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Glossary  
TM Transactional Memory 

Dataflow 
computation 

A dataflow computation is defined by a graph where the nodes are side-effect-free 
computations (functional computation) and the arcs represent dependencies. A node is 
activated and executed when its input dependencies have been satisfied, generating 
seamlessly parallel execution. 

DFR 

Transaction 

Dataflow  region 

A set of individual operations that need to be executed atomically, with guarantees of 
consistency and isolation 

Atomicity Transactions must appear to other transactions as if they occur in a single operation, or do not 
occur at all. 

Consistency One transaction must take the program from one consistent state to another. 

Isolation Transactions must act on isolation of each other. 

TM 
mechanisms 

The implementation of a TM system normally requires a means for detecting conflicts among 
executing transactions, and a means for versioning data used within a transaction to allow 
restoring the system state back to its origin should one or more transactions conflict. 

Conflict Two transactions conflict when the two transactions cannot be executed in parallel preserving 
the atomicity, consistency and isolation properties. There are data dependencies across the 
transactions (e.g. read-after-write or write-after-write) which would invalidate the parallel 
execution of those two transactions 

Eager conflict 
detection 

The TM system has a choice about when to check whether a number of transactions have a 
conflict. Eager attempts to detect the conflict during the execution of the transaction. 

Lazy conflict 
detection 

Lazy attempts to detect conflicts among the executing transactions when one of these 
attempts to commit. 

Eager 
versioning 

Eager versioning modifies directly memory and requires an undo log to restore the original 
state.  

Lazy versioning Lazy versioning buffers memory modifications done by a transaction and only once such 
transaction is allowed to commit, these modifications are propagated to memory visible by 
other threads.   

Nested 
transaction 

A transaction is nested when its execution is contained within the context of another 
transaction. Flattening treats the nested transactions as a merged single transaction. Open 
nesting has been proposed as a means to reducing unnecessary conflicts by allowing nested 
transactions to commit before their parent transaction has been done so.  

Strong vs weak 
isolation 

Strong isolation is where nothing can see the state within a transaction while it is executing. 
Weak isolation is where only other transactions are unable to see intermediate state, but other 
threads will not be prevented by the programming model from viewing the intermediate state. 
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Executive Summary 
This report contains descriptions of work within the programming model development, which has 
normally being split into three parts covering the high productivity model, the synchronous dataflow 
model and the high performance models. 
 
The specific achievements and discussions for Year 4 are: 
High Productivity Model – Scala (Section 2) 
• Manchester University Transactions for Scala (MUTS) and Dataflow Scala library (DFScala) 
have been combined to develop complex parallel frameworks such as Pregel and MapReduce. 
• Work understanding how to combine dataflow and transactional memory has been extended 
to Pregel 
• Development of a Scala compiler plugin to help identify which variables should be protected 
with transactions. 
• Analysis of whether of scheduling based on software developers knowledge, presented in 
DFM 2013. 
 
High Performance Model – C directives (Section 3) 
• StarSs (from BSC) has improved their compiler and runtime system to support speculation 
and developer more complex applications including and analysis of the overheads incurred by using 
Software Transactional Memory. 
• CAPS has a proposal for their pragma directives to support dataflow programming on GPUs.  
• INRIA has extended the streaming data-flow extensions of OpenMP, called OpenStream, with 
support for Owner Writable Memory and Transactional Memory. 
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1 Introduction 
This document is the final deliverable of the work carried out in WP3. Work within WP3 has been 
split into three distinct sections covering the work carried out on the high productivity programming 
model (Scala), on the synchronous concurrency (Heptagon) and on high performance models. Within 
the latter models, we have covered progress with C-directive-based dataflow models (StarSs, HMPP, 
OpenStream). This final year the work has focused on Scala, StarSs, OpenStream and HMPP and this 
is reflected in the contents of this deliverable. For completeness we also summarize the work of UCY 
with TFLUX in this workpackage, although no new development has occurred in Year 4. 

 

 

1.1 Relation to other deliverables 
This deliverable describes the existing work carried out to extend and implement dataflow and 
transactional models and it is a continuation of D3.1, D3.2, D3.3 and D3.4 and WP2 contains some of 
the performance results for applications implemented using programming tools developed in this 
workpackage.  

1.2 Activity referred by this deliverable 
This deliverable covers the work being carried out under WP3 in year 4 (i.e. T3.4). 
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1.3 Summary of previous work  
The previous deliverable reported the progress with defining the programming models and the 
outcome of the initial experiments completed successfully. We had developed working software 
prototypes able to execute on standard multi-core platforms. In particular we present below an 
executive summary, for convenience of reading, of decisions taken to combine Dataflow and 
Transactional Memory (for more details we refer to deliverable D3.1, D3.2, D3.3 and D3.4). 
In particular, we recall that Appendix-A of D3.4 summarizes the need for shared data in dataflow, 
which motivates combining Transactional Memory and Dataflow. 
The architecture and semantics is simplified when a transaction executes only within a single thread. 
Once a good understanding of Transactional Memory and Dataflow has been achieved, we intend to 
look into weakening these constraints. 

Versioning and Conflict Detection 

Because the project is fundamentally interested in an extensible system, it is felt that the 
communication required to provide the global observation needed to implement eager conflict 
detection coupled with the complexity it adds in order to provide correct execution and progress 
guarantees mean that it is better to opt for lazy conflict detection. This lazy detection can always be 
strengthened by checks at specified points within the transaction.  

Nesting 

Although true closed nested transactions are preferred, due to finite hardware resources and after a 
given depth, it will be reverted to flattened transactions. The first TM prototypes will implement 
flattening. Because of its non-intuitive semantics open nested transactions are not an option.  

Syntax 

Because of its clarity at a programmer level it is intended that TM syntax in the form of atomic blocks 
will be provided complete with supporting extensions.  

Synchronization 

In addition to providing atomic blocks it is intended that all forms of non-transactional 
synchronization construct are excluded as they break the atomicity of transactions.  

As an update to these decisions, we note that in WP6 we are investigating how to optimize the 
detection mechanism by taking advantage of the structure within a node (a set of cores) by having 
conflict detection options more frequent than lazy. 
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2 High Productivity Programming Model: Scala 
In this section we will describe the work carried out on the development of a high productivity 
programming model based on extensions to the Scala programming language.  

In the previous reporting period we realized two main libraries which provide transactional memory 
and dataflow execution.  

MUTS http://apt.cs.manchester.ac.uk/projects/TERAFLUX/MUTS/ 

DFScala http://apt.cs.manchester.ac.uk/projects/TERAFLUX/DFScala/ 

We provided updates on the new developments for these libraries and in particular how they can be 
applied to Lee’s routing algorithm in D3.4. This deliverable focuses on how we have used these open 
source tools to develop on top more complex frameworks; e.g. Google’s Pregel & MapReduce. 

2.1 Manchester University Transactions for Scala (MUTS) 
We briefly recall that in D3.4 we provided a description of the implementation of software 
transactional memory in Scala without making modifications to the Scala compiler. This was possible 
thanks to a novel mechanism reliant on closures for marking the transactional areas of the code. This 
removes the need for programmers using this model to use a special version of the Scala compiler, so 
making our work more widely applicable. 

The syntax provided by the closures is very simple and an example can be seen below. 

// Program code before a transaction 
... 
// The transaction 
val id = atomic { 
   threadId += 1 
   threadId 
}  
// More none transactional code 

We conducted a survey considering all the main techniques to bring software transactional memory 
into Scala as well as fully explored the capabilities of our closure-based approach. This has been 
published as a journal publication [5].  

2.2 Scala Dataflow Library (DFScala) 
We also briefly recall that in D3.4, to compliment MUTS and to enable the development of dataflow 
code for a number of the applications selected in we have constructed a library to support the creation 
and execution of dataflow threads.  

One distinguishing feature of DFScala is the static checking of the dynamically constructed dataflow 
graph. This static checking ensures that at runtime there will be no mismatch of the arguments to 
functions. DFScala does not require the usage of special types and thus a node can be generated from 
any existing Scala function without complex refactoring of code. Each node in the dataflow graph is a 
function which cannot be subdivided; a function is sequential. 
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Figure 1 DFScala static type checking - error found by Eclipse IDE. 

 
The performance results published in [6] and summarized below cover the scenario on desktop multi-
cores. For next year, we will expand this analysis of the application and run on the TERAFLUX 
architecture and larger many-core systems. 

2.3 Building a Parallel Framework: Pregel 
Google has put into production several frameworks (e.g. MapReduce, Pregel and Percolator) to 
facilitate the software development of parallel applications running on their datacenters. MapReduce 
and Pregel follow dataflow principles and we have developed on top of DFScala and MUTS 
equivalent frameworks which run on many-core architectures rather than at datacenter level. We will 
focus on Pregel in this deliverable as MapReduce has received much more attention and it is well 
understood by now. 
 
Pregel targets at stepwise graph based computations. With this framework a graph structure is 
constructed where each node in the graph has some private state, a function that it can execute at each 
step, and a possibly empty set of vertices to other nodes. On each step each node will: 
• Receive messages from other nodes. 

• Execute the nodes function taking any received messages and the private state of the node as input. 

• Send messages to other nodes. 

• Initiate changes to the graph. 

All actions are completed on all nodes before the next step starts. At the end of any step a node can go 
into a sleep state until either the computation ends or the nodes receives a message. The computation 
ends when all the nodes have gone to sleep. To use Pregel a user is only required to provide: the 
function that the nodes will execute; a function to construct the initial state of the graph; and a 
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function to return the final state of the graph. There is the option of providing aggregator functions 
that will combine outputs from the nodes, making them available to all other nodes at the next step of 
the computation. 

Similar to MapReduce, Pregel is a dataflow pattern encapsulated in a library that takes the required 
functions and input data as arguments. Individual nodes or sets of nodes will have their computation 
at each cycle computed by a dataflow thread. This thread will take as arguments the current state of 
the node/nodes it is calculating for and any messages to these nodes from the dataflow threads in the 
preceding step. It will then call the supplied function for each node in its care. These function calls 
will generate lists of messages (possibly empty) which are passed to the threads in the next step. Each 
thread includes a flag with the messages marking if it is ready for the graph to terminate. When all 
threads are ready for the graph to terminate it will. This creates the following 4 step Pregel pattern 
computing on 3n nodes: 

 

While transactions are not required for this framework the use of shared state to manage message 
passing becomes an essential mechanism for passing messages as the number of threads increases 
either because of an increasing problem size or because fewer nodes are evaluated per thread. Without 
the use of shared state threads that have no messages to communicate to other threads will have to 
send out ever larger numbers of message lists containing no messages. The effect of this can be 
clearly seen in the next graph: 

 

We have compared the scaling of the two versions of the Pregel framework implemented in Scala, the 
first built just using dataflow and the second built using dataflow and transactions. The next graph 
shows that without shared state the problem fails to scale as we increase the number of threads. 
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Figure 2 A demonstration of the effect of adding transactional memory to our implementations in Scala of 

the Pregel framework to reduce the number of dataflow tokens being passed. In this instance the 

framework is computing the single source shortest path (SSSP) problem. This calculates for each node in the 

graph the shortest path from a specified node. In this case, a random graph comprising of 100,000 nodes. 

Finally, Google’s Percolator is their most recent framework. This framework uses transactions to 
address the absence of interactivity in a MapReduce invocation. Specifically it was designed to 
address the inability to insert new data into an executing MapReduce computation. This limit on 
MapReduce interactivity meant that Google could only start the MapReduce to construct a web index 
once they had finished a complete crawl of the web. We have not implemented Percolator in Scala, 
but it serves as an example of another framework outside of TERAFLUX that is following the 
principles investigated in this workpackage. 

