprocessor>:38)
[0.243031] (0) INFO : Call __hmpp_acc_reg ion__scatter_gather_38__sqzf3jti
(queue=2, location=<preprocessor>:38)
[0.243150] (0) INFO : Free __hmpp_vla_siz es__e[0:1] (element_size=8, queue=2,
location=<preprocessor>:38)
[0.243247] (0) INFO : Free __hmpp_vla_siz es__d[0:1] (element_size=8, queue=2,
location=<preprocessor>:38)
[0.243334] (0) INFO : Free __hmpp_vla_siz es__c[0:1] (element_size=8, queue=2,
location=<preprocessor>:38)
[0.243415] (0) INFO : Leave kernels (queue =2, location=<preprocessor>:38)
[0.243483] (0) INFO : Wait (queue=6, awai ted=2, location=<preprocessor>:42)
[0.243558] (0) INFO : Enter kernels (queue =6, location=<preprocessor>:43)
[0.243936] (0) INFO : Allocate __hmpp_vla_siz es__e[0:1] (element_size=8,
memory_space=host, queue=6, location=<preprocessor> :43)
[0.244024] (0) INFO : Upload __hmpp_vla_siz es__e[0:1] (element_size=8, queue=6,
location=<preprocessor>:43)
[0.244100] (0) INFO : Allocate __hmpp_vla_siz es__f[0:1] (element_size=8,
memory_space=host, queue=6, location=<preprocessor> :43)
[0.244181] (0) INFO : Upload __hmpp_vla_siz es__f[0:1] (element_size=8, queue=6,
location=<preprocessor>:43)
[0.244254] (0) INFO : Call __hmpp_acc_reg ion__scatter_gather_43__ib5eb500
(queue=6, location=<preprocessor>:43)
[0.244350] (0) INFO : Free __hmpp_vla_siz es__f[0:1] (element_size=8, queue=6,
location=<preprocessor>:43)
[0.244433] (0) INFO : Free __hmpp_vla_siz es__e[0:1] (element_size=8, queue=6,
location=<preprocessor>:43)
[0.244507] (0) INFO : Leave kernels (queue =6, location=<preprocessor>:43)
[0.244570] (0) INFO : Wait (queue=3, awai ted=2, location=<preprocessor>:47)
[0.244639] (0) INFO : Enter kernels (queue =3, location=<preprocessor>:48)
[0.244990] (0) INFO : Allocate __hmpp_vla_siz es__e[0:1] (element_size=8,
memory_space=host, queue=3, location=<preprocessor> :48)
[0.245076] (0) INFO : Upload __hmpp_vla_siz es__e[0:1] (element_size=8, queue=3,
location=<preprocessor>:48)
[0.245148] (0) INFO : Allocate __hmpp_vla_siz es__g[0:1] (element_size=8,
memory_space=host, queue=3, location=<preprocessor> :48)
[0.245223] (0) INFO : Upload __hmpp_vla_siz es__g[0:1] (element_size=8, queue=3,
location=<preprocessor>:48)
[0.245298] (0) INFO : Call __hmpp_acc_reg ion__scatter_gather_48__nfnpel8g
(queue=3, location=<preprocessor>:48)
[0.245389] (0) INFO : Free __hmpp_vla_siz es__g[0:1] (element_size=8, queue=3,
location=<preprocessor>:48)
[0.245471] (0) INFO : Free __hmpp_vla_siz es__e[0:1] (element_size=8, queue=3,
location=<preprocessor>:48)
[0.245546] (0) INFO : Leave kernels (queue =3, location=<preprocessor>:48)
[0.245609] (0) INFO : Wait (queue=4, awai ted=3, location=<preprocessor>:52)
[0.245676] (0) INFO : Wait (queue=4, awai ted=6, location=<preprocessor>:53)
[0.245745] (0) INFO : Enter kernels (queue =4, location=<preprocessor>:54)
[0.246157] (0) INFO : Allocate __hmpp_vla_siz es__f[0:1] (element_size=8,
memory_space=host, queue=4, location=<preprocessor> :54)
[0.246244] (0) INFO : Upload __hmpp_vla_siz es__f[0:1] (element_size=8, queue=4,
location=<preprocessor>:54)
[0.246314] (0) INFO : Allocate __hmpp_vla_siz es__g[0:1] (element_size=8,
memory_space=host, queue=4, location=<preprocessor> :54)
[0.246393] (0) INFO : Upload __hmpp_vla_siz es__g[0:1] (element_size=8, queue=4,
location=<preprocessor>:54)

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.5
Deliverable name: Overall Computational Model Final Report
File name: TERAFLUX-D35-v4.doc Page 48 of 48

[0.246462] (0) INFO : Allocate __hmpp_vla_siz es__h[0:1] (element_size=8,
memory_space=host, queue=4, location=<preprocessor> :54)
[0.246535] (0) INFO : Upload __hmpp_vla_siz es__h[0:1] (element_size=8, queue=4,
location=<preprocessor>:54)
[0.246610] (0) INFO : Call __hmpp_acc_reg ion__scatter_gather_54__ejhi1ko8
(queue=4, location=<preprocessor>:54)
[0.246708] (0) INFO : Free __hmpp_vla_siz es__h[0:1] (element_size=8, queue=4,
location=<preprocessor>:54)
[0.246795] (0) INFO : Free __hmpp_vla_siz es__g[0:1] (element_size=8, queue=4,
location=<preprocessor>:54)
[0.246874] (0) INFO : Free __hmpp_vla_siz es__f[0:1] (element_size=8, queue=4,
location=<preprocessor>:54)
[0.246948] (0) INFO : Leave kernels (queue =4, location=<preprocessor>:54)
[0.247009] (0) INFO : Wait (queue=none, a waited=4, location=<preprocessor>:58)
[0.247072] (0) INFO : Free n[0:1] (elemen t_size=4, queue=none,
location=<preprocessor>:18)
[0.247235] (0) INFO : Download h[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)
[0.247867] (0) INFO : Free h[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)
[0.248045] (0) INFO : Free g[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)
[0.248192] (0) INFO : Free f[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)
[0.248338] (0) INFO : Free e[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)
[0.248485] (0) INFO : Free d[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)
[0.248630] (0) INFO : Free c[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)
[0.248776] (0) INFO : Free b[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)
[0.248921] (0) INFO : Free a[0:300000] (e lement_size=4, queue=none,
location=<preprocessor>:18)
[0.249067] (0) INFO : Leave data (queue=no ne, location=<preprocessor>:18)
Start
done