2.4 User Assisted Scheduling of Dataflow Programs 
The determinism and race condition free properties of pure dataflow programs make them very 
appealing as a means of constructing programs for multi-core processors. However, pure dataflow 
programs are limited by their determinism which prevents the construction of programs that would 
traditionally require shared state for either efficiency or to support unstructured interactions. 

An example of a problem that requires shared state to be solved efficiently is the travelling salesman 
problem. This takes a connected graph as input, in which the nodes represent cities and the arcs 
represent roads with weights recording the distances between these cities. It returns a tour where 
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every city in the graph is visited and the distance travelled is the shortest possible. Accurate solutions 
to this problem are used on a daily basis by logistics companies. 

A brute force approach to this problem is not practical as there are n! possible tours for n cities. 
Instead efficient techniques for solving this require a shared updatable lower bound which is updated 
as better solutions are found. The presence of this lower bound allows these techniques to discard any 
solution that will exceed this lower bound before any further time is spent on it. As a result the most 
efficient versions are those which can quickly reduce the lower bound to represent the length of the 
shortest tour, and can efficiently calculate the lower bound for the partially constructed. 

In pure dataflow applications scheduling can have a significant effect on the memory footprint and 
number of active tasks for a given program. However, in impure programs (dataflow with shared 
state), scheduling not only affects the system resources, but can also affect the overall time 
complexity and accuracy of the program.  

To address both of these aspects we describe and analyse effective extensions to a dataflow scheduler 
(prototyped in DFScala) to allow programmers to provide priority information describing the 
preferred execution order of a dataflow graph. We show that even very crude task priority metrics can 
be extremely effective, providing an average saving of 91% over the worst case scenario and 60% 
over the best case naive scenario. 
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2.5 Towards Detecting Automatically the Memory Type of Program 
Variables 

In TERAFLUX, we defined different kind of memory types (cf. D7.1, program variables belonging to 
one memory type will only accept a subset of operations). Having to remember and identify correctly 
all these memory usages is not ideal for a software developer. We have investigated whether 
following certain design patterns coupled with static compiler analysis can be used to automatically 
detect for example whether a given variable would be read and written at runtime thus requiring 
protection using transactions. 

Thread Local Storage (or Thread Local Memory) - this memory has no visibility to other threads and 
the values contained within this memory cannot be passed directly to other threads. The data may still 
be passed to other threads via either an implicit or explicit copy to a different style of memory. 
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Frame Memory (or Constant Memory) -   the value of this memory may be modified by the thread 
that allocated it. This memory will become constant once it becomes visible outside the allocating 
thread. To become visible outside the thread a reference must be passed out of the allocating thread. 
This can currently occur either through the passing of a reference into the frame of another thread or 
the setting of the reference into a piece of transactional memory and the encompassing transaction 
then successfully committing. 
 
Transactional Memory - Transactional memory is mutable at all times, but can only be read from or 
written to from within a transaction. The only possible exception to this is when transactional memory 
is in the thread where transactional memory is first allocated. 
 
Owner Writable Memory (OWM) - OWM memory is used as an optimisation on single assignment 
memory, and code operating on OWM must be race condition free. In the event of a race condition 
involving OWM the program is incorrect and the behaviour is undefined. If protection against race 
conditions is required, transactions should be used. 
 
The recommended design patterns have as major purpose to ensure that we can, by relatively simple 
static analysis, detect those variables which are writable by multiple threads and hence need to be 
transactional. An initial assumption is that thread level parallelism will be exploited at relatively 
coarse grain and therefore an individual Scala function will be executed within a single thread. It will 
probably be necessary to relax this if and when we introduce data parallelism. The restrictions all 
relate to multiple update of variables. They are best expressed by positive statements of updates, 
which are allowed together with a negative statement which relates to variables being passed as 
function parameters. The following assumes that a whole program view is available, further thought 
needs to be given to separately compiled classes and libraries. 

Rule 1: A variable may be the object of multiple updates if it is a static variable accessible by the 
scope rules. This is allowed whether or not the access occurs from multiple threads. This allows the 
use of static global variables defined in singleton objects which are required to be transactional if 
accessed by multiple threads. 

Rule 2: A variable may be the object of multiple updates if it is declared locally within a function and 
the updates occur either directly in that function body or from within a nested function definition. The 
variable cannot be referenced from any separate threads which may be generated within the function 
or any nesting. Such variables are always thread local. 

Rule 3: A variable may be the object of multiple updates if it is an instance variable of a class and the 
updates occur within a function defined in the class. 

Rule 4: A variable may not be the object of multiple updates if it is referenced via a parameter passed 
to a function. The purpose of these rules is to prohibit the arbitrary distribution of updateable variables 
(or strictly references to them) via parameters. However, Rule 3 does permit the update of fields of 
objects by calls to functions defines in the objects class (i.e. via the “this” pointer). 

Based on the above rules and our aims are: 
1. To ensure that all reads and modifications to transactional state only occurs within a transaction. 
2. To ensure that all state that is modified after becoming visible outside of the dataflow thread is 
marked as transactional. 
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3. To ensure that all state that does not become visible outside of the dataflow thread is marked as 
local state. 
We have developed a prototype plugin for the Scala compiler which implements the static analysis 
required and show the potential. However, we are not making claims of completeness of all the corner 
cases, as the plugin is in early experimental stages. 
 
The plugin follows the following phases: 

  



Project: TERAFLUX  - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D3.5 
Deliverable name: Overall Computational Model Final Report 
File name: TERAFLUX-D35-v4.doc Page 16 of 48 

3 High Performance Developers: C pragmas 

3.1 StarSs 
For the sake of easier reading, we shortly recall that BSC has investigated how speculation can be 
brought into StarSs [9], specifically SMPs, using Transactional Memory. StarSs is a task based 
programming model for widely used multi-core architectures. The programming model is based on 
data flow analysis and dynamic data dependency tracking by the runtime. Sometimes in order to 
extract more parallelism multiple tasks are allowed to simultaneously update memory locations. In 
such cases lock-based synchronization is used to maintain the correctness of the application. But locks 
suffer from the drawbacks of deadlock, livelock and priority inversion.  
We introduced Software Transactional Memory (STM) based concurrency control mechanism to 
manage parallel updates. The comparison of results between lock-based approach and STM-based 
approach shows that applications with high lock contention have better performance with STM based 
approach [9]. 

3.1.1 Speculation in StarSs 
As described in D3.4, (section 5.1) StarSs provides synchronization constructs such as “wait-on” , to 
wait for a particular memory location to be updated before continuing execution and “barrier”, to 
block execution of all threads till each of them reaches a certain point of execution. Such constructs 
hamper the parallelism by leading to problems such as blocking of work generation and load 
balancing. The most common situations where these constructs are used are during if-condition and 
while-loops. Hence we speculate on the conditions of these loops. 
 
In case of an if-condition such as: 
T1(a); 
//#pragma css wait on(a) 
#pragma css speculate wait(a) values(b,c) 
if(a) 
{ 

T2(b); 
T3(c); 

} 
 
For example we speculate that the if-condition will be evaluated to true and generate the tasks T2 and 
T3 inside a transaction instead of waiting for task T1 to finish. Latter when the values of b and c are 
required we check for the validity of if-condition and either commit the results of b and c or abort 
transaction.  Compiler and runtime changes were required: StarSs and applications/evolutions 
reported. 
 

3.1.2 Overhead of STM in the context of task specul ation  
In the fourth year of the project we have analyzed the overheads of where speculation is used to 
extract more parallelism in SMPSs, an implementation of StarSs [8]. SMPSs is a task-based 
programming model for Symmetric Multiprocessors (SMPs). Speculation is used to overcome the 
synchronization pragmas in SMPSs, which block the generation of work and lead to underutilization 
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of the available resources. TinySTM, a Software Transactional Memory (STM) library is used for an 
STM based implementation to achieve speculation. The speculate  pragma can be used with if-
condition and while-loop programming constructs to speculatively generate tasks blocked until the 
loop-predicate is evaluated. Speculatively generated tasks are executed as transactions in order to 
maintain correctness in case the speculation fails. TinySTM library calls are used to execute 
transactional SMPSs tasks. If the speculation fails a rollback is performed; the updates performed by 
the tasks are undone as the associated transaction is aborted.  

We measured the overhead incurred due to the use of TinySTM library in SMPSs and we analyzed the 
acceptable overhead with the TinySTM-based implementation to achieve speculation. The speculative 
tasks, apart from being control dependent on the loop predicate, may also be data dependent on the 
earlier tasks. Hence, the use of the speculate  pragma will add one of the following types of tasks 
to the SMPSs Task Dependency Graph (TDG) of an application: 

• tasks which are control-dependent on the earlier tasks 

• tasks which are data-dependent tasks on the earlier tasks 

Tasks which are only control-dependent on the earlier tasks allows speculative and non-speculative 
tasks to execute in parallel, but with tasks, which are data-dependent on the earlier tasks, the only 
parallelism available is the overlap of task generation with task execution. We concentrate our 
analysis on applications where speculatively generated tasks are data-dependent on the earlier tasks 
since this is the minimum performance gained by the idea of task-speculation in SMPSs. The 
applications analyzed were Jacobi, Gauss-Seidel and Lee-routing. In case of Jacobi and Gauss-Seidel 
speculative tasks are data-dependent on the earlier tasks. In Lee-routing, speculate  pragma was 
added to overcome a synchronization pragma that was used to enforce control dependence. The 
performance timings presented in the case of Lee-routing cover only the phase where the 
speculate  pragma was added. 

Figure 3 shows the performance of Lee-routing application with and without speculation. The timings 
were taken for a phase of the application where the speculate  pragma was used and the benefits 
achieved due to the simultaneous execution of speculative tasks with earlier tasks is evident. 

 

Figure 3 Performance of speculative and non-speculative Lee-routing application 
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The problem size for the Jacobi and Gauss-Seidel applications shown of the Figure 4 is a system of 
linear equations with 4096 unknowns. Each task processes 512KB block of data. The chosen task 
granularity gives optimal performance in the non-speculative version of the application. The figure 
shows that even though the speculative versions scale, the overhead incurred does not allow any 
performance improvement compared to the non-speculative versions. But with increase in the number 
of threads the absolute difference in the performance between the speculative and non-speculative 
versions reduces. With higher number of threads more resources are available to avail the parallelism 
extracted from the speculate  pragma. This shows us that the idea can be successfully applied to 

obtain some scalability.  

One of the major reasons of overhead with TinySTM is the conflict detection performed by the 
library. This is an unnecessary and unavoidable overhead. Unavoidable since it is a part of the library 
and unnecessary because of the presence of a task dependency graph. We also observed that with 
increase in the task granularity the speculative versions of the applications perform better as shown in 
Figure 4. The legend in the figure represents task-granularities. 

Figure 4 Performance of Jacobi while varying the number of threads and Gauss-Seidel applications while 

varying both number of threads (horizontal axis) and varying tasks granularities (different curves at 512KB, 

1MB, 2MB granularities 
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We also evaluated the relative time spent by speculative versions of the applications in the TinySTM 
library and conclude that the overhead of the library should be less that 1% of the total execution time 
to gain any performance benefits.  

Figure 5 Relative time spent in the TinySTM library for speculative Jacobi and Gauss-Seidel applications 

while varying both number of threads (horizontal axis) and varying tasks granularities (different curves at 

512KB, 1MB, 2MB granularities 
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3.2 - Integrating Dataflow in CAPS compiler (TF-OpenACC) 
The OpenHMPP [14] and OpenACC propose a data parallel programming model based on the codelet 
concept. In TERAFLUX, CAPS has been investigating the extension of the current CAPS products 
with the dataflow model investigated in the Workpackage 3 in a manner that is compatible with the 
existing OpenHMPP implementation and OpenACC. This deliverable focuses on the extensions made 
to OpenACC following the dataflow approach investigated in TERAFLUX: TF-OpenACC. Typically, 
OpenACC can be used on GPU and CPU. The CAPS many-core compiler is able to generate OpenCL 
as well as CUDA code when dealing with GPUs. 

OpenACC [11] proposes a set of directives to describe kernels to remotely execute on an accelerator 
in parallel, and a set of data management techniques. This proposal is based on the OpenACC data 
transfer management mechanisms (See [12] for details) and on the integration of kernels inside 
codelets for the task computation description. 

The constraints on the design of this extension that have been taken into account in the following way: 

• Minimize the number of changes to OpenACC; 

• Execution with current OpenACC model is correct. 

In the remainder of this document we describe TF-OpenACC for the C language. In the future, this 
extension will be proposed for FORTRAN. A variant will also be envisioned for C++. 

The following sections describe the new directives to be added to OpenACC. We also present the 
constraint to the tasks codes (i.e. kernels) and give an overview of the data flow code region runtime 
behavior. We explain how the data are managed and describe a first implementation. This first 
implementation does not aim at being efficient but at demonstrating the concept.  

3.2.1 New Directives Overview 
TF-OpenACC is based on a new pair of directives describing the limits of a data flow region. In a 
region a set of asynchronous tasks are created. A task is an execution instance of a kernel section. The 
kernel has to be encapsulated inside a pure function called a DFCodelet, as defined in the OpenHMPP 
standard [13]. The synchronization between the tasks is performed according to the data dependencies 
between the tasks arguments.  

Contrary to the OpenACC specification, the tasks are not necessarily and statically assigned to a 
particular device according to the owner compute rule of the arguments. However, this first region 
will restrict data flow region to accelerators having one single device or devices with a shared 
memory address space. The data are allocated using the "mirror" approach used in the CAPS compiler 
i.e. a data blocks on the Host has a mirrored version on the accelerator device updated according the 
OpenACC semantic and directives. 

Data Flow Region (DFR) 

The data flow region is delimited using an "acc dataflow" pragma on a statement block (denoted DFR 
hereafter). This is illustrated in Figure 6. 
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#pragma acc dataflow copyin(a,c), copyout(e) 
{  
     // set of statements 
}//end of data flow region 

Figure 6: TF-OpenACC Data Flow Region. 

Data flow regions can contain the following statements: 

• DFCodelet calls with a kernel directive; 

• Statements which behavior is not affected by the tasks computations. Output arguments of tasks 

cannot be used in the region except for another kernel statement. 

Data flow regions must have the same semantic as the sequential execution of the region. In and out 
region arguments are contiguous memory blocks. Other memory blocks can be used as internal 
storage for the region. They are dead variables at the entry and exit of the DFR. 

Figure 7gives an example of a region containing two DFCodelets. Variable A is an input to the region 
and variable C is the output. Variable B is an intermediate variable, which in and out values are 
ignored before and after. Task corresponding to compute2 is synchronized on the completion of 
compute1, assuming B is an input to compute2 and output of compute1. 

The device clause on the kernel directive is an extension of OpenACC. It allows kernels to be 
executed on a specified device even if the arguments are located on a different device. Note that the 
first version will not support devices that do not share a common memory address space. By default, 
the same device is used for the same dataflow region. 

void compute1(const float *a, float *b, const int n ); 
 
void compute2(const float *b, float *c, const int n ); 
 
void figure2(const int n, const float a[n], float b [n], float c[n]) 
{ 
#pragma acc dataflow copyin(a), create(b), copyout( c) 
  { 
#pragma acc kernels, pcopyin(a), pcopyout(b), devic e(1) 
    compute1(a, b, n); 
 
#pragma acc kernels, pcopyin(b), pcopyout(c), devic e(1) 
    compute2(b, c, n); 
  } // end of FD region 
} 

Figure 7: Example of a data flow region. 

Figure 8 shows an example where k input tasks are connected to k output tasks. The dataflow region 
is launched multiple times asynchronously using a dataflow OpenACC parallel region. Inside each 
region two kernels are executed, and depending on the region a different kernel variant is chosen. 
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void compute1( float alpha, float *b, const int n); 
void compute2( float beta, float *b, float *d, const int n); 
void compute3( float beta, float *b, float *d, const int n); 
 
void figure3( const int k, const int n, const float a[k], float b[n], float c[k], float 
d[n]) 
{ 
  int index; 
  for (index=0; index<k; index++) { 
    float a_index = a[index], c_index = c[index]; 
#pragma acc dataflow copyin(n, a_index,c_index), copyout(d), async(index) 
    { 
#pragma acc kernels, pcopyin(a_index), pcopyout(b) 
      compute1(a_index, b, n); 
 
      if ((index == 0) || (index == k-1)) { 
#pragma acc kernels, pcopyin(c_index,b), pcopyout(d) 
        compute2(c_index, b, d, n); 
      } 
      else { 
#pragma acc kernels, pcopyin(c_index,b), pcopyout(d) 
        compute3(c_index, b, d, n); 
      } 
    } // end of FD region "index" 
  } // end of loop 
 
  for (index=0; index<k; index++) { 
#pragma acc wait(index) 
    ; 
  } 
 // Wait for all DFR 
} 

Figure 8: Example of a data flow region with the creation of multiple tasks. 

Data Flow Region Characteristics 

A data flow region describes a parameterized data flow graph with the following characteristics: 

• The data dependencies between the tasks follows the sequential semantic of the C language. The 

execution of the DFR in parallel or sequentially leads to the same results (if no I/O status errors are 

in the code); 

• The creation of tasks is driven by the statements in DFR block; The creation of tasks is 

independent of the tasks execution themselves; 

• The task allocation on device is either allocated according to the owner compute rule of the 

mirrored data (default OpenACC behavior) or according to the device clause. Note that in future 

version, this later one may induce mirrors reallocations; 

• All kernels inside a dataflow region are asynchronous; 

• The internal data flow graph is limited to direct acyclic graphs (DAG). 

Devices and Resources 

All devices and mirrors are allocated prior entering the DFR. 
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3.2.2 Kernels in dataflow regions and DFCodelets 
The proposed extension to OpenACC is based on the current concept of OpenHMPP Codelets. They 
are pure functions that can be remotely executed in a given address space. 

In the context of this work, Codelets have a set of restrictions. Codelets arguments are limited to 
scalar and mirrored data 

• the first version can be limited to mirrored data, scalar data would be supported in a second 

version, 

• Codelets code generation must not lead to data exchange or synchronization with the master 

program 

• For CUDA or OpenCL codes, it is composed of a sequence of kernel launches, 

• It does not contain any implicit transfers, 

• Reductions are not supported ; 

Codelets falling in this category are denoted DFCodelets.  From the data flow model point of view, a 
DFCodelet can be seen as a data flow threads at execution.  

The DFCodelets pattern is given in Figure 9. The DFCodelet calls must be declared with an explicit 
description of data I/O status to ensure the proper declaration for the argument mode management: 

#pragma acc kernels, pcopyin(A), pcopyout(C) 
compute1(A, C); 
 

Figure 9: DFCodelet pattern. 

DFCodelet Granularity 

DFCodelet granularity can encompass a few statements to a large set of statements. This later is 
targeted with this work since it is expected that in general the synchronization operations may be 
expensive. However, when considering the TERAFLUX system this constraint may be alleviated 
thanks to the hardware based thread management (cf. D7.1, D6.1, D6.2, D6,3, D6.4). 

DFCodelet Body Statements 

There are no restrictions for the statements except that code generation must lead to one unique 
accelerator kernel. This constraint is necessary to ensure that no synchronization between the device 
and the host is needed to execute a task. 

DFCodelet Inner Parallelism 

DFCodelets are expected to exhibit parallelism in their computation. This parallelism can then be used 
to exploit SIMD/SIMT parallelism available in many computing cores. This is taken in charge by the 
CAPS compiler code generation. 
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3.2.3 Data Flow Region and Data 
A data flow region (DFR) describes a parameterized data flow task graph. This introduces many 
limitations to the content of the region. A data flow region is executed as a slave of a master program. 

Data Flow Region 

A data flow region is described using a directive denoted "acc dataflow". This directive has two 
clauses: 

• pcopyin or copyin(list of variables): list of variables (or addresses) that are not scalar variables and 

input to the region. 

• pcopyout or copyout(list of variables): list of variables (or addresses) that are not scalar variables 

and output to the region. 

Note that these clauses are identical to the clauses defined in the OpenACC standard. See [11] for a 
detailed description of the semantic. 

#pragma acc dataflow copyin(n, a_index,c_index), copyout(d), async(index) 
{ 
    . . . 
} //end of data flow region 

Figure 10: DFR directive. 

Data Flow Region Statements 

The DFR statements aim at creating the task graph. These statements can be arbitrarily complex but a 
task creation cannot depend on the result of one of the tasks. These statements are executed on the 
host system. 

Figure 11 shows an example of incorrect statement in a DFR. The creation of the compute2 task 
depends on the value produced by the compute1 task that is not part of the considered model. 

#pragma acc dataflow copyin(A, C), copyout(B) 
{  
  #pragma acc kernels, copyin(A), copyout(C) 
  compute1(A,C) ; 
 
   // !!! Forbidden dependency on C !!! 
  if (C[i]) 
    #pragma acc kernels, copyin(C), copyout(B) 
    compute2(C,B) ; 
}//end of data flow region 

Figure 11: Incorrect statement of a data flow region. 

Data Flow Region Execution Model 

There are two main parts in the execution model: 

• Data flow execution inside the regions; 

• The region inside the host program. 
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Master-Slave Execution 

The execution of a DFR region is executed as a whole in synchronous mode with the host program, or 
asynchronously when the appropriate OpenACC "async"/"wait" clauses are used. 

Dynamic Data Flow 

The execution of the statement inside the DFR creates the data flow graph according to the 
DFCodelets and the data dependencies between the tasks argument. This model is very similar to the 
StarSs model. 

Data Management 

This section describes how data structures are handled in a DFR. There are three cases to consider: 

• Data structures that are input to the DFR 

• Data structures that are output to the DFR 

• Data structures that are temporary structures to send and receive data between tasks 

The allocation of data for a DFR follows the usual allocation mirroring mechanism of the CAPS 
compiler. In short, the DFR tasks compute on mirror data. This has multiple advantages: 

The DFR can be executed in different address spaces than the host program. Mirrors can also be used 
by other compute phases that exploit the data parallel model of OpenACC. The tasks can themselves 
exploit the data parallel code generation of OpenACC. Tasks can also be executed on the host. A 
rollback mechanism can be implemented (for conformant codes). 

Block Data Allocation 

The allocation of the data structures have to follow these rules: 

• All data structures are contiguous memory block. 

• All data/mirror are allocated prior to entering a region including DFCodelet arguments, 

• Rollback mechanism is performed by restoring region in-out data. 

 

Dealing with Multiple Address Spaces 

A mirror can only belong to one address space. As a consequence if DFCodelets are exchanging data 
from different address spaces, mirrors would need to migrate from one device to another one. In the 
current version, no data exchanges are supported. The DFR can support multiple devices if they share 
the same memory address space. 
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DFCodelet Arguments 

DFCodelet arguments of two kinds: 

• Scalar variables 

• Allocated structures are contiguous block of memories that are managed as mirrored data. In this 

case, argument can be sub-block of a main block 

Data Related Synchronizations 

DFCodelet arguments are seen as tokens: 

• No synchronizations based on scalar variables are allowed 

• Cannot synchronize on mirror that are on different devices 

Synchronizations are performed at the level of the allocated mirrored, not at the level of sub-blocks 
that may be used by DFCodelets. 

Dataflow management: an instance at runtime of each thread argument is associated to one 
synchronization token (very much like in [7]). 

3.2.4 Implementation, features and restrictions 
This section presents implementation options. As a first step, the proof of concept is based on current 
CAPS manycore compiler version 3. A data flow task library may be added to trigger the task 
execution. This library makes the interface with the CAPS compiler runtime that provides support for 
allocation memory and resources. 

Implementation restrictions 

Multiple Files Limitations - DFCodelets can be declared in multiple files but the data flow 
regions is defined in a unique file. 

Source Language - This work is limited to the C code. 

Target Language - CUDA, OpenCL Accelerator, and CPU. 

A task management library 

This library implements a data flow manager on top of the CAPS compiler public runtime API. This 
library main function is to track data dependencies to trigger DFCodelets execution. It can be for 
example based on the light weighted thread (QLib - Sandia). 

Debugging 

The CAPS compiler describes clearly the dataflow computed at compile time using a text report and a 
graphic representation of the dependences using the "graphviz" library for instance. Then, the work is 
left to usual debugger that understands HMPP (e.g. Allinea DDT). 
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Prototype and evaluation 

The TF-OpenACC extension specification has led to the implementation of an operational prototype 
based on the CAPS many-core compiler suite version 3.3.1. This prototype is a fork of the CAPS 
compiler and has not been integrated inside the commercial version of the compiler currently in 
version 3.4.3. 

The prototype supports all the features described in this document excepted the support of multiple 
devices (with the keyword extension "device(n)"). It has been validated on a various set of tests 
among the following: 

• The simple example provided by the specification in figure 2, Appendix A1, 

• The task distribution example provided by the specification in figure 3, see  Appendix A2, 

• A scatter/gather example, see Appendix A3, 

In all these examples, the data dependences computed at compile time are provided. The OpenACC 
target used is CUDA on an NVidia GPU. 

The validation machine has the following specification: 

• Dual Socket Intel(R) Xeon(R) CPU X5560  @ 2.80GHz (total of 8 physical cores), 

• 24 Go of RAM, 

• x86_64 GNU/Linux version 3.11.0-18-generic 

• NVidia GPU, GeForce GTS 450 

• CUDA SDK version 5.0.23 

• GNU C Compiler version 4.4.7 
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3.3 OpenStream and Owner Writeable Memory 
We recall, for easy of reading, that in the previous period INRIA has worked on streaming dataflow 
using a directive-based approach. We coined the name OpenStream for these dataflow streaming 
extensions of OpenMP 3.0: 

http://www.di.ens.fr/StreamingOpenMP 

OpenStream is an expressive programming model to allow the composition of tasks communicating 
through first-class dataflow streams, as well as separate compilation. We provide more general 
dynamic constructs to support complex data structures and unbounded fan-in and fan-out 
communications. In contrast with our previous work, we introduce strongly typed, first-class streams 
that may be freely combined with recursive computations and dynamic data structures, while 
preserving modular (separate) compilation. We also add variadic stream clauses to construct 
arbitrarily complex, dynamic, possibly nested task graphs, and we provide syntactic support for 
broadcast operations and for synchronization with futures. 

Additionally, in the fourth period of the project, further extended the functional nature of pure 
dataflow programs implies that all operations are side-effect free. The absence of side effect means 
that if tokens are allowed to carry vectors, arrays, or other complex data structures, an operation on a 
data structure results in a new data structure. The problem of efficiently representing and 
manipulating complex data structures in a dataflow execution model has remained a fundamental and 
practical challenge. Owner Writable Memory (OWM) has been proposed in TERAFLUX to manage 
complex data structures in dataflow programs. The name and idea origins from our collaborator Prof. 
Ian Watson from University of Manchester (cf. D7.1). OWM implements a globally addressable 
memory (in software or hardware, depending on the instantiation). Before a thread could write to a 
portion of memory, it has to claim ownership beforehand. At any time point only the thread who has 
the ownership of the memory could write to it. When write ownership is successfully acquired, any 
read from another thread is not guaranteed to see consistent data. When write ownership is released, a 
consistent view of data must be visible to any other thread. Note the release operation could be 
performed explicitly by the thread or implicitly by the model. The latter is achieved when the OWM is 
used by a thread to write its results, which are made available to the consumer thread upon the 
completion of the execution of the thread. This memory can serve the requirements of the single 
assignment semantics required for functional objects. However, the ability for other threads to 
subsequently reclaim write ownership adds to flexibility of usage. Please note that unlike classical  
acquire/release”, OWM is not a synchronization algorithm. It relies on external synchronization and 
dependence enforcement mechanisms (dataflow) to implement race-free in-place communication. It 
also defines a global address space. 

OWM is integrated into the OpenStream compiler as a language extension. 

The OWM extension of OpenStream takes the form of a simple “cache” clause in the task pragma:  

#pragma omp task cache (ACCESS_MODE: MEM[OFF:SIZE])   
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The cache clause subscribes the task with the OWM subregion described by MEM[off:size]  and 
“ACCESS_MODE” can be read (R),write (W) or read-write (RW). The current clause syntax supports 
only one dimensional arrays, but it may easily be extended to multiple dimension arrays. 

 

OWM extension to OpenStream 

The simple usage of the pragma is described above. tstar_owm_alloc  allocates the OWM 
memory with size N*N*sizeof(DATA) . Task 1 writes to this OWM memory region and task 2 
reads from this OWM region. Note that two tasks are synchronized by stream sync, task 2 will only be 
executed when task 1 finishes. Use cases of OWM in OpenStream are presented in the WP2 and WP7 
deliverables. 
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4 Summary 
This document has described the research carried out in the WP3 of the TERAFLUX project during 
the fourth year. We have covered progress with C-directive-based dataflow models (StarSs, CAPS, 
OpenStream). CAPS (our commercial partner is WP3) has shown how they have included dataflow 
directives to OpenACC. BSC has continued with the work on using speculation as part of dataflow to 
increase parallelism available. BSC has reported the analysis of overhead that TinySTM brings and 
offer some light of when it would be profitable to use speculation given those overheads. With Scala, 
UNIMAN has provided more evidence of the advantages of bringing together dataflow and 
transactional memory by looking a Pregel (a distributed framework for Graphs published by Google. 
UNIMAN has also reported their progress on allowing developers to express preferences for task 
scheduling as well as facilitating the correct usage of the different types of TERAFLUX memory. 
With OpenStream, INRIA has reported how Owner Writable Memory can now be express in the 
language and in WP2 and WP7 further information can be found about the performance 
improvements derived. This deliverable has covered the work being carried out in T3.4. 
 
Overall, the programming models have matured with significant number of applications being ported 
(see WP2 deliverable) and most of the tools are available to be downloaded as open-source tools to 
increase dissemination and impact.  
 
The creation of the dataflow task graph is supported with different syntax but the core functionality of 
describing a side effect free computation as a node in the graph is prevalent. The inputs and outputs 
are specifically annotated and permit the generation of the dataflow graph. We can observe a 
divergence on how rich a set of dependencies each programming model provides specific support for. 
We can also observe a divergence with respect to the extra information that can optimize the runtime 
scheduling of the dataflow graph. These divergences have not to do with whether the dataflow graph 
generated is general, but is associated with covering well certain patterns of dependencies and the 
level of sophistication expected from the compiler when a pragma is encountered. The work by CAPS 
provides an industrial perspective of what features/functionalities are well understood. 
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Appendix A – CAPS Compiler: Reference codes annexes  

Appendix A1: Basic synchronization example 
• Source code 

void compute1(const float *a, float *b, const int n ); 
 
void compute2(const float *b, float *c, const int n ); 
 
void figure2(const int n, const float a[n], float b [n], float c[n]) 
{ 
#pragma acc dataflow copyin(a), create(b), copyout( c) 
  { 
#pragma acc kernels, pcopyin(a), pcopyout(b) 
    compute1(a, b, n); 
 
#pragma acc kernels, pcopyin(b), pcopyout(c) 
    compute2(b, c, n); 
  } // end of FD region 
} 
 
void compute1(const float *a, float *b, const int n ) 
{ 
  int i; 
/* #pragma omp parallel for */ 
  for (i=0; i<n; ++i) 
    { 
      b[i] = a[i] / 3.14f; 
    } 
} 
 
void compute2(const float *b, float *c, const int n ) 
{ 
  int i; 
/* #pragma omp parallel for */ 
  for (i=0; i<n; ++i) 
    { 
      c[i] = b[i] * b[i]; 
    } 
} 
 
extern void fill(const int n, const float value, fl oat t[n]); 
 
#define N 300000 
static const int n = N; 
float a[N]; 
float b[N]; 
float c[N]; 
void example(void) 
{ 
  fill(n, 2, a); 
  fill(n, 1.578, b); 
  fill(n, 1.04, c); 
  figure2(n, a, b, c); 
  return 0; 
} 

 

• Compilation output 

hmpp -k gcc -c -Wall -I/home/laorans/travail/DataFl ow/HMPP-
DataFLow/build/hmpp/x86_64/debug//include figure2.c  -o figure2.o 
Parse acc dataflow copyin(a), create(b), copyout(c)  
Create region figure2.c:8 
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Parse acc kernels, pcopyin(a), pcopyout(b) 
Add call compute1(a, b, n) to region 
Parse acc kernels, pcopyin(b), pcopyout(c) 
Add call compute2(b, c, n) to region 
1 regions found 
Create CFG for: figure2.c:8 
0: a 
1: b 
2: c 
3: n 
Found node compute1(a, b, n) 
Found node compute2(b, c, n) 
Dataflow CFG is: 
CFG for region figure2.c:8 
0: a 
1: b 
2: c 
3: n 
4 nodes: 
        a       b       c       n 
0: <entry>: 
        write   none    none    none 
2: compute1: 
        read    write   none    none 
3: compute2: 
        none    read    write   none 
1: <exit>: 
        none    none    read    none 
3 edges: 
<entry> --> compute1 
compute1 --> compute2 
compute2 --> <exit> 
Processing figure2.c:8 
Build data dependencies for region figure2.c:8 
Process node <exit> 
Process node compute2 
addDEdge (compute2,<exit>,'c') 
Process node compute1 
addDEdge (compute1,compute2,'b') 
Process node <entry> 
addDEdge (<entry>,compute1,'a') 
q 0 : (<entry>-exe, compute1-exe, compute2-exe) 
q 1 : (<exit>-wait for q0, <exit>-exe) 
Found 2 queues 
Written figure2_4ryhwv.halt.i 
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] figure2.c:21: Loop 'i' was 
shared among gangs(192) and workers(256) 
(last message repeated 1 more time) 
hmpp: [Info] Generated codelet filename is 
"__hmpp_acc_region__figure2_16__0q7vrdyf_cuda.hmf.c u". 
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] figure2.c:31: Loop 'i' was 
shared among gangs(192) and workers(256) 
(last message repeated 1 more time) 
hmpp: [Info] Generated codelet filename is 
"__hmpp_acc_region__figure2_20__pscahkc2_cuda.hmf.c u". 
hmpp: [Warning HP0391] <preprocessor>:12: Variable 'n' in Data clause has no effect if 
read-only in the enclosed Kernel/Parallel regions 
<preprocessor>: In function 'figure2': 
<preprocessor>:36: warning: implicit declaration of  function 'openacci_set_device_hint' 
<preprocessor>:12: warning: implicit declaration of  function 'openacci_enter_region' 
<preprocessor>:12: warning: implicit declaration of  function 'openacci_push_data' 
<stdin>:1: warning: implicit declaration of functio n 'openacci_call' 
<stdin>:1: warning: implicit declaration of functio n 'openacci_fallback' 
<stdin>:1: warning: implicit declaration of functio n 'openacci_leave_region' 
 
<preprocessor>:24: warning: implicit declaration of  function 'openacci_wait' 
figure2.c: In function 'example': 
figure2.c:50: warning: 'return' with a value, in fu nction returning void 
figure2.c: In function 'hmppsi_lookup': 
figure2.c:56: warning: implicit declaration of func tion 'hmpprti_lookup_grouplet' 
figure2.c:56: warning: return makes pointer from in teger without a cast 
figure2.c: At top level: 
figure2.c:54: warning: 'hmppsi_lookup' defined but not used 

Figure 12, figure2.c, Data Dependencies computed at compile time 



Project: TERAFLUX  - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D3.5 
Deliverable name: Overall Computational Model Final Report 
File name: TERAFLUX-D35-v4.doc Page 35 of 48 

hmpp -k gcc -Wall main.o figure2.o -o test.exe 

• Execution output 

./test.exe 
[     0.207778] ( 0) INFO : Enter    data (queue=no ne, location=<preprocessor>:12) 
[     0.208117] ( 0) INFO : Acquire  (target=cuda) 
[     0.208357] ( 0) INFO : Acquired (device='cuda# 0 [GeForce GTS 450]') 
[     0.208496] ( 0) INFO : Allocate a[0:300000] (e lement_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:12) 
[     0.233900] ( 0) INFO : Upload   a[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:12) 
[     0.234515] ( 0) INFO : Allocate b[0:300000] (e lement_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:12) 
[     0.234719] ( 0) INFO : Allocate c[0:300000] (e lement_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:12) 
[     0.234919] ( 0) INFO : Allocate n[0:1] (elemen t_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:12) 
[     0.235240] ( 0) INFO : Enter    kernels (queue =0, location=<preprocessor>:16) 
[     0.236452] ( 0) INFO : Allocate __hmpp_vla_siz es__a[0:1] (element_size=8, 
memory_space=host, queue=0, location=<preprocessor> :16) 
[     0.236572] ( 0) INFO : Upload   __hmpp_vla_siz es__a[0:1] (element_size=8, queue=0, 
location=<preprocessor>:16) 
[     0.236673] ( 0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8, 
memory_space=host, queue=0, location=<preprocessor> :16) 
[     0.236759] ( 0) INFO : Upload   __hmpp_vla_siz es__b[0:1] (element_size=8, queue=0, 
location=<preprocessor>:16) 
[     0.236853] ( 0) INFO : Call     __hmpp_acc_reg ion__figure2_16__0q7vrdyf (queue=0, 
location=<preprocessor>:16) 
[     0.237048] ( 0) INFO : Free     __hmpp_vla_siz es__b[0:1] (element_size=8, queue=0, 
location=<preprocessor>:16) 
[     0.237192] ( 0) INFO : Free     __hmpp_vla_siz es__a[0:1] (element_size=8, queue=0, 
location=<preprocessor>:16) 
[     0.237281] ( 0) INFO : Leave    kernels (queue =0, location=<preprocessor>:16) 
[     0.237378] ( 0) INFO : Enter    kernels (queue =0, location=<preprocessor>:20) 
[     0.237785] ( 0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8, 
memory_space=host, queue=0, location=<preprocessor> :20) 
[     0.237876] ( 0) INFO : Upload   __hmpp_vla_siz es__b[0:1] (element_size=8, queue=0, 
location=<preprocessor>:20) 
[     0.237950] ( 0) INFO : Allocate __hmpp_vla_siz es__c[0:1] (element_size=8, 
memory_space=host, queue=0, location=<preprocessor> :20) 
[     0.238033] ( 0) INFO : Upload   __hmpp_vla_siz es__c[0:1] (element_size=8, queue=0, 
location=<preprocessor>:20) 
[     0.238124] ( 0) INFO : Call     __hmpp_acc_reg ion__figure2_20__pscahkc2 (queue=0, 
location=<preprocessor>:20) 
[     0.238255] ( 0) INFO : Free     __hmpp_vla_siz es__c[0:1] (element_size=8, queue=0, 
location=<preprocessor>:20) 
[     0.238346] ( 0) INFO : Free     __hmpp_vla_siz es__b[0:1] (element_size=8, queue=0, 
location=<preprocessor>:20) 
[     0.238434] ( 0) INFO : Leave    kernels (queue =0, location=<preprocessor>:20) 
[     0.238506] ( 0) INFO : Wait     (queue=none, a waited=0, location=<preprocessor>:24) 
[     0.238776] ( 0) INFO : Free     n[0:1] (elemen t_size=4, queue=none, 
location=<preprocessor>:12) 
[     0.239049] ( 0) INFO : Download c[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:12) 
[     0.239751] ( 0) INFO : Free     c[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:12) 
[     0.239916] ( 0) INFO : Free     b[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:12) 
[     0.240081] ( 0) INFO : Free     a[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:12) 
[     0.240243] ( 0) INFO : Leave    data (queue=no ne, location=<preprocessor>:12) 
start 
done 
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Appendix A2: Control flow synchronization example 
• Source Code 

void compute1(float alpha, float *b, const int n); 
void compute2(float beta, float *b, float *d, const  int n); 
void compute3(float beta, float *b, float *d, const  int n); 
 
void figure3(const int k, const int n, const float a[k], float b[n], float c[k], float 
d[n]) 
{ 
  int index; 
  for (index=0; index<k; index++) { 
    float a_index = a[index], c_index = c[index]; 
#pragma acc dataflow copyin(n, a_index,c_index), co pyout(d), async(index) 
    { 
#pragma acc kernels, pcopyin(a_index), pcopyout(b) 
      compute1(a_index, b, n); 
 
      if ((index == 0) || (index == k-1)) { 
#pragma acc kernels, pcopyin(c_index,b), pcopyout(d ) 
        compute2(c_index, b, d, n); 
      } 
      else { 
#pragma acc kernels, pcopyin(c_index,b), pcopyout(d ) 
        compute3(c_index, b, d, n); 
      } 
    } // end of FD region 
  } // end of loop 
 
  for (index=0; index<k; index++) { 
#pragma acc wait(index) 
    ; 
  } 
} 
void compute1(const float alpha, float *b, const in t n) 
{ 
  int i; 
/* #pragma omp parallel for */ 
  for (i=0; i<n; ++i) 
    { 
      b[i] = alpha * alpha * i; 
    } 
} 
 
void compute2(float beta, float *b, float *d, const  int n) 
{ 
  int i; 
/* #pragma omp parallel for */ 
  for (i=0; i<n; ++i) 
    { 
      d[i] = b[i] / beta; 
    } 
} 
 
void compute3(float beta, float *b, float *d, const  int n) 
{ 
  int i; 
/* #pragma omp parallel for */ 
  for (i=0; i<n; ++i) 
    { 
      d[i] = b[i] + beta; 
    } 
} 
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extern void fill(const int n, const float value, fl oat t[n]); 
#define K 16 
#define N 300000 
static const int k = K; 
static const int n = N; 
float a[K]; 
float b[N]; 
float c[K]; 
float d[n]; 
void example(void) 
{ 
  fill(k, 2, a); 
  fill(n, 1.578, b); 
  fill(k, 1.04, c); 
  fill(n, 1.699, d); 
  figure3(k, n, a, b, c, d); 
  return; 
} 

 

• Compilation output 

hmpp -k gcc -c -Wall -I/home/laorans/travail/DataFl ow/HMPP-
DataFLow/build/hmpp/x86_64/debug//include main.c -o  main.o 
0 regions found 
Written main_7Gt6tX.halt.i 
main.c: In function 'main': 
main.c:16: warning: implicit declaration of functio n 'printf' 
main.c:16: warning: incompatible implicit declarati on of built-in function 'printf' 
hmpp -k gcc -c -Wall -I/home/laorans/travail/DataFl ow/HMPP-
DataFLow/build/hmpp/x86_64/debug//include figure3.c  -o figure3.o 
Parse acc dataflow copyin(n, a_index,c_index), copy out(d), async(index) 
Create region figure3.c:11 
Parse acc kernels, pcopyin(a_index), pcopyout(b) 
Add call compute1(a_index, b, n) to region 
Parse acc kernels, pcopyin(c_index,b), pcopyout(d) 
Add call compute2(c_index, b, d, n) to region 
Parse acc kernels, pcopyin(c_index,b), pcopyout(d) 
Add call compute3(c_index, b, d, n) to region 
Parse acc wait(index)  
1 regions found 
Create CFG for: figure3.c:11 
0: a_index 
1: b 
2: c_index 
3: d 
4: n 
Found node compute1(a_index, b, n) 
Found node compute2(c_index, b, d, n) 
Found node compute3(c_index, b, d, n) 
Node trueBlock-0 has 1||0 pred 
Link compute1 to compute2 
Node falseBlock-0 has 1||0 pred 
Link compute1 to compute3 
Node after-0 has 1||0 succ 
Link compute2 to <exit> 
Link compute3 to <exit> 
Dataflow CFG is: 
CFG for region figure3.c:11 
0: a_index 
1: b 
2: c_index 
3: d 
4: n 

 

Figure 13: figure3.c, Data Dependencies computed at compile time 
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5 nodes: 
        a_index b       c_index d       n 
0: <entry>: 
        write   none    write   none    write 
2: compute1: 
        read    write   none    none    none 
3: compute2: 
        none    read    read    write   none 
4: compute3: 
        none    read    read    write   none 
1: <exit>: 
        none    none    none    read    none 
5 edges: 
<entry> --> compute1 
compute1 --> compute2 
compute1 --> compute3 
compute2 --> <exit> 
compute3 --> <exit> 
Processing figure3.c:11 
Build data dependencies for region figure3.c:11 
Process node <exit> 
Process node compute3 
addDEdge (compute3,<exit>,'d') 
Process node compute2 
addDEdge (compute2,<exit>,'d') 
Process node compute1 
addDEdge (compute1,compute3,'b') 
addDEdge (compute1,compute2,'b') 
Process node <entry> 
addDEdge (<entry>,compute1,'a_index') 
addDEdge (<entry>,compute3,'c_index') 
addDEdge (<entry>,compute2,'c_index') 
q 0 : (<entry>-exe) 
q 1 : (compute1-exe) 
q 2 : () 
q 3 : (compute3-wait for q1, compute3-exe) 
q 4 : (<exit>-wait for q3, <exit>-wait for q6, <exi t>-exe) 
q 5 : () 
q 6 : (compute2-wait for q1, compute2-exe) 
Found 7 queues 
Written figure3_vzaHXt.halt.i 
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] figure3.c:37: Loop 'i' was 
shared among gangs(192) and workers(256) 
(last message repeated 1 more time) 
hmpp: [Info] Generated codelet filename is 
"__hmpp_acc_region__figure3_19__3l2rxy37_cuda.hmf.c u". 
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] figure3.c:47: Loop 'i' was 
shared among gangs(192) and workers(256) 
(last message repeated 1 more time) 
hmpp: [Info] Generated codelet filename is 
"__hmpp_acc_region__figure3_26__v3352zdi_cuda.hmf.c u". 
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] figure3.c:57: Loop 'i' was 
shared among gangs(192) and workers(256) 
(last message repeated 1 more time) 
hmpp: [Info] Generated codelet filename is 
"__hmpp_acc_region__figure3_33__n5wy5sgy_cuda.hmf.c u". 
hmpp: [Warning HP0391] <preprocessor>:15: Variable 'a_index' in Data clause has no effect 
if read-only in the enclosed Kernel/Parallel region s 
hmpp: [Warning HP0391] <preprocessor>:15: Variable 'c_index' in Data clause has no effect 
if read-only in the enclosed Kernel/Parallel region s 
hmpp: [Warning HP0391] <preprocessor>:15: Variable 'n' in Data clause has no effect if 
read-only in the enclosed Kernel/Parallel regions 
<preprocessor>: In function 'figure3': 
<preprocessor>:45: warning: implicit declaration of  function 'openacci_set_device_hint' 
<preprocessor>:15: warning: implicit declaration of  function 'openacci_enter_region' 
<preprocessor>:15: warning: implicit declaration of  function 'openacci_push_data' 
<stdin>:1: warning: implicit declaration of functio n 'openacci_call' 
<stdin>:1: warning: implicit declaration of functio n 'openacci_fallback' 
<stdin>:1: warning: implicit declaration of functio n 'openacci_leave_region' 
<preprocessor>:25: warning: implicit declaration of  function 'openacci_wait' 
figure3.c: In function 'hmppsi_lookup': 
figure3.c:85: warning: implicit declaration of func tion 'hmpprti_lookup_grouplet' 
figure3.c:85: warning: return makes pointer from in teger without a cast 
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figure3.c: At top level: 
figure3.c:83: warning: 'hmppsi_lookup' defined but not used 
hmpp -k gcc -Wall main.o figure3.o -o test.exe 

• Execution output 

./test.exe 
[     0.201299] ( 0) INFO : Enter    data (queue=no ne, location=<preprocessor>:15) 
[     0.201616] ( 0) INFO : Acquire  (target=cuda) 
[     0.201844] ( 0) INFO : Acquired (device='cuda# 0 [GeForce GTS 450]') 
[     0.201979] ( 0) INFO : Allocate a_index[0:1] ( element_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:15) 
[     0.227291] ( 0) INFO : Upload   a_index[0:1] ( element_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.227532] ( 0) INFO : Allocate b[0:300000] (e lement_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:15) 
[     0.227738] ( 0) INFO : Allocate c_index[0:1] ( element_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:15) 
[     0.227843] ( 0) INFO : Upload   c_index[0:1] ( element_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.227936] ( 0) INFO : Allocate d[0:300000] (e lement_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:15) 
[     0.228125] ( 0) INFO : Allocate n[0:1] (elemen t_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:15) 
[     0.228227] ( 0) INFO : Upload   n[0:1] (elemen t_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.228433] ( 0) INFO : Enter    kernels (queue =1, location=<preprocessor>:19) 
[     0.229598] ( 0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8, 
memory_space=host, queue=1, location=<preprocessor> :19) 
[     0.229723] ( 0) INFO : Upload   __hmpp_vla_siz es__b[0:1] (element_size=8, queue=1, 
location=<preprocessor>:19) 
[     0.229838] ( 0) INFO : Call     __hmpp_acc_reg ion__figure3_19__3l2rxy37 (queue=1, 
location=<preprocessor>:19) 
[     0.230031] ( 0) INFO : Free     __hmpp_vla_siz es__b[0:1] (element_size=8, queue=1, 
location=<preprocessor>:19) 
[     0.230194] ( 0) INFO : Leave    kernels (queue =1, location=<preprocessor>:19) 
[     0.230308] ( 0) INFO : Wait     (queue=6, awai ted=1, location=<preprocessor>:25) 
[     0.230391] ( 0) INFO : Enter    kernels (queue =6, location=<preprocessor>:26) 
[     0.230816] ( 0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8, 
memory_space=host, queue=6, location=<preprocessor> :26) 
[     0.230911] ( 0) INFO : Upload   __hmpp_vla_siz es__b[0:1] (element_size=8, queue=6, 
location=<preprocessor>:26) 
[     0.230985] ( 0) INFO : Allocate __hmpp_vla_siz es__d[0:1] (element_size=8, 
memory_space=host, queue=6, location=<preprocessor> :26) 
[     0.231066] ( 0) INFO : Upload   __hmpp_vla_siz es__d[0:1] (element_size=8, queue=6, 
location=<preprocessor>:26) 
[     0.231142] ( 0) INFO : Call     __hmpp_acc_reg ion__figure3_26__v3352zdi (queue=6, 
location=<preprocessor>:26) 
[     0.231254] ( 0) INFO : Free     __hmpp_vla_siz es__d[0:1] (element_size=8, queue=6, 
location=<preprocessor>:26) 
[     0.231344] ( 0) INFO : Free     __hmpp_vla_siz es__b[0:1] (element_size=8, queue=6, 
location=<preprocessor>:26) 
[     0.231424] ( 0) INFO : Leave    kernels (queue =6, location=<preprocessor>:26) 
[     0.231491] ( 0) INFO : Wait     (queue=none, a waited=3, location=<preprocessor>:38) 
[     0.231562] ( 0) INFO : Wait     (queue=none, a waited=6, location=<preprocessor>:39) 
[     0.231629] ( 0) INFO : Free     n[0:1] (elemen t_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.231729] ( 0) INFO : Download d[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.232365] ( 0) INFO : Free     d[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.232558] ( 0) INFO : Free     c_index[0:1] ( element_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.232658] ( 0) INFO : Free     b[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.232807] ( 0) INFO : Free     a_index[0:1] ( element_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.232962] ( 0) INFO : Leave    data (queue=no ne, location=<preprocessor>:15) 
 
(...) 
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[     0.295439] ( 0) INFO : Enter    data (queue=no ne, location=<preprocessor>:15) 
[     0.295502] ( 0) INFO : Allocate a_index[0:1] ( element_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:15) 
[     0.295715] ( 0) INFO : Upload   a_index[0:1] ( element_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.295814] ( 0) INFO : Allocate b[0:300000] (e lement_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:15) 
[     0.295999] ( 0) INFO : Allocate c_index[0:1] ( element_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:15) 
[     0.296101] ( 0) INFO : Upload   c_index[0:1] ( element_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.296192] ( 0) INFO : Allocate d[0:300000] (e lement_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:15) 
[     0.296376] ( 0) INFO : Allocate n[0:1] (elemen t_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:15) 
[     0.296479] ( 0) INFO : Upload   n[0:1] (elemen t_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.296573] ( 0) INFO : Enter    kernels (queue =1, location=<preprocessor>:19) 
[     0.296647] ( 0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8, 
memory_space=host, queue=1, location=<preprocessor> :19) 
[     0.296729] ( 0) INFO : Upload   __hmpp_vla_siz es__b[0:1] (element_size=8, queue=1, 
location=<preprocessor>:19) 
[     0.296803] ( 0) INFO : Call     __hmpp_acc_reg ion__figure3_19__3l2rxy37 (queue=1, 
location=<preprocessor>:19) 
[     0.296872] ( 0) INFO : Free     __hmpp_vla_siz es__b[0:1] (element_size=8, queue=1, 
location=<preprocessor>:19) 
[     0.296955] ( 0) INFO : Leave    kernels (queue =1, location=<preprocessor>:19) 
[     0.297020] ( 0) INFO : Wait     (queue=6, awai ted=1, location=<preprocessor>:25) 
[     0.297092] ( 0) INFO : Enter    kernels (queue =6, location=<preprocessor>:26) 
[     0.297163] ( 0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8, 
memory_space=host, queue=6, location=<preprocessor> :26) 
[     0.297245] ( 0) INFO : Upload   __hmpp_vla_siz es__b[0:1] (element_size=8, queue=6, 
location=<preprocessor>:26) 
[     0.297317] ( 0) INFO : Allocate __hmpp_vla_siz es__d[0:1] (element_size=8, 
memory_space=host, queue=6, location=<preprocessor> :26) 
[     0.297395] ( 0) INFO : Upload   __hmpp_vla_siz es__d[0:1] (element_size=8, queue=6, 
location=<preprocessor>:26) 
[     0.297468] ( 0) INFO : Call     __hmpp_acc_reg ion__figure3_26__v3352zdi (queue=6, 
location=<preprocessor>:26) 
[     0.297535] ( 0) INFO : Free     __hmpp_vla_siz es__d[0:1] (element_size=8, queue=6, 
location=<preprocessor>:26) 
[     0.297616] ( 0) INFO : Free     __hmpp_vla_siz es__b[0:1] (element_size=8, queue=6, 
location=<preprocessor>:26) 
[     0.297695] ( 0) INFO : Leave    kernels (queue =6, location=<preprocessor>:26) 
[     0.297758] ( 0) INFO : Wait     (queue=none, a waited=3, location=<preprocessor>:38) 
[     0.297827] ( 0) INFO : Wait     (queue=none, a waited=6, location=<preprocessor>:39) 
[     0.297892] ( 0) INFO : Free     n[0:1] (elemen t_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.297984] ( 0) INFO : Download d[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.298548] ( 0) INFO : Free     d[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.298704] ( 0) INFO : Free     c_index[0:1] ( element_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.298803] ( 0) INFO : Free     b[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.298950] ( 0) INFO : Free     a_index[0:1] ( element_size=4, queue=none, 
location=<preprocessor>:15) 
[     0.299103] ( 0) INFO : Leave    data (queue=no ne, location=<preprocessor>:15) 
[     0.299177] ( 0) INFO : Wait     (queue=none, a waited=0, location=figure3.c:27) 
[     0.299246] ( 0) INFO : Wait     (queue=none, a waited=1, location=figure3.c:27) 
[     0.299309] ( 0) INFO : Wait     (queue=none, a waited=2, location=figure3.c:27) 
[     0.299370] ( 0) INFO : Wait     (queue=none, a waited=3, location=figure3.c:27) 
[     0.299432] ( 0) INFO : Wait     (queue=none, a waited=4, location=figure3.c:27) 
[     0.299495] ( 0) INFO : Wait     (queue=none, a waited=5, location=figure3.c:27) 
[     0.299555] ( 0) INFO : Wait     (queue=none, a waited=6, location=figure3.c:27) 
[     0.299618] ( 0) INFO : Wait     (queue=none, a waited=7, location=figure3.c:27) 
[     0.299681] ( 0) INFO : Wait     (queue=none, a waited=8, location=figure3.c:27) 
[     0.299743] ( 0) INFO : Wait     (queue=none, a waited=9, location=figure3.c:27) 
[     0.299805] ( 0) INFO : Wait     (queue=none, a waited=10, location=figure3.c:27) 
[     0.299867] ( 0) INFO : Wait     (queue=none, a waited=11, location=figure3.c:27) 
[     0.299929] ( 0) INFO : Wait     (queue=none, a waited=12, location=figure3.c:27) 
[     0.299992] ( 0) INFO : Wait     (queue=none, a waited=13, location=figure3.c:27) 
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[     0.300054] ( 0) INFO : Wait     (queue=none, a waited=14, location=figure3.c:27) 
[     0.300116] ( 0) INFO : Wait     (queue=none, a waited=15, location=figure3.c:27) 
start 
done 

 

Appendix A3: Basic synchronization example 
• Source code 

/* # */ 
/* #             -- k1 --                 -- k1b --  */ 
/* #            /        \               /         \ */ 
/* # scatter --<          >-- gather --<            >-- gatherb */ 
/* #            \        /               \         / */ 
/* #             -- k2 --                 -- k2b --   */ 
/* # */ 
 
void scatter(const float *a, float *b, int n); 
void k1(float *b, float *c, int n); 
void k2(float *b, float *d, int n); 
void gather(float *c, float *d, float *e, int n); 
void k1b(float *e, float *f, int n); 
void k2b(float *e, float *g, int n); 
void gatherb(float *f, float *g, float *h, int n); 
 
void scatter_gather(const int n, const float a[n], 
                    float b[n], float c[n], float d [n], 
                    float e[n], float f[n], float g [n], float h[n]) 
{ 
#pragma acc dataflow copyin(a), copyout(h) 
  { 
#pragma acc kernels, pcopyin(a), pcopyout(b) 
    scatter(a, b, n); 
 
#pragma acc kernels, pcopyin(b), pcopyout(c) 
    k1(b, c, n); 
 
#pragma acc kernels, pcopyin(b), pcopyout(d) 
    k2(b, d, n); 
 
#pragma acc kernels, pcopyin(c,d), pcopyout(e) 
    gather(c, d, e, n); 
 
#pragma acc kernels, pcopyin(e), pcopyout(f) 
    k1b(e, f, n); 
 
#pragma acc kernels, pcopyin(e), pcopyout(g) 
    k2b(e, g, n); 
 
#pragma acc kernels, pcopyin(f,g), pcopyout(h) 
    gatherb(f, g, h, n); 
  } 
} 
 
void scatter(const float *a, float *b, int n) 
{ 
  int i; 
  for (i=0; i<n; ++i) 
    { 
      b[i] = a[i] * 5 / (i%2); 
    } 
} 
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void k1(float *b, float *c, int n) 
{ 
  int i; 
  for (i=0; i<n; ++i) 
    { 
      c[i] = b[i] * 5 / (i%3); 
    } 
} 
void k2(float *b, float *d, int n) 
{ 
  int i; 
  for (i=0; i<n; ++i) 
    { 
      d[i] = b[i] - i + n / 3; 
    } 
} 
 
void gather(float *c, float *d, float *e, int n) 
{ 
  int i; 
  for (i=0; i<n; ++i) 
    { 
      e[i] = c[i] + d[i] - n / 3; 
    } 
} 
 
void k1b(float *e, float *f, int n) 
{ 
  int i; 
  for (i=0; i<n; ++i) 
    { 
      f[i] = e[i] * 5 / (i%3); 
    } 
} 
 
void k2b(float *e, float *g, int n) 
{ 
  int i; 
  for (i=0; i<n; ++i) 
    { 
      g[i] = e[i] - i + n / 3; 
    } 
} 
 
void gatherb(float *f, float *g, float *h, int n) 
{ 
  int i; 
  for (i=0; i<n; ++i) 
    { 
      h[i] = f[i] - g[i] + n / 3; 
    } 
} 
 
extern void fill(const int n, const float value, fl oat t[n]); 
#define N 300000 
static const int n = N; 
float a[N],b[N],c[N],d[N]; 
float e[N],f[N],g[N],h[N]; 
void example(void) 
{ 
  fill(n, 2, a); 
  fill(n, 0, b); 
  fill(n, 0, c); 
  fill(n, 0, d); 
  fill(n, 0, e); 
  fill(n, 0, f); 
  fill(n, 0, g); 
  fill(n, 0, h); 
  scatter_gather(n, a, b, c, d, e, f, g, h); 
  return; 
} 

• Compilation output 
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hmpp -k gcc -c -Wall -I/home/laorans/travail/DataFl ow/HMPP-
DataFLow/build/hmpp/x86_64/debug//include main.c -o  main.o 
0 regions found 
Written main_cN2GUe.halt.i 
main.c: In function 'main': 
main.c:16: warning: implicit declaration of functio n 'printf' 
main.c:16: warning: incompatible implicit declarati on of built-in function 'printf' 
 
hmpp -k gcc -c -Wall -I/home/laorans/travail/DataFl ow/HMPP-
DataFLow/build/hmpp/x86_64/debug//include scatter_g ather3.c -o scatter_gather3.o 
Parse acc dataflow copyin(a), copyout(h) 
Create region scatter_gather3.c:22 
Parse acc kernels, pcopyin(a), pcopyout(b) 
Add call scatter(a, b, n) to region 
Parse acc kernels, pcopyin(b), pcopyout(c) 
Add call k1(b, c, n) to region 
Parse acc kernels, pcopyin(b), pcopyout(d) 
Add call k2(b, d, n) to region 
Parse acc kernels, pcopyin(c,d), pcopyout(e) 
Add call gather(c, d, e, n) to region 
Parse acc kernels, pcopyin(e), pcopyout(f) 
Add call k1b(e, f, n) to region 
Parse acc kernels, pcopyin(e), pcopyout(g) 
Add call k2b(e, g, n) to region 
Parse acc kernels, pcopyin(f,g), pcopyout(h) 
Add call gatherb(f, g, h, n) to region 
1 regions found 
Create CFG for: scatter_gather3.c:22 
0: a 
1: b 
2: c 
3: d 
4: e 
5: f 
6: g 
7: h 
8: n 
Found node scatter(a, b, n) 
Found node k1(b, c, n) 
Found node k2(b, d, n) 
Found node gather(c, d, e, n) 
Found node k1b(e, f, n) 
Found node k2b(e, g, n) 
Found node gatherb(f, g, h, n) 
Dataflow CFG is: 
CFG for region scatter_gather3.c:22 
0: a 
1: b 
2: c 
3: d 
4: e 
5: f 
6: g 
7: h 
8: n 

 

Figure 14: scatter_gather3.C, DATA DEPENDENCIES COMPUTED AT COMPILE TIME 
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9 nodes: 
        a       b       c       d       e       f       g       h       n 
0: <entry>: 
        write   none    none    none    none    non e    none    none    none 
2: scatter: 
        read    write   none    none    none    non e    none    none    none 
3: k1: 
        none    read    write   none    none    non e    none    none    none 
4: k2: 
        none    read    none    write   none    non e    none    none    none 
5: gather: 
        none    none    read    read    write   non e    none    none    none 
6: k1b: 
        none    none    none    none    read    wri te   none    none    none 
7: k2b: 
        none    none    none    none    read    non e    write   none    none 
8: gatherb: 
        none    none    none    none    none    rea d    read    write   none 
1: <exit>: 
        none    none    none    none    none    non e    none    read    none 
8 edges: 
<entry> --> scatter 
scatter --> k1 
k1 --> k2 
k2 --> gather 
gather --> k1b 
k1b --> k2b 
k2b --> gatherb 
gatherb --> <exit> 
 
Processing scatter_gather3.c:22 
Build data dependencies for region scatter_gather3. c:22 
Process node <exit> 
Process node gatherb 
addDEdge (gatherb,<exit>,'h') 
Process node k2b 
addDEdge (k2b,gatherb,'g') 
Process node k1b 
addDEdge (k1b,gatherb,'f') 
Process node gather 
addDEdge (gather,k2b,'e') 
addDEdge (gather,k1b,'e') 
Process node k2 
addDEdge (k2,gather,'d') 
Process node k1 
addDEdge (k1,gather,'c') 
Process node scatter 
addDEdge (scatter,k2,'b') 
addDEdge (scatter,k1,'b') 
Process node <entry> 
addDEdge (<entry>,scatter,'a') 
q 0 : (<entry>-exe, scatter-exe) 
q 1 : (k2-wait for q0, k2-exe) 
q 2 : (gather-wait for q1, gather-wait for q7, gath er-exe) 
q 3 : (k2b-wait for q2, k2b-exe) 
q 4 : (gatherb-wait for q3, gatherb-wait for q6, ga therb-exe) 
q 5 : (<exit>-wait for q4, <exit>-exe) 
q 6 : (k1b-wait for q2, k1b-exe) 
q 7 : (k1-wait for q0, k1-exe) 
Found 8 queues 
Written scatter_gather3_QCu3VO.halt.i 
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:49: Loop 
'i' was shared among gangs(192) and workers(256) 
(last message repeated 1 more time) 
hmpp: [Info] Generated codelet filename is 
"__hmpp_acc_region__scatter_gather_22__rxkufdsq_cud a.hmf.cu". 
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:58: Loop 
'i' was shared among gangs(192) and workers(256) 
(last message repeated 1 more time) 
hmpp: [Info] Generated codelet filename is 
"__hmpp_acc_region__scatter_gather_27__we7v929a_cud a.hmf.cu". 
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:67: Loop 
'i' was shared among gangs(192) and workers(256) 
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(last message repeated 1 more time) 
hmpp: [Info] Generated codelet filename is 

"__hmpp_acc_region__scatter_gather_32__m7t6hy1i_cud a.hmf.cu". 
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:76: Loop 

'i' was shared among gangs(192) and workers(256) 
(last message repeated 1 more time) 
hmpp: [Info] Generated codelet filename is 

"__hmpp_acc_region__scatter_gather_38__sqzf3jti_cud a.hmf.cu". 
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:85: Loop 

'i' was shared among gangs(192) and workers(256) 
(last message repeated 1 more time) 
hmpp: [Info] Generated codelet filename is 

"__hmpp_acc_region__scatter_gather_43__ib5eb500_cud a.hmf.cu". 
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:94: Loop 

'i' was shared among gangs(192) and workers(256) 
(last message repeated 1 more time) 
hmpp: [Info] Generated codelet filename is 

"__hmpp_acc_region__scatter_gather_48__nfnpel8g_cud a.hmf.cu". 
hmppcg: src/dpil/acc/WorkSharingPass.cc:388: [Messa ge DPL0099] scatter_gather3.c:103: Loop 

'i' was shared among gangs(192) and workers(256) 
(last message repeated 1 more time) 
hmpp: [Info] Generated codelet filename is 

"__hmpp_acc_region__scatter_gather_54__ejhi1ko8_cud a.hmf.cu". 
hmpp: [Warning HP0391] <preprocessor>:18: Variable 'n' in Data clause has no effect if 

read-only in the enclosed Kernel/Parallel regions 
<preprocessor>: In function 'scatter_gather': 
<preprocessor>:92: warning: implicit declaration of  function 'openacci_set_device_hint' 
<preprocessor>:18: warning: implicit declaration of  function 'openacci_enter_region' 
<preprocessor>:18: warning: implicit declaration of  function 'openacci_push_data' 
<stdin>:1: warning: implicit declaration of functio n 'openacci_call' 
<stdin>:1: warning: implicit declaration of functio n 'openacci_fallback' 
<stdin>:1: warning: implicit declaration of functio n 'openacci_leave_region' 
<preprocessor>:26: warning: implicit declaration of  function 'openacci_wait' 
scatter_gather3.c: In function 'hmppsi_lookup': 
scatter_gather3.c:131: warning: implicit declaratio n of function 'hmpprti_lookup_grouplet' 
scatter_gather3.c:131: warning: return makes pointe r from integer without a cast 
scatter_gather3.c: At top level: 
scatter_gather3.c:129: warning: 'hmppsi_lookup' def ined but not used 
hmpp -k gcc -Wall main.o scatter_gather3.o -o test. exe 
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Execution output 

./test.exe 
[     0.209093] ( 0) INFO : Enter    data (queue=no ne, location=<preprocessor>:18) 
[     0.209416] ( 0) INFO : Acquire  (target=cuda) 
[     0.209650] ( 0) INFO : Acquired (device='cuda# 0 [GeForce GTS 450]') 
[     0.209789] ( 0) INFO : Allocate a[0:300000] (e lement_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:18) 
[     0.235402] ( 0) INFO : Upload   a[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:18) 
[     0.236023] ( 0) INFO : Allocate b[0:300000] (e lement_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:18) 
[     0.236230] ( 0) INFO : Allocate c[0:300000] (e lement_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:18) 
[     0.236420] ( 0) INFO : Allocate d[0:300000] (e lement_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:18) 
[     0.236607] ( 0) INFO : Allocate e[0:300000] (e lement_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:18) 
[     0.236793] ( 0) INFO : Allocate f[0:300000] (e lement_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:18) 
[     0.236976] ( 0) INFO : Allocate g[0:300000] (e lement_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:18) 
[     0.237161] ( 0) INFO : Allocate h[0:300000] (e lement_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:18) 
[     0.237346] ( 0) INFO : Allocate n[0:1] (elemen t_size=4, memory_space=cudaglob, 
queue=none, location=<preprocessor>:18) 
[     0.237643] ( 0) INFO : Enter    kernels (queue =0, location=<preprocessor>:22) 
[     0.238837] ( 0) INFO : Allocate __hmpp_vla_siz es__a[0:1] (element_size=8, 
memory_space=host, queue=0, location=<preprocessor> :22) 
[     0.238960] ( 0) INFO : Upload   __hmpp_vla_siz es__a[0:1] (element_size=8, queue=0, 
location=<preprocessor>:22) 
[     0.239055] ( 0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8, 
memory_space=host, queue=0, location=<preprocessor> :22) 
[     0.239135] ( 0) INFO : Upload   __hmpp_vla_siz es__b[0:1] (element_size=8, queue=0, 
location=<preprocessor>:22) 
[     0.239224] ( 0) INFO : Call     __hmpp_acc_reg ion__scatter_gather_22__rxkufdsq 
(queue=0, location=<preprocessor>:22) 
[     0.239413] ( 0) INFO : Free     __hmpp_vla_siz es__b[0:1] (element_size=8, queue=0, 
location=<preprocessor>:22) 
[     0.239546] ( 0) INFO : Free     __hmpp_vla_siz es__a[0:1] (element_size=8, queue=0, 
location=<preprocessor>:22) 
[     0.239629] ( 0) INFO : Leave    kernels (queue =0, location=<preprocessor>:22) 
[     0.239729] ( 0) INFO : Wait     (queue=7, awai ted=0, location=<preprocessor>:26) 
[     0.239807] ( 0) INFO : Enter    kernels (queue =7, location=<preprocessor>:27) 
[     0.240207] ( 0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8, 
memory_space=host, queue=7, location=<preprocessor> :27) 
[     0.240298] ( 0) INFO : Upload   __hmpp_vla_siz es__b[0:1] (element_size=8, queue=7, 
location=<preprocessor>:27) 
[     0.240370] ( 0) INFO : Allocate __hmpp_vla_siz es__c[0:1] (element_size=8, 
memory_space=host, queue=7, location=<preprocessor> :27) 
[     0.240450] ( 0) INFO : Upload   __hmpp_vla_siz es__c[0:1] (element_size=8, queue=7, 
location=<preprocessor>:27) 
[     0.240522] ( 0) INFO : Call     __hmpp_acc_reg ion__scatter_gather_27__we7v929a 
(queue=7, location=<preprocessor>:27) 
[     0.240655] ( 0) INFO : Free     __hmpp_vla_siz es__c[0:1] (element_size=8, queue=7, 
location=<preprocessor>:27) 
[     0.240740] ( 0) INFO : Free     __hmpp_vla_siz es__b[0:1] (element_size=8, queue=7, 
location=<preprocessor>:27) 
[     0.240818] ( 0) INFO : Leave    kernels (queue =7, location=<preprocessor>:27) 
[     0.240883] ( 0) INFO : Wait     (queue=1, awai ted=0, location=<preprocessor>:31) 
[     0.240955] ( 0) INFO : Enter    kernels (queue =1, location=<preprocessor>:32) 
[     0.241323] ( 0) INFO : Allocate __hmpp_vla_siz es__b[0:1] (element_size=8, 
memory_space=host, queue=1, location=<preprocessor> :32) 
[     0.241410] ( 0) INFO : Upload   __hmpp_vla_siz es__b[0:1] (element_size=8, queue=1, 
location=<preprocessor>:32) 
[     0.241481] ( 0) INFO : Allocate __hmpp_vla_siz es__d[0:1] (element_size=8, 
memory_space=host, queue=1, location=<preprocessor> :32) 
[     0.241559] ( 0) INFO : Upload   __hmpp_vla_siz es__d[0:1] (element_size=8, queue=1, 
location=<preprocessor>:32) 
[     0.241634] ( 0) INFO : Call     __hmpp_acc_reg ion__scatter_gather_32__m7t6hy1i 
(queue=1, location=<preprocessor>:32) 
 
[     0.241728] ( 0) INFO : Free     __hmpp_vla_siz es__d[0:1] (element_size=8, queue=1, 
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location=<preprocessor>:32) 
[     0.241812] ( 0) INFO : Free     __hmpp_vla_siz es__b[0:1] (element_size=8, queue=1, 
location=<preprocessor>:32) 
[     0.241896] ( 0) INFO : Leave    kernels (queue =1, location=<preprocessor>:32) 
[     0.241963] ( 0) INFO : Wait     (queue=2, awai ted=1, location=<preprocessor>:36) 
[     0.242035] ( 0) INFO : Wait     (queue=2, awai ted=7, location=<preprocessor>:37) 
[     0.242110] ( 0) INFO : Enter    kernels (queue =2, location=<preprocessor>:38) 
[     0.242540] ( 0) INFO : Allocate __hmpp_vla_siz es__c[0:1] (element_size=8, 
memory_space=host, queue=2, location=<preprocessor> :38) 
[     0.242628] ( 0) INFO : Upload   __hmpp_vla_siz es__c[0:1] (element_size=8, queue=2, 
location=<preprocessor>:38) 
[     0.242707] ( 0) INFO : Allocate __hmpp_vla_siz es__d[0:1] (element_size=8, 
memory_space=host, queue=2, location=<preprocessor> :38) 
[     0.242790] ( 0) INFO : Upload   __hmpp_vla_siz es__d[0:1] (element_size=8, queue=2, 
location=<preprocessor>:38) 
[     0.242863] ( 0) INFO : Allocate __hmpp_vla_siz es__e[0:1] (element_size=8, 
memory_space=host, queue=2, location=<preprocessor> :38) 
[     0.242946] ( 0) INFO : Upload   __hmpp_vla_siz es__e[0:1] (element_size=8, queue=2, 
location=<preprocessor>:38) 
[     0.243031] ( 0) INFO : Call     __hmpp_acc_reg ion__scatter_gather_38__sqzf3jti 
(queue=2, location=<preprocessor>:38) 
[     0.243150] ( 0) INFO : Free     __hmpp_vla_siz es__e[0:1] (element_size=8, queue=2, 
location=<preprocessor>:38) 
[     0.243247] ( 0) INFO : Free     __hmpp_vla_siz es__d[0:1] (element_size=8, queue=2, 
location=<preprocessor>:38) 
[     0.243334] ( 0) INFO : Free     __hmpp_vla_siz es__c[0:1] (element_size=8, queue=2, 
location=<preprocessor>:38) 
[     0.243415] ( 0) INFO : Leave    kernels (queue =2, location=<preprocessor>:38) 
[     0.243483] ( 0) INFO : Wait     (queue=6, awai ted=2, location=<preprocessor>:42) 
[     0.243558] ( 0) INFO : Enter    kernels (queue =6, location=<preprocessor>:43) 
[     0.243936] ( 0) INFO : Allocate __hmpp_vla_siz es__e[0:1] (element_size=8, 
memory_space=host, queue=6, location=<preprocessor> :43) 
[     0.244024] ( 0) INFO : Upload   __hmpp_vla_siz es__e[0:1] (element_size=8, queue=6, 
location=<preprocessor>:43) 
[     0.244100] ( 0) INFO : Allocate __hmpp_vla_siz es__f[0:1] (element_size=8, 
memory_space=host, queue=6, location=<preprocessor> :43) 
[     0.244181] ( 0) INFO : Upload   __hmpp_vla_siz es__f[0:1] (element_size=8, queue=6, 
location=<preprocessor>:43) 
[     0.244254] ( 0) INFO : Call     __hmpp_acc_reg ion__scatter_gather_43__ib5eb500 
(queue=6, location=<preprocessor>:43) 
[     0.244350] ( 0) INFO : Free     __hmpp_vla_siz es__f[0:1] (element_size=8, queue=6, 
location=<preprocessor>:43) 
[     0.244433] ( 0) INFO : Free     __hmpp_vla_siz es__e[0:1] (element_size=8, queue=6, 
location=<preprocessor>:43) 
[     0.244507] ( 0) INFO : Leave    kernels (queue =6, location=<preprocessor>:43) 
[     0.244570] ( 0) INFO : Wait     (queue=3, awai ted=2, location=<preprocessor>:47) 
[     0.244639] ( 0) INFO : Enter    kernels (queue =3, location=<preprocessor>:48) 
[     0.244990] ( 0) INFO : Allocate __hmpp_vla_siz es__e[0:1] (element_size=8, 
memory_space=host, queue=3, location=<preprocessor> :48) 
[     0.245076] ( 0) INFO : Upload   __hmpp_vla_siz es__e[0:1] (element_size=8, queue=3, 
location=<preprocessor>:48) 
[     0.245148] ( 0) INFO : Allocate __hmpp_vla_siz es__g[0:1] (element_size=8, 
memory_space=host, queue=3, location=<preprocessor> :48) 
[     0.245223] ( 0) INFO : Upload   __hmpp_vla_siz es__g[0:1] (element_size=8, queue=3, 
location=<preprocessor>:48) 
[     0.245298] ( 0) INFO : Call     __hmpp_acc_reg ion__scatter_gather_48__nfnpel8g 
(queue=3, location=<preprocessor>:48) 
[     0.245389] ( 0) INFO : Free     __hmpp_vla_siz es__g[0:1] (element_size=8, queue=3, 
location=<preprocessor>:48) 
[     0.245471] ( 0) INFO : Free     __hmpp_vla_siz es__e[0:1] (element_size=8, queue=3, 
location=<preprocessor>:48) 
[     0.245546] ( 0) INFO : Leave    kernels (queue =3, location=<preprocessor>:48) 
[     0.245609] ( 0) INFO : Wait     (queue=4, awai ted=3, location=<preprocessor>:52) 
[     0.245676] ( 0) INFO : Wait     (queue=4, awai ted=6, location=<preprocessor>:53) 
[     0.245745] ( 0) INFO : Enter    kernels (queue =4, location=<preprocessor>:54) 
[     0.246157] ( 0) INFO : Allocate __hmpp_vla_siz es__f[0:1] (element_size=8, 
memory_space=host, queue=4, location=<preprocessor> :54) 
[     0.246244] ( 0) INFO : Upload   __hmpp_vla_siz es__f[0:1] (element_size=8, queue=4, 
location=<preprocessor>:54) 
[     0.246314] ( 0) INFO : Allocate __hmpp_vla_siz es__g[0:1] (element_size=8, 
memory_space=host, queue=4, location=<preprocessor> :54) 
[     0.246393] ( 0) INFO : Upload   __hmpp_vla_siz es__g[0:1] (element_size=8, queue=4, 
location=<preprocessor>:54) 



Project: TERAFLUX  - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D3.5 
Deliverable name: Overall Computational Model Final Report 
File name: TERAFLUX-D35-v4.doc Page 48 of 48 

[     0.246462] ( 0) INFO : Allocate __hmpp_vla_siz es__h[0:1] (element_size=8, 
memory_space=host, queue=4, location=<preprocessor> :54) 
[     0.246535] ( 0) INFO : Upload   __hmpp_vla_siz es__h[0:1] (element_size=8, queue=4, 
location=<preprocessor>:54) 
[     0.246610] ( 0) INFO : Call     __hmpp_acc_reg ion__scatter_gather_54__ejhi1ko8 
(queue=4, location=<preprocessor>:54) 
[     0.246708] ( 0) INFO : Free     __hmpp_vla_siz es__h[0:1] (element_size=8, queue=4, 
location=<preprocessor>:54) 
[     0.246795] ( 0) INFO : Free     __hmpp_vla_siz es__g[0:1] (element_size=8, queue=4, 
location=<preprocessor>:54) 
[     0.246874] ( 0) INFO : Free     __hmpp_vla_siz es__f[0:1] (element_size=8, queue=4, 
location=<preprocessor>:54) 
[     0.246948] ( 0) INFO : Leave    kernels (queue =4, location=<preprocessor>:54) 
[     0.247009] ( 0) INFO : Wait     (queue=none, a waited=4, location=<preprocessor>:58) 
[     0.247072] ( 0) INFO : Free     n[0:1] (elemen t_size=4, queue=none, 
location=<preprocessor>:18) 
[     0.247235] ( 0) INFO : Download h[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:18) 
[     0.247867] ( 0) INFO : Free     h[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:18) 
[     0.248045] ( 0) INFO : Free     g[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:18) 
[     0.248192] ( 0) INFO : Free     f[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:18) 
[     0.248338] ( 0) INFO : Free     e[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:18) 
[     0.248485] ( 0) INFO : Free     d[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:18) 
[     0.248630] ( 0) INFO : Free     c[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:18) 
[     0.248776] ( 0) INFO : Free     b[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:18) 
[     0.248921] ( 0) INFO : Free     a[0:300000] (e lement_size=4, queue=none, 
location=<preprocessor>:18) 
[     0.249067] ( 0) INFO : Leave    data (queue=no ne, location=<preprocessor>:18) 
Start 
done 


